APPROXIMATION NUMERIQUE ET OPTIMISATION

G. ALLAIRE

23 octobre 2018

CHAPITRE IV (suite)

- 🖙 Cas général: cône des directions admissibles.
- Contraintes d'égalité.
- © Contraintes d'inégalité.

Conditions d'optimalité, cas général: K non convexe

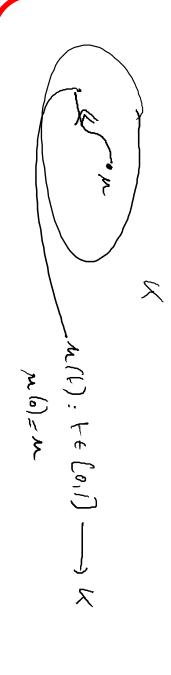
Exemples de K non convexe:

$$K = \{v \in V \text{ tel que } F(v) = 0\}$$
 ou $K = \{v \in V \text{ tel que } F(v) \le 0\}$

Définition. Pour $v \in K$, on appelle cône des directions admissibles au point v

$$K(v) = \begin{cases} w \in V \text{ tel que } \exists (v^n)_{n \ge 0} \in K, \exists (\varepsilon^n)_{n \ge 0} \in \mathbb{R}_+^* \text{ v\'erifiant} \\ \lim_{n \to +\infty} v^n = v, \lim_{n \to +\infty} \varepsilon^n = 0, \lim_{n \to +\infty} \frac{v^n - v}{\varepsilon^n} = w \end{cases}$$

 $\lambda w \in K(v)$. **Remarque.** $0 \in K(v)$ et K(v) est un cône car si $w \in K(v)$ et $\lambda \geq 0$, alors



Exemples de cône K(u)

Si u est intérieur à K, alors K(u) = V.

Si K est convexe, alors $K(u) = \{w = v - u \text{ avec } v \in K\}$.

Soit $F:V\to\mathbb{R}$ fonction régulière. Si $K=\{v\in V \text{ tel que } F(v)=0\}$ et si $F'(u) \neq 0$, alors $K(u) = [F'(u)]^{\perp}$ (hyperplan tangent en u à la surface K).

Inéquation d'Euler (cas général)

u, on a **Proposition.** Soit u un minimum local de J sur K. Si J est différentiable en

$$\langle J'(u), w \rangle \ge 0 \quad \forall w \in K(u) .$$

Remarque. Tout le problème est d'identifier K(u)!

Preuve. J/mm) > J/m) or En golit wekin) I was attem EX

on divino for En>0

Minimisation avec contraintes d'égalité

Soit $F(v) = (F_1(v), ..., F_M(v))$ une application de V dans \mathbb{R}^M . On considère

$$\inf_{v \in K} J(v) \quad \text{ avec } \quad K = \{v \in V, \ F(v) = 0\}$$

suppose de plus que les vecteurs $(F'_i(u))_{1 \leq i \leq M}$ sont libres. Alors, si u est un de Lagrange, tels que u et que les fonctions $(F_i)_{1 \leq i \leq M}$ sont de classe C^1 dans un voisinage de u. On minimum local de J sur K, il existe $\lambda_1, \ldots, \lambda_M \in \mathbb{R}$, appelés **multiplicateurs Théorème.** Soit $u \in V$ tel que F(u) = 0. On suppose que J est dérivable en

$$J'(u) + \sum_{i=1}^{M} \lambda_i F'_i(u) = 0.$$

utiliser les M contraintes $F_i(u) = 0$. **Remarque.** Pour calculer les M multiplicateurs de Lagrange λ_i on peut

Remarque. Il faut absolument une hypothèse sur les $(F'_i(u))_{1 \le i \le M}$.

Contre-exemple: avec M = 1

$$\inf_{F(v) = ||v||^2 = 0} J(v)$$

Di he therem which was he was F(14) = 1 =0

ナ/2)+ 1キ/2)=0

E (w) to met homi

ナーイル)この

simposithe for exemple as J(w) = |(v-e|12

42/5/

Preuve

Soit K(u) le cône des directions admissibles au point u

$$K(u) = \begin{cases} w \in V \text{ tel que } \exists (v^n)_{n \ge 0} \in K, \exists (\varepsilon^n)_{n \ge 0} \in \mathbb{R}_+^* \text{ v\'erifiant} \\ \lim_{n \to +\infty} v^n = u, \lim_{n \to +\infty} \varepsilon^n = 0, \lim_{n \to +\infty} \frac{v^n - u}{\varepsilon^n} = w \end{cases}$$

Rappel (Proposition 4.2.12): si u est un minimum local, alors

$$\langle J'(u), w \rangle \ge 0 \quad \forall w \in K(u) .$$

Il faut donc caractériser K(u)! Montrons que

$$K(u) = \{w \in V \text{ tel que } \langle F_i'(u), w \rangle = 0, \ 1 \leq i \leq M \} = \bigcap_{i=1}^{M} [F_i'(u)]^{\perp}$$

$$\text{in the rain ske } \quad \mathbb{K}(u) \text{ et han per. Dane we chew } \longrightarrow_{i=1}^{M} -\text{we chew}$$

$$\longrightarrow_{i=1}^{M} -\text{we che$$

Preuve (suite)

Sit weka

J Wa = n + En & EX

If $f_n(W_n) = 0$ \Rightarrow $f_n(w) + \epsilon_n < f_n(w), w > + o \not \in n$ \Rightarrow $e^{-n} = 0$ If $f_n(w_n) = 0$ \Rightarrow $f_n(w), w > 0$

一 くち、(w) , w>こ

Rainen for & King he forties implicite. Myster (Rill) = 1 like

Exemple

Soit A une matrice carrée d'ordre n, symétrique définie positive.

Soit B une matrice rectangulaire de taille $m \times n$ avec $m \leq n$ et rg(B) = m.

Soit $b \in \mathbb{R}^n$ et $c \in \mathbb{R}^m$. On considère

$$\inf_{x \in \mathbb{R}^n \text{ tel que } Bx = c} \left\{ J(x) = \frac{1}{2} Ax \cdot x - b \cdot x \right\}.$$

Lemme. Il existe un unique point de minimum $x^* \in \mathbb{R}^n$ et un unique multiplicateur de Lagrange $p \in \mathbb{R}^m$ qui vérifient

Number (
$$Ax^* - b = B^*p$$
 avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

($Ax^* - b = B^*p$ avec $p = (BA^{-1}B^*)^{-1}(c - BA^{-1}b)$.

Lagrangien

Définition. On appelle **Lagrangien** du problème la fonction

$$\mathcal{L}(v,\mu) = J(v) + \sum_{i=1}^{M} \mu_i F_i(v) = J(v) + \mu \cdot F(v) \qquad \forall (v,\mu) \in V \times \mathbb{R}^M.$$

la contrainte F(v) = 0. La nouvelle variable $\mu \in \mathbb{R}^M$ est appelée multiplicateur de Lagrange pour

Lemme. Le problème de minimisation est équivalent à

$$\lim_{v \in V, \ F(v)=0} J(v) = \inf_{v \in V} \sup_{\mu \in \mathbb{R}^M} \mathcal{L}(v,\mu).$$

$$\lim_{v \in V, \ F(v)=0} J(v) = \inf_{v \in V} \sup_{\mu \in \mathbb{R}^M} \mathcal{L}(v,\mu).$$

$$\lim_{v \in V, \ F(v)=0} J(v) = \inf_{v \in V} \sup_{\mu \in \mathbb{R}^M} \mathcal{L}(v,\mu).$$

Stationnarité du Lagrangien

Définition du Lagrangien: $\mathcal{L}(v,\mu) = J(v) + \mu \cdot F(v)$ $\forall (v,\mu) \in V \times \mathbb{R}^M$.

On peut réécrire le précédent théorème sous la forme suivante.

de Lagrange $\lambda_1, \ldots, \lambda_M \in \mathbb{R}$, tels que et si les vecteurs $(F'_i(u))_{1 \le i \le M}$ sont libres, alors il existe des multiplicateurs **Théorème.** Soit $u \in V$ tel que F(u) = 0. Si u est un minimum local sur K,

$$\frac{\partial \mathcal{L}}{\partial v}(u,\lambda) = J'(u) + \lambda \cdot F'(u) = 0$$
 et $\frac{\partial \mathcal{L}}{\partial \mu}(u,\lambda) = F(u) = 0$.

Les deux dérivées partielles du Lagrangien s'annulent!

Une interprétation des multiplicateurs de Lagrange

Soit le Lagrangien pour la minimisation de J(v) sous la contrainte F(v) = c

$$\mathcal{L}(v,\mu,c) = J(v) + \mu \cdot (F(v) - c)$$

On étudie la sensibilité du minimum à la variation de c.

correspondant. On suppose qu'ils sont dérivables par rapport à c. Alors On note u(c) et $\lambda(c)$ le point de minimum et le multiplicateur de Lagrange

$$\nabla_c \Big(J(u(c)) \Big) = -\lambda(c).$$

 λ donne la dérivée (sans la calculer) du minimum par rapport à c!

En effet

$$\nabla_c \Big(J(u(c)) \Big) = \nabla_c \Big(\mathcal{L}(u(c), \lambda(c), c) \Big) = \frac{\partial \mathcal{L}}{\partial c} (u(c), \lambda(c), c) = -\lambda(c)$$

car

$$\frac{\partial \mathcal{L}}{\partial v}(u(c), \lambda(c), c) = 0 \quad , \quad \frac{\partial \mathcal{L}}{\partial \mu}(u(c), \lambda(c), c) = 0 .$$

Minimisation avec contraintes d'inégalité

Soit $F(v) = (F_1(v), ..., F_M(v))$ une application de V dans \mathbb{R}^M . On considère

$$\inf_{v \in K} J(v)$$
 avec

$$\inf_{v \in K} J(v) \quad \text{avec} \quad K = \{v \in V, \ F(v) \le 0\}$$

où $F(v) \leq 0$ signifie que $F_i(v) \leq 0$ pour $1 \leq i \leq M$.

Remarque. Il existe d'autres conditions de qualification.

Contraintes et variations

- Les contraintes inactives $F_i(u) < 0$ ne jouent aucun rôle.
- Pour les contraintes actives $F_i(u) = 0$ on peut faire des variations dans certaines directions (mais pas dans d'autres).

 $\lambda_1, \ldots, \lambda_M \in \mathbb{R}^+$, appelés **multiplicateurs de Lagrange**, tels que qualifiées en u. Alors, si u est un minimum local de J sur K, il existe $(F_i)_{1 \leq i \leq M}$ sont dérivables en u. On suppose de plus que les contraintes sont **Théorème.** Soit $u \in V$ tel que $F(u) \leq 0$. On suppose que J et les contraintes

$$J'(u) + \sum_{i=1}^{M} \lambda_i F_i'(u) = 0, \quad \lambda_i \ge 0, \quad F_i(u) \le 0,$$
 $\lambda_i = 0 \text{ si } F_i(u) < 0.$

Remarque. Les conditions sur les λ_i peuvent se réécrire

$$\lambda \cdot F(u) = 0, \quad \lambda \ge 0 \text{ et } F(u) \le 0.$$

et s'appellent conditions de complémentarité.

actives on peut utiliser les égalités $F_i(u) = 0$ si $i \in I(u)$. **Remarque.** Pour calculer les multiplicateurs de Lagrange λ_i des contraintes

Preuve

Soit K(u) le cône des directions admissibles au point u

$$K(u) = \begin{cases} w \in V \text{ tel que } \exists (v^n)_{n \geq 0} \in K, \ \exists (\varepsilon^n)_{n \geq 0} \in \mathbb{R}_+^* \text{ v\'erifiant} \\ \lim_{n \to +\infty} v^n = u, \lim_{n \to +\infty} \varepsilon^n = 0, \lim_{n \to +\infty} \frac{v^n - u}{\varepsilon^n} = w \end{cases}$$

Rappel (Proposition 4.2.12): si u est un minimum local, alors

$$\langle J'(u), w \rangle \ge 0 \quad \forall w \in K(u) .$$

Il faut donc caractériser K(u)!

les ensembles **Lemme de Farkas.** Soient a_1, \ldots, a_M une famille libre de V. On considère

$$\mathcal{K} = \left\{ w \in V, \quad \langle a_i, w \rangle \le 0 \text{ pour } 1 \le i \le M \right\},$$

et

$$\hat{\mathcal{K}} = \left\{ q \in V, \quad \exists \lambda_1, \dots, \lambda_M \ge 0, \ q = -\sum_{i=1}^M \lambda_i a_i \right\}.$$

Alors pour tout $p \in V$, on a l'implication

$$\langle p, w \rangle \ge 0 \ \forall w \in \mathcal{K} \implies p \in \hat{\mathcal{K}}.$$

Remarque. La réciproque étant évidente, il s'agit en fait d'une équivalence.

Preuve du lemme de Farkas

Lagrangien

Définition. On appelle Lagrangien du problème la fonction

$$\mathcal{L}(v,\mu) = J(v) + \sum_{i=1}^{M} \mu_i F_i(v) = J(v) + \mu \cdot F(v) \qquad \forall (v,\mu) \in V \times (\mathbb{R}^+)^M.$$

Lagrange pour la contrainte $F(v) \leq 0$. La nouvelle variable **positive** $\mu \in (\mathbb{R}^+)^M$ est appelée multiplicateur de

Lemme. Le problème de minimisation est équivalent à

$$\inf_{v \in V, \ F(v) \le 0} J(v) = \inf_{v \in V} \sup_{\mu \in (\mathbb{R}^+)^M} \mathcal{L}(v, \mu).$$

On Colors

Stationnarité du Lagrangien

Définition du Lagrangien: $\mathcal{L}(v,\mu) = J(v) + \mu \cdot F(v)$ $\forall (v,\mu) \in V \times (\mathbb{R}^+)^M$

$$abla(v,\mu) \in V imes (\mathbb{R}^+)^{in}$$
 .

On peut réécrire le précédent théorème sous la forme suivante

multiplicateurs de Lagrange, tels que $F(u) \leq 0$. Alors, si u est un minimum local, il existe $\lambda_1, \ldots, \lambda_M \geq 0$, appelés **Théorème.** On suppose que les contraintes sont qualifiées en u tel que

$$\frac{\partial \mathcal{L}}{\partial v}(u,\lambda) = 0$$
 et $\frac{\partial \mathcal{L}}{\partial \mu}(u,\lambda) \cdot (\mu - \lambda) \le 0$ $\forall \mu \in (\mathbb{R}^+)^M$

maximisation du Lagrangien par rapport à μ dans le convexe fermé $(\mathbb{R}^+)^M$. **Remarque.** La deuxième condition est l'inéquation d'Euler pour la

Preuve

Les conditions d'optimalité sont

$$J'(u) + \sum_{i=1}^{M} \lambda_i F'_i(u) = 0$$
, $\lambda_i \ge 0$, $F_i(u) \le 0$, $\lambda_i = 0$ si $F_i(u) < 0$.

Cette condition est bien la stationnarité du Lagrangien puisque

$$\frac{\partial \mathcal{L}}{\partial v}(u,\lambda) = J'(u) + \lambda \cdot F'(u) = 0,$$

et que l'inéquation d'Euler

$$\frac{\partial \mathcal{L}}{\partial \mu}(u,\lambda) \cdot (\mu - \lambda) = F(u) \cdot (\mu - \lambda) \le 0 \quad \forall \mu \in (\mathbb{R}^+)^M$$

implique que $\lambda_i = 0$ si $F_i(u) < 0$.

Exemple: régularisation d'un signal

Soit A une matrice carrée d'ordre n, symétrique définie positive

Soit $b \in \mathbb{R}^n$ et $\epsilon > 0$. On considère

$$\min_{x \in \mathbb{R}^n \text{ tel que } ||x-b||^2 \le \epsilon^2} Ax \cdot x$$

Il existe une unique solution $x^* \in \mathbb{R}^n$ qui vérifie

soit
$$x^* = 0$$
 et $||b|| < \epsilon$,

soit
$$x^* = (\operatorname{Id} + \lambda^{-1} A)^{-1} b$$
 avec $\lambda > 0$ tel que $||x^* - b|| = \epsilon$.