OPTIMISATION ET CONTRÔLE

Grégoire Allaire Département de mathématiques appliquées Ecole Polytechnique

- Rappels sur le principe du minimum de Pontryaguine (PMP)
- ② Démonstration du PMP dans le cas d'un système linéaire-convexe
- Oémonstration du PMP dans le cas général
- Un exemple de gestion d'un stock
- 6 Conclusion et perspectives

I - Enoncé du principe du minimum de Pontryaguine

Considérons le système non-linéaire

$$\begin{cases} \dot{x}_u(t) = f(t, x_u(t), u(t)), & \forall t \in [0, T], \\ x(0) = x_0, \end{cases}$$

où f(t,x,u) est une fonction de $[0,T] \times \mathbb{R}^d \times \mathbb{R}^k$ dans \mathbb{R}^d . On limite la valeur des contrôles à un fermé non-vide $U \subset \mathbb{R}^k$

On cherche un contrôle optimal $\overline{u} \in \mathcal{U} = L^1([0,T];U)$ tel que

$$J(\overline{u}) = \inf_{u \in \mathcal{U}} \left\{ J(u) = \int_0^T g(t, x_u(t), u(t)) dt + h(x_u(T)) \right\}$$

avec des fonctions $g:[0,T]\times\mathbb{R}^d\times\mathbb{R}^k\to\mathbb{R}$ et $h:\mathbb{R}^d\to\mathbb{R}$.

Hypothèses sur les non-linéarités

On suppose que les fonctions $f(t,x,u):[0,T]\times\mathbb{R}^d\times U\to\mathbb{R}^d$, $g(t,x,u):[0,T]\times\mathbb{R}^d\times U\to\mathbb{R}$ et $h(x):\mathbb{R}^d\to\mathbb{R}$ ont une certaine régularité et des conditions de croissance en fonction de x et u (voir transparent suivant).

Ces hypothèses permettent de montrer que pour tout contrôle $u \in \mathcal{U} = L^1([0,T]; U)$ la trajectoire x_u est globale en temps, le critère J(u) et l'adjoint p sont bien définis.

On ne rappellera plus ses hypothèses par la suite mais parfois on en rajoutera...

Hypothèses sur les non-linéarités (2)

On suppose que les fonctions f, g, h vérifient:

- (a) $f C^0$ en (t, x, u) et $f C^1$ par rapport à x,
- (b) $\exists C$ tel que, $\forall x \in \mathbb{R}^d$, $\forall u \in U$,

$$|f(t,x,u)| \leq C(1+|x|+|u|),$$

(c) $\forall R > 0$, $\exists C_R$ tel que, $\forall t \in [0,T]$, $\forall x \in \overline{B}(0,R)$, $\forall u \in U$,

$$\left|\frac{\partial f}{\partial x}(t,x,u)\right| \leq C_R(1+|u|).$$

- (d) g(t, x, u) est C^0 , $x \to g(t, x, u)$ est C^1 et h(x) est C^1 .
- (e) $\forall R > 0$, $\exists C_R$ tel que $\forall t \in [0,T]$, $\forall x \in \overline{B}(0,R)$, $\forall u \in U$

$$|g(t,x,u)| \leq C_R(1+|u|),$$

(f) $\forall R > 0$, $\exists C_R$ tel que $\forall t \in [0,T]$, $\forall x \in \overline{B}(0,R)$, $\forall u \in U$

$$\left|\frac{\partial g}{\partial x}(t,x,u)\right| \leq C_R(1+|u|),$$

(g) Les fonctions g et h sont minorées.

Hamiltonien et adjoint

Définition. Le Hamiltonien associé au système de contrôle non-linéaire est l'application $H:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^k\to\mathbb{R}$ définie par

$$H(t, x, p, u) = p^* f(t, x, u) + g(t, x, u).$$

L'état adjoint $\overline{p} \in AC([0,T];\mathbb{R}^d)$ est la solution unique de

$$\begin{cases} \frac{d\overline{p}}{dt}(t) = -\overline{A}(t)^*\overline{p}(t) - \overline{b}(t) & \forall t \in [0,T], \\ \overline{p}(T) = \frac{\partial h}{\partial x}(\overline{x}(T)), \end{cases}$$

où pour tout $t \in [0,T]$,

$$\overline{A}(t) = \frac{\partial f}{\partial x}(t, \overline{x}(t), \overline{u}(t)) \in \mathbb{R}^{d \times d}, \qquad \overline{b}(t) = \frac{\partial g}{\partial x}(t, \overline{x}(t), \overline{u}(t)) \in \mathbb{R}^{d}.$$

Principe du minimum de Pontryaguine (PMP)

Théorème. Sous les hypothèses précédentes, si $\overline{u} \in \mathcal{U}$ est un contrôle optimal, alors en notant $\overline{x} = x_{\overline{u}} \in AC([0,T];\mathbb{R}^d)$ l'état associé et $\overline{p} \in AC([0,T];\mathbb{R}^d)$ l'état adjoint, on a, p.p. $t \in [0,T]$,

$$\overline{u}(t) \in \underset{v \in U}{arg\ min}\ H(t, \overline{x}(t), \overline{p}(t), v),$$

où H est le Hamiltonien.

Remarques.

- Le principe du minimum ne dit rien sur l'existence d'un contrôle optimal.
- Il s'agit d'une condition nécessaire mais pas suffisante en général.
- Oans le cas du système linéaire quadratique (LQ), on avait vu que cette condition était nécessaire et suffisante.
- Oans l'Hamiltonien on ne voit pas la fonction h du critère au temps final T mais elle est cachée dans l'adjoint p en T.

II - Preuve du PMP dans le cas linéaire-convexe

On considère une dynamique linéaire et un critère convexe.

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t) & \forall t \in [0,T], \\ x(0) = x_0, \end{cases}$$

avec les données $f \in L^1([0,T]; \mathbb{R}^d)$, $A \in L^1([0,T]; \mathbb{R}^{d \times d})$ et $B \in L^1([0,T]; \mathbb{R}^{d \times k})$.

On cherche un contrôle optimal $\overline{u} \in \mathcal{U} = L^2([0,T];U)$ tel que

$$J(\overline{u}) = \inf_{u \in \mathcal{U}} \left\{ J(u) = \int_0^T g(t, x_u(t), u(t)) dt + h(x_u(T)) \right\}$$

avec des fonctions $g:[0,T]\times\mathbb{R}^d\times\mathbb{R}^k\to\mathbb{R}$ et $h:\mathbb{R}^d\to\mathbb{R}$ telles que g est convexe et différentiable en (x,u) et h est convexe et différentiable en x.

On rajoute l'hypothèse que U est convexe et compact dans \mathbb{R}^k .

Système linéaire-convexe

Remarque. C'est une généralisation facile du système linéaire-quadratique pour lequel:

- 1 la preuve du PMP est plus simple,
- le PMP donne une condition nécessaire et suffisante d'optimalité,
- on peut démontrer l'existence du contrôle optimal.

Lemme. Pour un ensemble $U \subset \mathbb{R}^k$ compact, on a

$$L^{1}([0,T]; U) = L^{2}([0,T]; U).$$

Preuve. Par Cauchy-Schwartz

$$\int_0^T |u(t)| dt \leq \sqrt{T} ||u||_{L^2([0,T];U)},$$

tandis que, comme U est compact, $\exists R > 0$ tel que $U \subset B(0,R)$ et

$$\int_0^T |u(t)|^2 dt \le R \int_0^T |u(t)| dt.$$

Système linéaire-convexe (2)

Proposition. Sous l'hypothèse que U est convexe et compact et que les fonctions g et h sont convexes, il existe un contrôle optimal $\overline{u} \in \mathcal{U} = L^2([0,T];U)$ pour le système linéaire-convexe.

Remarque. Si en plus la fonction g(t, x, u) est strictement convexe en (x, u), alors le contrôle optimal est unique.

Preuve (cf. cours précédent). Comme U est convexe et fermé, \mathcal{U} est un convexe fermé de l'espace de Hilbert $L^2([0,T];\mathbb{R}^k)$. Comme l'EDO est linéaire, $u\mapsto x_u$ est affine, donc J(u) est convexe car g et h le sont.

Comme U est borné, il n'y a pas d'hypothèses de "fonction infinie à l'infini" à vérifier pour J(u) et on peut donc appliquer le Théorème 2.3.9 d'existence d'un point de minimum pour une fonction convexe dans un espace de Hilbert.

PMP pour le système linéaire-convexe

Théorème (PMP). Pour que $\overline{u} \in \mathcal{U}$ soit un contrôle optimal du système linéaire-convexe, il faut et il suffit que, p.p. $t \in [0,T]$,

$$\overline{u}(t) \in \underset{v \in U}{arg \ min} \ H(t, \overline{x}(t), \overline{p}(t), v),$$

où H est le Hamiltonien, $\bar{x} = x_{\bar{u}} \in AC([0,T]; \mathbb{R}^d)$ est la trajectoire associée et $\overline{p} \in AC([0,T]; \mathbb{R}^d)$ est l'état adjoint.

Remarque. La démonstration ressemble beaucoup à celle de la condition d'optimalité pour le système linéaire-quadratique.

Preuve du PMP pour le système linéaire-convexe

Preuve. L'inéquation d'Euler est une condition nécessaire et suffisante d'optimalité dans le cas convexe

$$\langle J'(\overline{u}), v - \overline{u} \rangle \ge 0$$
 pour tout $v \in \mathcal{U}$.

On a déjà démontré (amphi 8) que l'application $u\mapsto x_u$ est différentiable de $\mathcal U$ dans $AC([0,T];\mathbb R^d)$. Soit x_u' cette dérivée et soit $\delta u\in L^2([0,T];\mathbb R^k)$ une direction de dérivation. On note $\delta x=\langle x_u',\delta u\rangle$ qui vérifie $x_{u+\delta u}=x_u+\delta x$ avec

$$\begin{cases} \dot{\delta}x(t) = A(t)\delta x(t) + B(t)\delta u(t) & \forall t \in [0,T], \\ \delta x(0) = 0. \end{cases}$$

Pour calculer J'(u) on fait un développement de Taylor de

$$J(u+\delta u)=\int_0^T g(t,x_{u+\delta u}(t),(u+\delta u)(t))\,dt+h(x_{u+\delta u}(T)).$$

Preuve du PMP pour le système linéaire-convexe (2)

En développant

$$J(u+\delta u)=\int_0^T g(t,x_{u+\delta u}(t),(u+\delta u)(t))\,dt+h(x_{u+\delta u}(T)),$$

on déduit

$$J(u + \delta u) = J(u) + \langle J'(u), \delta u \rangle + o(\delta u),$$

avec

$$\langle J'(u), \delta u \rangle = \int_0^T \left(\left(\frac{\partial g}{\partial x} \right)^* \delta x + \left(\frac{\partial g}{\partial u} \right)^* \delta u \right) dt + \frac{\partial h}{\partial x} (x_u(T))^* \delta x(T).$$

Pour éliminer δx en fonction de δu , on introduit l'adjoint p solution unique dans $AC([0,T]; \mathbb{R}^d)$ de

$$\begin{cases} \dot{p}(t) = -A(t)^* p(t) - \frac{\partial g}{\partial x}(t, x_u, u) & \forall t \in [0, T], \\ p(T) = \frac{\partial h}{\partial x}(x_u(T)). \end{cases}$$

Preuve du PMP pour le système linéaire-convexe (3)

Rappel:

$$\langle J'(u), \delta u \rangle = \int_0^T \left(\left(\frac{\partial g}{\partial x} \right)^* \delta x + \left(\frac{\partial g}{\partial u} \right)^* \delta u \right) dt + \frac{\partial h}{\partial x} (x_u(T))^* \delta x(T)$$

Pour éliminer δx en fonction de δu , on compare

$$\left\{ \begin{array}{l} \dot{p}(t) = -A(t)^* p(t) - \frac{\partial g}{\partial x}(t, x_u, u) \quad \forall t \in [0, T], \\ p(T) = \frac{\partial h}{\partial x}(x_u(T)). \end{array} \right.$$

avec

$$\begin{cases} \dot{\delta}x(t) = A(t)\delta x(t) + B(t)\delta u(t) & \forall t \in [0,T], \\ \delta x(0) = 0. \end{cases}$$

On multiplie l'équation pour δx par p et celle pour p par δx et on additionne

$$\delta x^* \dot{p} + p^* \dot{\delta} x = \frac{d}{dt} (p^* \delta x) = -\delta x^* (A^* p + \frac{\partial g}{\partial x}) + p^* (A \delta x + B \delta u)$$

Preuve du PMP pour le système linéaire-convexe (4)

Les termes avec la matrice A s'éliminent

$$\frac{d}{dt}(p^*\delta x) = p^*A\delta x - \delta x^*A^*p + p^*B\delta u - \delta x^*\frac{\partial g}{\partial x}$$
$$= p^*B\delta u - (\frac{\partial g}{\partial x})^*\delta x$$

On intègre en temps et, comme $\delta x(0) = 0$,

$$\int_0^T \frac{d}{dt} (p^* \delta x) dt = p^*(T) \delta x(T) = \frac{\partial h}{\partial x} (x_u(T))^* \delta x(T)$$

Par conséquent

$$\frac{\partial h}{\partial x}(x_u(T))^*\delta x(T) + \int_0^T (\frac{\partial g}{\partial x})^*\delta x \, dt = \int_0^T \rho(t)^*B(t)\delta u(t) \, dt$$

Preuve du PMP pour le système linéaire-convexe (5)

On vient de montrer que

$$\frac{\partial h}{\partial x}(x_u(T))^*\delta x(T) + \int_0^T (\frac{\partial g}{\partial x})^*\delta x \, dt = \int_0^T p(t)^*B(t)\delta u(t) \, dt.$$

Or, on avait

$$\langle J'(u), \delta u \rangle = \int_0^T \left(\left(\frac{\partial g}{\partial x} \right)^* \delta x + \left(\frac{\partial g}{\partial u} \right)^* \delta u \right) dt + \frac{\partial h}{\partial x} (x_u(T))^* \delta x(T).$$

Par conséquent, on peut simplifier et obtenir, pour tout δu ,

$$\langle J'(u), \delta u \rangle = \int_0^T \left(\left(\frac{\partial g}{\partial u} \right)^* \delta u + p^* B \delta u \right) dt.$$

Le produit scalaire étant celui de $L^2([0,T];\mathbb{R}^k)$, on élimine δu .

Preuve du PMP pour le système linéaire-convexe (6)

On a donc trouvé une formule pour la dérivée

$$J'(u) = \frac{\partial g}{\partial u}(t, x_u, u) + B(t)^* p.$$

Soit le Hamiltonien défini par

$$H(t, x, p, u) = p^*(A(t)x + B(t)u + f(t)) + g(t, x, u)$$

dont la dérivée en *u* est (précisément !)

$$\frac{\partial H}{\partial u}(t,x_u,p,u)=J'(u).$$

Donc la condition d'optimalité $\langle J'(\overline{u}), v - \overline{u} \rangle \geq 0$ est équivalente à

$$\langle \frac{\partial H}{\partial u}(t, \overline{x}, \overline{p}, \overline{u}), v - \overline{u} \rangle \ge 0$$
 pour tout $v \in \mathcal{U}$,

avec \overline{x} la trajectoire et \overline{p} l'adjoint, associés au contrôle \overline{u} .

Preuve du PMP pour le système linéaire-convexe (7)

La condition d'optimalité pour J est donc équivalente à

$$\langle \frac{\partial H}{\partial u}(t, \overline{x}, \overline{p}, \overline{u}), v - \overline{u} \rangle \ge 0$$
 pour tout $v \in \mathcal{U}$.

Or le Hamiltonien H est convexe en u. Donc c'est la condition d'optimalité (nécessaire et suffisante) de

$$\int_0^T H(t,\overline{x}(t),\overline{p}(t),\overline{u}(t)) dt = \min_{v \in L^2([0,T];U)} \int_0^T H(t,\overline{x}(t),\overline{p}(t),v(t)) dt$$

On va vérifier (au transparent suivant) que, p.p. $t \in [0,T]$,

$$\overline{u}(t) \in \mathop{arg\;min}\limits_{v \in U} H(t, \overline{x}(t), \overline{p}(t), v)$$

c'est-à-dire que la condition d'optimalité pour J est équivalente au PMP!

Preuve du PMP pour le système linéaire-convexe (8)

Soit $\overline{H}(t,v)=H(t,\overline{x}(t),\overline{p}(t),v)$. On compare

(1)
$$\min_{v \in L^2([0,T];U)} \int_0^T \overline{H}(t,v(t)) dt$$
 et $\int_0^T \left(\min_{v \in U} \overline{H}(t,v)\right) dt$.

S'il existe un unique $\tilde{u}(t) \in arg \ min_{v \in U} \ \overline{H}(t,v)$, p.p. $t \in [0,T]$, et que $\tilde{u}(t)$ est mesurable, alors clairement $\tilde{u} = \overline{u} \in L^2([0,T];U)$ (car U est borné) et les deux minima dans (1) sont égaux.

S'il y a plusieurs point de minimum dans $arg \min_{v \in U} \overline{H}(t,v)$, alors, grâce à un argument de sélection mesurable (voir polycopié), on peut choisir et construire $\tilde{u}(t) \in arg \min_{v \in U} \overline{H}(t,v)$ qui est mesurable, appartient à $L^2([0,T];U)$ et vérifie la même condition d'optimalité que \overline{u} (sans lui être égal nécessairement).

Commentaires sur l'adjoint

- Grâce à l'adjoint on peut calculer J'(u) avec une seule ODE linéaire à résoudre en plus.
- La formule $J'(u) = \frac{\partial g}{\partial u}(t, x_u, u) + B(t)^*p$ permet de calculer numériquement un contrôle optimal par un algorithme d'optimisation.
- Le calcul de l'adjoint p est rétrograde en temps: il faut avoir stocké x qui sert de "terme source".
- L'adjoint semble être une "astuce"...

En fait, l'adjoint est un multiplicateur de Lagrange !

Rappelons comment on trouve la définition de l'adjoint.

Lagrangien et adjoint

On réécrit le problème de contrôle optimal comme

$$\min_{u \in L^2([0,T];U), x \in L^2([0,T];\mathbb{R}^d)} \widetilde{J}(u,x)$$
 $\widetilde{J}(u,x) = \int_0^T g(t,x(t),u(t)) dt + h(x(T))$

sous la contrainte qui relie x à u

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t) & \forall t \in [0,T], \\ x(0) = x_0. \end{cases}$$

On introduit un multiplicateur de Lagrange p(t) et un Lagrangien

$$\mathcal{L}(u,x,p) = \tilde{J}(u,x) - \int_0^T p^* (\dot{x} - Ax - Bu - f) dt - p(0)^* (x(0) - x_0)$$

Lagrangien et adjoint (2)

On vérifie facilement que

$$\max_{p} \mathcal{L}(u, x, p) = \begin{cases} \tilde{J}(u, x) & \text{si } x = x_{u} \\ +\infty & \text{si } x \neq x_{u} \end{cases}$$

Les conditions d'optimalité pour un problème de minimisation avec contraintes d'égalité sont

$$\frac{\partial \mathcal{L}}{\partial u} = 0, \quad \frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial p} = 0.$$

- **1** Par construction, $\frac{\partial \mathcal{L}}{\partial p} = 0$ donne la contrainte, $x = x_u$.
- ② Un calcul facile montre que $\frac{\partial \mathcal{L}}{\partial u} = J'(u)$!
- **1** Un calcul facile (mais long, voir l'amphi 8) montre que $\frac{\partial \mathcal{L}}{\partial x} = 0$ redonne la définition de l'adjoint p!

Lagrangien et Hamiltonien

Quel rapport entre le Lagrangien et l'Hamiltonien ?

$$H(t, p, u) = p^* \Big(A(t)x + B(t)u + f(t) \Big) + g(t, x, u)$$

$$\mathcal{L}(u, x, p) = \int_0^T g(t, x(t), u(t)) dt + h(x(T))$$

$$- \int_0^T p^* (\dot{x} - Ax - Bu - f) dt - p(0)^* (x(0) - x_0)$$

Donc

$$\mathcal{L}(u,x,p) = \mathcal{L}_{H}(u,x,p) - \int_{0}^{T} p^{*}\dot{x} dt + h(x(T)) - p(0)^{*}(x(0) - x_{0})$$

avec
$$\mathcal{L}_H(u,x,p) = \int_0^T H(t,x(t),u(t)) dt$$
.

Autrement dit, on retrouve l'Hamiltonien à partir du Lagrangien quand on "gèle le temps".

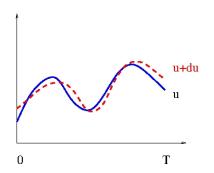
III - Preuve du PMP dans le cas général

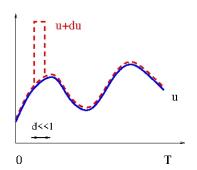
Dans le cas général, la preuve précédente ne peut pas fonctionner parce que:

- on perd toute notion de convexité (pas d'inéquation d'Euler simple),
- l'ensemble des valeurs du contrôle U, n'étant pas convexe, il est difficile de caractériser son cône des directions admissibles,
- **3** les variations usuelles δu "petites" dans l'espace de Hilbert $L^2([0,T];U)$ sont difficiles à manipuler.

Nouvelle idée due à Pontryaguine: les variations aiguilles.

Variation aiguille





Une variation "usuelle" (à gauche) est $\delta u(t)$ telle que

$$|\delta u(t)| \ll 1 \ \forall t \in [0,T]$$
 et support $(\delta u) = [0,T]$.

Une variation "aiguille" (à droite) est $\delta u(t)$ telle que, pour $0 < \delta_0 \ll 1$,

$$\delta u(t) = \mathcal{O}(1)$$
 et support $(\delta u) = [t_0 - \delta_0/2; t_0 + \delta_0/2].$

Preuve du PMP

On donne les idées principales de la preuve en 4 étapes sans rentrer dans les détails techniques.

(1) Test de l'optimalité de $J(\overline{u})$ avec des variations aiguille.

Soit $\overline{u}(t)$ un contrôle optimal.

Soit $t \in [0,T[$, $0 < \delta \ll 1$ et $I_{\delta} = [t,t+\delta]$. Soit $v \in U$ constant et arbitraire. On considère le contrôle perturbé

$$u_{\delta}(s) = \begin{cases} \overline{u}(s), & \forall s \in [0,T] \setminus I_{\delta}, \\ v, & \forall s \in I_{\delta}. \end{cases}$$

La perturbation $u_{\delta} - \overline{u}$ est donc petite dans $L^1([0,T];\mathbb{R}^k)$. On note x_{δ} la trajectoire associée à u_{δ} .

Preuve du PMP (2)

Lemme technique (admis). Soit $\psi = f$ ou $\psi = g$. Soit $I_{\delta} = [t, t + \delta]$. On a

$$\lim_{\delta \to 0^+} \frac{1}{\delta} \int_{I_\delta} \psi(s,\overline{x}(s),\overline{u}(s)) \, ds = \psi(t,\overline{x}(t),\overline{u}(t))$$

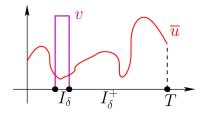
pour p.p. $t \in [0,T[$ (de tels points sont appelés points de Lebesgue).

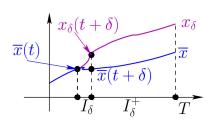
Remarque. Ce résultat est évident si $\psi, \overline{x}, \overline{u}$ sont continues en s. C'est encore vrai si les fonctions sont seulement mesurables en s.

Dans la suite de la preuve, on suppose toujours que t est un point de Lebesgue (ce qui se justifie car ils sont de mesure complète dans [0,T]).

Preuve du PMP (3)

(2) Comparaison des trajectoires.





- **①** Avant I_{δ} les trajectoires x_{δ} et \overline{x} sont identiques.
- ② Sur I_{δ} les trajectoires x_{δ} et \overline{x} sont proches à δ près (grâce au lemme technique).
- 3 Sur $I_{\delta}^+ = [t + \delta, T]$ la différence de trajectoire est petite, donnée par le linéarisé.

Preuve du PMP (4)

Comparaison des trajectoires sur I_{δ} .

Comme $x_{\delta}(t) = \overline{x}(t)$, pour tout $s \in I_{\delta}$ on a $x_{\delta}(s) = \overline{x}(s) + \mathcal{O}(\delta)$ et, plus précisément,

$$x_{\delta}(t+\delta) = \overline{x}(t) + \int_{I_{\delta}} f(s, x_{\delta}(s), v) ds = \overline{x}(t) + \delta f(t, \overline{x}(t), v) + o(\delta)$$

$$\overline{x}(t+\delta) = \overline{x}(t) + \int_{I_{\delta}} f(s, \overline{x}(s), \overline{u}(s)) ds = \overline{x}(t) + \delta f(t, \overline{x}(t), \overline{u}(t)) + o(\delta)$$

si bien que

$$x_{\delta}(t+\delta) - \overline{x}(t+\delta) = \delta\Big(f(t,\overline{x}(t),v) - f(t,\overline{x}(t),\overline{u}(t))\Big) + o(\delta).$$

Les conditions initiales en $t+\delta$ sont donc proches pour $x_{\delta}(s)$ et $\overline{x}(s)$ qui sont solutions de la même EDO pour les temps ultérieurs $s \geq t+\delta$.

Preuve du PMP (5)

Comparaison des trajectoires sur I_{δ}^+ .

Comme les conditions initiales sont proches en $t + \delta$

$$x_{\delta}(t+\delta) - \overline{x}(t+\delta) = \delta\Big(f(t,\overline{x}(t),v) - f(t,\overline{x}(t),\overline{u}(t))\Big) + o(\delta),$$

et que $x_{\delta}(s)$ et $\overline{x}(s)$ sont solutions de la même EDO sur I_{δ}^+ , il est clair que $x_{\delta}(s) - \overline{x}(s) = \mathcal{O}(\delta)$ pour tout $s \in I_{\delta}^+$.

On précise cette différence à l'ordre un en δ en introduisant la solution $y_{\delta}(s)$ du système linéarisé sur I_{δ}^+ avec la condition initiale

$$y_{\delta}(t+\delta) = \Big(f(t,\overline{x}(t),v) - f(t,\overline{x}(t),\overline{u}(t))\Big)$$

Preuve du PMP (6)

Soit $y_{\delta} \in AC(I_{\epsilon}^+; \mathbb{R}^d)$ la solution du système linéarisé

$$\begin{cases} \dot{y}_{\delta}(s) = \overline{A}(s)y_{\delta}(s), & \forall s \in I_{\delta}^{+} = [t + \delta, T], \\ y_{\delta}(t + \delta) = f(t, \overline{x}(t), v) - f(t, \overline{x}(t), \overline{u}(t)), \end{cases}$$

avec $\overline{A}(s) = \frac{\partial f}{\partial x}(s, \overline{x}(s), \overline{u}(s))$. On définit le reste Φ_{δ} par

$$x_{\delta}(s) - \overline{x}(s) = \delta y_{\delta}(s) + \Phi_{\delta}(s),$$

qui vérifie $\Phi_{\delta}(t+\delta) = o(\delta)$ et

$$\dot{\Phi}_{\delta}(s) = \overline{A}(s)\Phi_{\delta}(s) + \Psi_{\delta}(s) \qquad orall s \in I_{\delta}^{+}$$

avec un autre reste

$$\Psi_{\delta}(s) = f(s, x_{\delta}(s), \overline{u}(s)) - f(s, \overline{x}(s), \overline{u}(s)) - \overline{A}(s)(x_{\delta}(s) - \overline{x}(s)).$$

Or $\Psi_{\delta}(s) = o(\delta)$ uniformément sur I_{δ}^+ car $x_{\delta}(s) - \overline{x}(s) = \mathcal{O}(\delta)$ et donc $\Phi_{\delta}(s) = o(\delta)$. On conclut

$$x_{\delta}(s) - \overline{x}(s) = \delta y_{\delta}(s) + o(\delta)$$
 uniformément sur I_{δ}^+ .

Grégoire Allaire

Preuve du PMP (7)

(3) Comparaison des critères.

$$J(u_{\delta}) - J(\overline{u}) = \int_{t}^{T} \left(g(s, x_{\delta}(s), u_{\delta}(s)) - g(s, \overline{x}(s), \overline{u}(s)) \right) ds$$

$$+ h(x_{\delta}(T)) - h(\overline{x}(T))$$

$$= \int_{I_{\delta}} \left(g(s, x_{\delta}(s), v) - g(s, \overline{x}(s), \overline{u}(s)) \right) ds$$

$$+ \int_{I_{\delta}^{+}} \left(g(s, x_{\delta}(s), \overline{u}(s)) - g(s, \overline{x}(s), \overline{u}(s)) \right) ds$$

$$+ \delta \frac{\partial h}{\partial x} (\overline{x}(T))^{*} y_{\delta}(T) + o(\delta)$$

$$= \delta \left(g(t, \overline{x}(t), v) - g(t, \overline{x}(t), \overline{u}(t)) \right) + \delta \int_{I_{\delta}^{+}} \overline{b}(s)^{*} y_{\delta}(s) ds$$

$$+ \delta \frac{\partial h}{\partial x} (\overline{x}(T))^{*} y_{\delta}(T) + o(\delta),$$

avec $\overline{b}(s) = \frac{\partial g}{\partial x}(s, \overline{x}(s), \overline{u}(s)).$

Preuve du PMP (8)

On a donc obtenu

$$J(u_{\delta}) - J(\overline{u}) = \delta \Big(g(t, \overline{x}(t), v) - g(t, \overline{x}(t), \overline{u}(t)) \Big)$$

$$+ \delta \int_{I_{\delta}^{+}} \overline{b}(s)^{*} y_{\delta}(s) ds + \delta \frac{\partial h}{\partial x} (\overline{x}(T))^{*} y_{\delta}(T) + o(\delta)$$

L'optimalité de \overline{u} implique donc que

$$0 \leq g(t, \overline{x}(t), v) - g(t, \overline{x}(t), \overline{u}(t)) + \int_{I_{\delta}^{+}} \overline{b}(s)^{*} y_{\delta}(s) ds + \frac{\partial h}{\partial x} (\overline{x}(T))^{*} y_{\delta}(T) + o(1).$$

On ne peut rien conclure car y_{δ} dépend de v de manière implicite.

Preuve du PMP (9)

(4) Introduction de l'état adjoint et conclusion.

L'état adjoint \overline{p} est défini comme la solution unique de

$$\left\{ \begin{array}{l} \frac{d\overline{p}}{dt}(s) = -\overline{A}(s)^*\overline{p}(s) - \overline{b}(s) \quad \forall s \in [0,T], \\ \overline{p}(T) = \frac{\partial h}{\partial x}(\overline{x}(T)). \end{array} \right.$$

Il permet d'éliminer la fonction y_{δ} . Comme d'habitude, on multiplie l'équation pour y_{δ} par p et celle pour p par y_{δ} , on somme et on intègre en t pour obtenir

$$\int_{t+\delta}^{T} \overline{b}(s)^{*} y_{\delta}(s) ds + \frac{\partial h}{\partial x} (\overline{x}(T))^{*} y_{\delta}(T) = \overline{p}(t+\delta)^{*} y_{\delta}(t+\delta)$$

La condition d'optimalité devient

$$0 \leq g(t, \overline{x}(t), v) - g(t, \overline{x}(t), \overline{u}(t)) + \overline{p}(t+\delta)^* y_{\delta}(t+\delta) + o(1)$$

avec
$$y_{\delta}(t+\delta) = f(t,\overline{x}(t),v) - f(t,\overline{x}(t),\overline{u}(t)).$$

Preuve du PMP (10)

On fait tendre δ vers 0 pour obtenir

$$0 \leq g(t, \overline{x}(t), v) - g(t, \overline{x}(t), \overline{u}(t)) + \overline{p}(t)^* \Big(f(t, \overline{x}(t), v) - f(t, \overline{x}(t), \overline{u}(t)) \Big)$$

En utilisant la définition du Hamiltonien, on en déduit

$$0 \leq H(t, \overline{x}(t), \overline{p}(t), v) - H(t, \overline{x}(t), \overline{p}(t), \overline{u}(t)),$$

ce qui conclut la preuve car v est arbitraire dans U.

Remarque. La seule chose qui manque pour que la preuve soit absolument rigoureuse sont les détails techniques de mesurabilité.

IV - Un exemple de gestion d'un stock

le taux de production $(u_+ > 0)$

On considère un stock d'une quantité $x(t) \in \mathbb{R}$ qui se déprécie au cours du temps avec une constante de proportionalité $d \geq 0$. On contrôle le stock avec la commande $u(t) \in K = [0, u_+]$ qui est

$$\begin{cases} x'(t) = -dx(t) + u(t) \text{ pour } 0 \le t \le T, \\ x(0) = x_0. \end{cases}$$

On veut maximiser la quantité finale du stock x(T) en minimisant le coût (exponentiel) de production

$$\min_{u\in L^2([0,T];K)}J(u)=\int_0^T e^{\alpha(t)u(t)}dt-x(T),$$

où $\alpha(t)$ est une fonction continue donnée.

Remarque. Si $\alpha(t) > 0$, plus on produit, plus c'est cher. Le contraire si $\alpha(t) < 0$! Elle peut changer de signe...

Gestion d'un stock

Lemme. Si $\alpha(t)$ ne s'annule pas sur un sous-intervalle de [0, T], alors il existe un unique contrôle optimal $\overline{u}(t)$.

Preuve. La fonction $u \mapsto \int_0^T e^{\alpha(t)u(t)} dt$ est strictement convexe de $L^2([0,T];K)$ dans $\mathbb R$ car les fonctions $u\mapsto e^{\alpha u}$ et $u\mapsto e^{-\alpha u}$ sont strictement convexes de $\mathbb R$ dans $\mathbb R$ pour $\alpha\neq 0$.

Par ailleurs, $u \mapsto -x(T)$ est affine, donc J(u) est strictement convexe.

Comme $K = [0, u_+]$ est borné, la condition infinie à l'infini est vérifiée et il existe un unique point de minimum $\overline{u} \in L^2([0, T]; K)$ pour J.

Gestion d'un stock (2)

Comme A = -d, l'état adjoint est défini par

$$\begin{cases} p'(t) = dp(t) \text{ pour } 0 \le t \le T, \\ p(T) = -1, \end{cases}$$

dont $p(t) = -e^{d(t-T)} < 0$. Comme B = 1, le Hamiltonien est

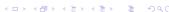
$$H(t,x,p,u) = p(-dx+u) + e^{\alpha(t)u}.$$

Le principe de Pontryaguine affirme que

$$\overline{u}(t) = \underset{u \in K}{\operatorname{arg min}} H(t, \overline{x}(t), \overline{p}(t), u)$$

où $\overline{x}(t)$ et $\overline{p}(t)$ sont calculées avec $\overline{u}(t)$. Or

$$\partial_u H(t, x, p, u) = p + \alpha(t)e^{\alpha(t)u}$$
.



Gestion d'un stock (3)

Comme $\partial_u H(t, x, p, u) = p + \alpha(t)e^{\alpha(t)u}$ et $p(t) = -e^{d(t-T)} < 0$. si $\alpha(t) \leq 0$ on a

$$\partial_u H(t,x,p,u) < 0$$
 et $\overline{u}(t) = u_+$.

Si $\alpha(t) > 0$, la fonction $u \mapsto H$ est strictement convexe, infinie à l'infini, et son minimum sur $\mathbb R$ est atteint en

$$u^*(t) = \frac{1}{\alpha(t)} \log \frac{e^{d(t-T)}}{\alpha(t)}.$$

Si $u^*(t) \in K$ alors $\overline{u}(t) = u^*(t)$.

Si $u^*(t) < 0$ alors H est croissante sur K donc $\overline{u}(t) = 0$.

Si $u^*(t) > u_+$ alors H est décroissante sur K donc $\overline{u}(t) = u_+$.

Donc l'unique contrôle optimal est

$$\overline{u}(t) = \min \left(u_+, \max \left(0, \frac{1}{lpha(t)} \log \frac{e^{d(t-T)}}{lpha(t)}
ight) \right).$$

Remarque. Si $\alpha(t)$ est une fonction continue, alors $\overline{u}(t)$ aussi.

V - Conclusion et perspectives

- Pour aller plus loin en 3A: MAP 561A (Mathematical modelling of quantum computers), MAP 562 (Optimal design of structures).
- Le principe du minimum de Pontryaguine est une méthode très efficace pour calculer un contrôle optimal.
- Ce n'est pas la seule méthode...
- Une méthode alternative, proposée par Richard Belmman, est la programmation dynamique.

Richard Bellman (1920-1984)

Ouverture vers la programmation dynamique

Principe d'optimalité de Bellman. Si un contrôle \overline{u} est optimal sur [0,T], alors, pour tout $s \ge 0$, il est aussi optimal sur [s,T] en partant de la condition initiale $x_{\overline{u}}(s)$.

Idée de la programmation dynamique: on résout de manière rétrograde, pour s allant de T à 0, une famille de problèmes de contrôle optimal sur des intervalles de temps croissants [s, T].

Comme on ne connait pas la condition initiale $x_{\overline{u}}(s)$ au temps s, il faut résoudre ces problèmes pour toute donnée initiale ξ .

On a déjà vu cette idée avec la rétroaction par Ricatti.

Ouverture vers la programmation dynamique (2)

On reprend les notations usuelles

$$\begin{cases} \dot{x}_u(t) = f(t, x_u(t), u(t)), & \forall t \in [s, T], \\ x(s) = \xi, \end{cases}$$

$$\inf_{u \in L^{1}([s,T];U)} \left\{ J(u) = \int_{s}^{T} g(t,x_{u}(t),u(t)) dt + h(x_{u}(T)) \right\}$$

Définition. On appelle fonction valeur et on note $V(s,\xi)$ la valeur du minimum

$$V(s,\xi) = \inf_{u \in L^1([s,T];U)} J(u)$$

Lemme. (Principe d'optimalité de Bellman)

Pour tout $0 \le s \le s' \le T$,

$$V(s,\xi) = \inf_{u \in L^{1}([s,s'];U)} \left\{ \int_{s}^{s'} g(t,x_{u}(t),u(t)) dt + V(s',x_{u}(s')) \right\}$$

Ouverture vers la programmation dynamique (3)

On peut montrer (mais c'est long et technique !):

Théorème. La fonction valeur est solution de l'équation de Hamilton-Jacobi-Bellman

$$\frac{\partial V}{\partial s}(s,\xi) + H_{\min}(s,\xi,\nabla_{\xi}V(s,\xi)) = 0$$

avec la condition finale $V(T,\xi)=h(\xi)$ et avec le Hamiltonien minimisé $H_{\min}(t,x,p)=\min_{u}H(t,x,p,u)$.

On tombe sur une équation aux dérivées partielles ! Sa résolution est une autre histoire...

Idée de la preuve. Faire un développement de Taylor de V pour $s'=s+\Delta s$ dans le principe d'optimalité de Bellman.

Ouverture vers la programmation dynamique (4)

Une fois calculée la fonction valeur V(t,x) on retrouve un contrôle optimal en minimisant l'Hamiltonien.

Proposition. Un contrôle optimal $\overline{u}(t,x)$ est un point de minimum de

$$\min_{v \in U} H(t, x, \nabla_x V(t, x), v).$$

Remarques. Il faudrait que la fonction valeur V soit C^1 en x mais ce n'est pas le cas en général...

Le gradient de V joue le rôle de l'adjoint.

Bravo d'avoir tenu jusque là ! Bon stage puis bonnes vacances !

