APPROXIMATION NUMERIQUE ET OPTIMISATION

G. ALLAIRE

5 Décembre 2017

CHAPITRE III (fin)

- Problèmes d'évolution, résolution pratique.
- Problèmes aux valeurs propres, résolution pratique.
- Algèbre linéaire pour la résolution de systèmes linéaires et pour le calcul de valeurs et vecteurs propres.

Equation de la chaleur

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = 0 & \text{pour } x \in (0, L) \text{ et } t > 0 \\ u(t, 0) = u(t, L) = 0 & \text{pour } t > 0 \\ u(t = 0, x) = u_0(x) & \text{dans } (0, L) \end{cases}$$

avec L > 0 et $\nu > 0$.

Sans les Ct, la solution général de l'éq.des orde d'évir) sous le forme M(t,x)=W(x-c+)+W(x+c+)

Equation des ondes

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 & \text{pour } x \in (0, L) \text{ et } t > 0 \\ u(t, 0) = u(t, L) = 0 & \text{pour } t > 0 \\ u(t = 0, x) = u_0(x) & \text{dans } (0, L) \\ \frac{\partial u}{\partial t}(t = 0, x) = u_1(x) & \text{dans } (0, L) \end{cases}$$

avec L > 0 et c > 0.

Formulation variationnelle

Idée principale: on écrit une formulation variationnelle avec des fonctions tests qui ne dépendent pas du temps.

Conséquences:

- On utilisera des éléments finis en espace.
- On fera des différences finies en temps.

Formulation variationnelle en 1-d

Equation de la chaleur:

(C)
$$\begin{cases} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = \mathbf{5} & \text{dans } (0, L) \times \mathbb{R}_*^+ \\ u(t, 0) = u(t, L) = 0 & \text{pour } t > 0 \\ u(t = 0, x) = u_0(x) & \text{dans } (0, L) \end{cases}$$

Formulation variationnelle: pour tout t > 0, trouver

$$u(t,\cdot)\in V_0=\left\{\phi\in C^1[0,L] \text{ tel que } \phi(0)=\phi(L)=0\right\}$$
 qui vérifie $\forall\phi\in V_0$

$$(FV) \int_0^L \frac{\partial u}{\partial t}(t,x)\phi(x)\,dx + \int_0^L u'(t,x)\,\phi'(x)\,dx = \int_0^L f(t,x)\,\phi(x)\,dx$$

avec $u'(t,x) = \frac{\partial u}{\partial x}(t,x)$ et la condition initiale $u(0,x) = u_0(x)$.

Proposition. On suppose que f(t,x) et $u_0(x)$ sont continues. Soit $u(t,x) \in C^2(\mathbb{R}^+ \times [0,L])$. Alors u est solution de (C) si et seulement si u est solution de (FV).

Démonstration.
$$(E)$$
 \longrightarrow (FV) $\frac{\partial u}{\partial L} - V \frac{\partial^2 u}{\partial n^2} = f$

$$\frac{\partial u}{\partial r} - v \frac{\partial^2 u}{\partial n^2} = f \times \varphi(x)$$

$$\int_{0}^{2\pi} q dx + v \int_{0}^{2\pi} \int_{0}^{2\pi} dx - v \int_{0}^{2\pi} (v) q(v) = \int_{0}^{2\pi} q dx \quad \varphi(v) = \varphi(v) = 0$$

Formulation variationnelle en 1-d

Equation des ondes:

(O)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \emptyset \end{cases} & \text{dans } (0, L) \times \mathbb{R}_*^+ \\ u(t, 0) = u(t, L) = 0 & \text{pour } t > 0 \\ u(t = 0, x) = u_0(x) & \text{dans } (0, L) \\ \frac{\partial u}{\partial t}(t = 0, x) = u_1(x) & \text{dans } (0, L) \end{cases}$$

Formulation variationnelle: pour tout t > 0, trouver

$$u(t,\cdot) \in V_0 = \{\phi \in C^1[0,L] \text{ tel que } \phi(0) = \phi(L) = 0\}$$
 qui vérifie $\forall \phi \in V_0$

$$(FV) \int_0^L \frac{\partial^2 u}{\partial t^2}(t,x)\phi(x)\,dx + \int_0^L u'(t,x)\,\phi'(x)\,dx = \int_0^L f(t,x)\,\phi(x)\,dx$$

avec $u' = \frac{\partial u}{\partial x}$ et les conditions initiales $u(0, x) = u_0(x), \frac{\partial u}{\partial t}(0, x) = u_1(x)$.

exercice!

Proposition. On suppose que f(t,x), $u_1(x)$ et $u_0(x)$ sont continues. Soit $u(t,x) \in C^2(\mathbb{R}^+ \times [0,L])$. Alors u est solution de (O) si et seulement si u est solution de (FV).

Démonstration.

Point de vue abstrait

On introduit les formes bilinéaires

troduit les formes bilinéaires (
$$z$$
 si orde $a(u,\phi) = \int_0^L u'(x) \, \phi'(x) \, dx$ et $\langle u,\phi \rangle_{L^2(\Omega)} = \int_0^L u(x) \, \phi(x) \, dx$

Formulation variationnelle de la chaleur: trouver u(t) fonction de [0,T]à valeurs dans V_0 telle que

$$\begin{cases} \frac{d}{dt} \langle u(t), \phi \rangle_{L^2(\Omega)} + a (u(t), \phi) = \langle f(t), \phi \rangle_{L^2(\Omega)} & \forall \phi \in V_0, \quad 0 < t < T, \\ u(t=0) = u_0. \end{cases}$$

Formulation variationnelle des ondes: trouver u(t) fonction de [0,T] à valeurs dans V_0 telle que

$$\begin{cases} \frac{d^2}{dt^2} \langle u(t), \phi \rangle_{L^2(\Omega)} + a(u(t), \phi) = \langle f(t), \phi \rangle_{L^2(\Omega)} & \forall \phi \in V_0, \ 0 < t < T, \\ u(t=0) = u_0, \quad \frac{du}{dt}(t=0) = u_1. \end{cases}$$

Approximation variationnelle

On remplace l'espace V_0 par un sous-espace V_0^h de dimension finie.

Approximation variationnelle interne de la chaleur: trouver

$$u_h(t):[0,T]\to V_0^h$$
 tel que

$$\begin{cases} \frac{d}{dt}\langle u_h(t),\phi_h\rangle_{L^2(\Omega)}+a\left(u_h(t),\phi_h\right)=\langle f(t),\phi_h\rangle_{L^2(\Omega)} & \forall\,\phi_h\in V_0^h,\quad 0< t< T,\\ u_h(t=0)=u_h^0. & \text{for all its distance } u_0(x). \end{cases}$$
 are a second of the formal its distance in the formal its

$$u_h(t=0) = u_h^0.$$

Lemme. On suppose que la forme bilinéaire est coercive

$$\exists \nu > 0 \text{ tel que } a(v,v) \ge \nu \|v\|^2 \quad \forall v \in V_{\bullet}$$

Alors il existe une unique solution de l'approximation variationnelle interne qui, de plus, s'obtient en résolvant un système linéaire d'équations différentielles ordinaires.

Mase hold
$$(\varphi_i)_{i \leq i \leq n}$$
 Démonstration

 $M^{h}(t,x) = \sum_{i = 1}^{n} M_i(t) \varphi_i(x)$
 $d \leq h^{h}, \varphi_i > + \alpha (h^{h}, \varphi_i) = \langle f, \varphi_i \rangle$
 $d \leq h^{h}, \varphi_i > + \alpha (h^{h}, \varphi_i) = \langle f, \varphi_i \rangle$
 $d \leq h^{h}(t) \leq h^{h}(t) = \langle f, \varphi_i \rangle$
 $d \leq h^{h}(t) \leq h^{h}(t) = \langle f, \varphi_i \rangle$
 $d \leq h^{h}(t) \leq h^{h}(t) = \langle f, \varphi_i \rangle$
 $d \leq h^{h}(t) \leq h^{h}(t)$
 $d \leq h^{h}(t)$
 d

Définitions |

2 matiles sym et déf 70

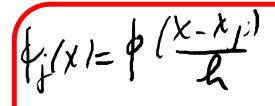
On appelle matrice de masse

$$\mathcal{M}_h = \left(\int_0^L \phi_i(x)\phi_j(x) \, dx \right)_{1 \le i, j \le N}$$

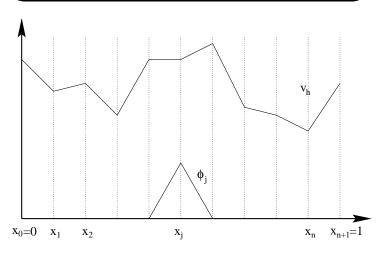
On appelle matrice de rigidité

$$\mathcal{K}_h = \left(\int_0^L \phi_i'(x)\phi_j'(x) \, dx \right)_{1 \le i, j \le N}$$

avec $(\phi_i)_{1 \leq i \leq N}$ base de V_0^h .

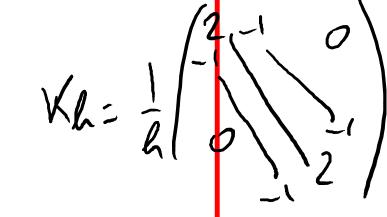


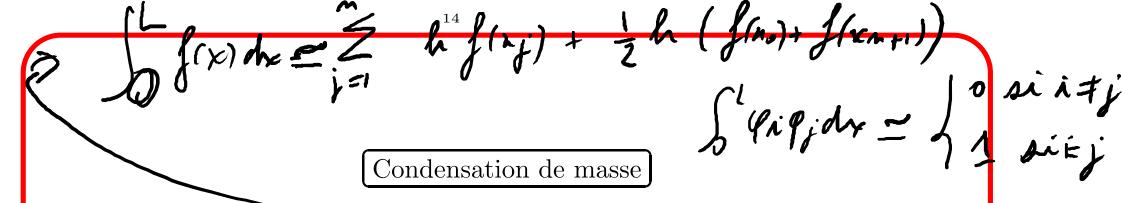
Eléments finis \mathbb{P}_1 de Lagrange



Lemme. Dans ce cas la matrice de masse \mathcal{M}_h est

$$\mathcal{M}_h = h \begin{pmatrix} 2/3 & 1/6 & & & 0 \\ 1/6 & 2/3 & 1/6 & & \\ & \ddots & \ddots & \ddots & \\ & & 1/6 & 2/3 & 1/6 \\ 0 & & & 1/6 & 2/3 \end{pmatrix}.$$





Si on utilise la formule de quadrature "des trapèzes", alors on trouve que

$$\mathcal{M}_h = h \operatorname{Id}$$

On appelle cette procédure la condensation de masse ou "mass-lumping".

Discrétisation totale en espace-temps

L'approximation variationnelle interne conduit à

$$\mathcal{M}\frac{dU}{dt}(t) + \mathcal{K}U(t) = b(t)$$

pour l'équation de la chaleur et à

$$\mathcal{M}\frac{d^2U}{dt^2}(t) + \mathcal{K}U(t) = b(t)$$

pour l'équation des ondes (+ conditions initiales).

On fait des différences finies pour les dérivées en temps.

Pas de temps $\Delta t > 0$ et temps discrets $t_n = n\Delta t$.

Equation de la chaleur

Schéma d'Euler explicite (stable sous condition CFL)

$$\mathcal{M}\frac{U^{n+1} - U^n}{\Delta t} + \mathcal{K}U^n = b^n$$

Schéma d'Euler implicite (stable sans condition)

$$\mathcal{M}\frac{U^{n+1} - U^n}{\Delta t} + \mathcal{K}U^{n+1} = b^{n+1}$$

En éléments finis, on préfère généralement les schémas implicites (quitte à résoudre un système linéaire pour \mathcal{M} autant le faire pour $\mathcal{M} + \Delta t \mathcal{K}$).

Equation des ondes

Pour $0 \le \theta \le 1/2$ on propose le θ -schéma

$$\mathcal{M}\frac{U^{n+1} - 2U^n + U^{n-1}}{(\Delta t)^2} + \mathcal{K}\left(\theta U^{n+1} + (1 - 2\theta)U^n + \theta U^{n-1}\right)$$
$$= \theta b(t_{n+1}) + (1 - 2\theta)b(t_n) + \theta b(t_{n-1}).$$

0 = 0 schéma explicite (au moins si mutilise la condensation de masse)

Problème aux valeurs propres

On cherche les couples $(\lambda, u) \in \mathbb{R} \times C^2(0, L)$, avec $u \neq 0$, solutions de

$$\begin{cases}
-u'' = \lambda u & \text{dans } (0, L) \\
u(0) = u(L) = 0
\end{cases}$$

Le réel λ est appelé valeur propre, et la fonction u(x) mode propre ou fonction propre.

Motivation: on cherche les solutions d'équations d'évolution par séparation des variables $\mathbf{u}(t,x) = \phi(t) u(x)$.

Equation de la chaleur
$$\frac{\partial \mathbf{u}}{\partial t} - \nu \frac{\partial^2 \mathbf{u}}{\partial x^2} = 0 \quad \text{et} \quad \mathbf{u}(t, x) = \phi(t) \, u(x)$$

$$\phi(t) = \mathbf{v} \quad \frac{\phi(t)}{\phi(t)} = \mathbf{v} \quad \frac{\phi'(t)}{\phi(t)} = \mathbf{v} \quad \frac{\phi'(t)}{$$

Equation des ondes

$$\frac{\partial^{2}\mathbf{u}}{\partial t^{2}} - c^{2}\frac{\partial^{2}\mathbf{u}}{\partial x^{2}} = 0 \quad \text{et} \quad \mathbf{u}(t,x) = \phi(t)\,\mathbf{u}(x)$$

$$\frac{\partial''\mathbf{h}}{\partial t'} - c^{2}\mathbf{d}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''}{\partial t'}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(x) = \lambda \quad \text{ott.}$$

$$\frac{\partial^{2}\mathbf{u}}{\partial t^{2}} - c^{2}\frac{\partial^{2}\mathbf{u}}{\partial x^{2}} = 0 \quad \text{et} \quad \mathbf{u}(t,x) = \phi(t)\,\mathbf{u}(x)$$

$$\frac{\partial''\mathbf{h}}{\partial t'} - c^{2}\mathbf{d}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''}{\partial t}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(x) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t'} - c^{2}\mathbf{d}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''}{\partial t}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(x) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{d}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''}{\partial t}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(x) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{d}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''}{\partial t}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = c^{2}\frac{\mathbf{h}''}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \text{ott.}$$

$$\frac{\partial''\mathbf{h}}{\partial t} - c^{2}\mathbf{h}'' = 0 \quad \Longrightarrow \quad \frac{\partial''\mathbf{h}}{\partial t}(1) = \lambda \quad \Longrightarrow \quad$$

m'= lh n=ae rbe M(0)=M/450 Sixzo -> Jarb=0 a eVal * b eVal =0 fas brin! - 1= Van Lai (Tas de arlution) m(l)=0 M = a Co V-x 2 +5 sin (V-x 2) Si 1<0 M(0) 50 $\frac{2}{2} = \frac{2}{\sqrt{2}} = 0$ $\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$ m(L) = 0

Discrétisation

- 1. Formulation variationnelle
- 2. Approximation variationnelle interne
- 3. Eléments finis \mathbb{P}_1 de Lagrange

On obtient un problème matriciel aux valeurs propres: trouver $\lambda \in \mathbb{R}$, $U \in \mathbb{R}^N, \ U \neq 0$

$$\mathcal{K}U = \lambda \mathcal{M}U$$

Lemme. Les matrices \mathcal{K} et \mathcal{M} étant symétriques, définies positives, il existe N valeurs propres et vecteurs propres formant une base de \mathbb{R}^N .

Revolume: Whe de valeurs propos est fini! Senles le flus plates valeur popes sont bien approchées | - w'' = | - w | | m(o) = m(L) = 0dans (0,L) Vo = { q ∈ C'(o,L) tg q(o) = p(L)=0} =) \int \langle \n'\ph dx - n'\langle) \rangle \langle Approximation variationnelle enterne Vh de Assa (Gi)isisen
Turner Jeh EIR, wh EV'll tod you So whole de = >h Shelpedre tyhe vi KhV=) h nhV

Résolution des systèmes linéaires

$$Ax = b$$

- Problème crucial en temps CPU et place mémoire dans le calcul scientifique.
- On ne calcule jamais la matrice inverse A^{-1} !
- Deux classes de méthodes: directes et itératives.
- On ne stocke pas toute la matrice A qui est souvent creuse (contient beaucoup d'éléments nuls).

Méthodes directes

Méthode d'élimination de Gauss: si on ne pivote pas, on obtient une factorisation A=LU avec

 22

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$\begin{cases}
 U =
 \begin{cases}
 u_{1,1} & \dots & \dots & u_{1,n} \\
 0 & u_{2,2} & & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \dots & 0 & u_{n,n}
 \end{cases}$$

Méthode de Cholesky: si la matrice A est symétrique définie positive, alors il existe une matrice triangulaire inférieure B telle que

$$A = BB^*$$
 Contact $\frac{\mathbf{M}}{6}$

Résolution par remontée-descente: on résout successivement (et facilement !) Ly=b (descente) puis Ux=y (remontée).

Compte d'opérations: Gauss $N_{op} \approx n^3/3$, Cholesky $N_{op} \approx n^3/6$.

Méthodes itératives

Soit A une matrice inversible avec A = M - N et M inversible. Pour résoudre Ax = b on définit une méthode itérative basée sur la décomposition (M, N)par

$$\begin{cases} x_0 \text{ donn\'e dans } \mathbb{R}^n, \\ Mx_{k+1} = Nx_k + b \quad \forall k \geq 1. \end{cases}$$
 Exemples:
$$2 \text{ wh} = \bigcap_{A} \text{ wh} \text{ fm'} \text{ h}$$
 Figure 3 donn\'e dans \mathbb{R}^n ,
$$2 \text{ wh} = Nx_k + b \quad \forall k \geq 1.$$
 Exemples:
$$2 \text{ wh} = \bigcap_{A} \text{ wh} \text{ fm'} \text{ h}$$
 Figure 3 donn\'e dans \mathbb{R}^n ,
$$2 \text{ wh} = Nx_k + b \quad \forall k \geq 1.$$
 Exemples:
$$2 \text{ wh} = \bigcap_{A} \text{ wh} \text{ fm'} \text{ h}$$

Exemples:

Jacobi:
$$M = diag(A)$$
 et $N = diag(A) \setminus A$

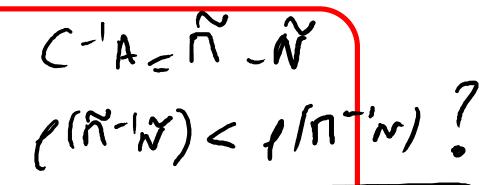
Gauss-Seidel: si A = D - E - F avec D diagona, a et F triangulaire supérieur, alors M = D - E et N = F.

Méthodes itératives

Définition. Une méthode itérative est dite convergente si, pour tout vecteur initial $x_0 \in \mathbb{R}^n$, la suite x_k converge vers la solution exacte x.

Lemme. La méthode itérative converge si et seulement si le rayon spectral de la matrice d'itération $M^{-1}N$ vérifie $\rho(M^{-1}N) < 1$.

Remagne. on estere converges opres un northe d'itération "fetet" par support à m (anh coût d'une itération on jagne en mémoir pou le grande motile



Préconditionnement

Idée cruciale!

Soit une matrice inversible C proche de A mais plus facile à inverser. Comme

$$Ax = b \Leftrightarrow C^{-1}Ax = C^{-1}b,$$

on applique une méthode itérative à $C^{-1}A$ en espérant que $\rho(M^{-1}N)$ sera plus petit pour $C^{-1}A$ que pour A.

Exemple: C = diag(A) ou bien C = approximation de LU.

Matrices bandes ou creuses

Une matrice A est dite bande, de demie largeur de bande p, si ses éléments vérifient $a_{i,j}=0$ pour |i-j|>p.

Lemme. Les factorisations LU et de Cholesky conservent la structure bande des matrices.

Une matrice A est stockée sous forme creuse si on ne garde en mémoire que

ses éléments non nuls.

LAU =

Gradient conjugué

Soit A une matrice symétrique définie positive, et $x_0 \in \mathbb{R}^n$. Soit (x_k, r_k, p_k) trois suites définies par les relations de récurrence

$$p_0 = r_0 = b - Ax_0$$
, et pour $0 \le k$
$$\begin{cases} x_{k+1} = x_k + \alpha_k p_k \\ r_{k+1} = r_k - \alpha_k A p_k \\ p_{k+1} = r_{k+1} + \beta_k p_k \end{cases}$$

avec

$$\alpha_k = \frac{\|r_k\|^2}{Ap_k \cdot p_k}$$
 et $\beta_k = \frac{\|r_{k+1}\|^2}{\|r_k\|^2}$.

Alors, la suite (x_k) de la méthode du gradient conjugué converge en moins de n itérations vers la solution du système linéaire Ax = b.