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7.5 Shape optimization in the elasticity setting.

Very similar to the conductivity setting but there are some additional hurdles.
We shall review the results without proofs.

The basic ingredients of the homogenization method are the sames:

[0 introduction of composite designs characterized by (6, A*),

[J Hashin-Shtrikman bounds for composites,

[1 sequential laminates are optimal microstructures.
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[Model problem: compliance minimizationj

>
>

Bounded working domain D € RY (N = 2, 3).

4>

Q

Linear isotropic elastic material, with Hooke’s law A

2
A:(ﬁ:—ﬁ'u)]g®12+2,u]4, 0 <k, pu<—+00

Admissible shape = subset (2 C D.
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Boundary 0 =T'UI'y UI'p with I'y and I'p fixed.

[ dive = 0 in O

o =2ue(u) + Atr(e(u))Id in €
u=20 on FD

on =g on I'y

\an:() on I,

Weight is minimized and rigidity is maximized. Let £ > 0 be a Lagrange

multiplier, the objective function is

inf :/ g-uds+€/d:v}.
QCD Iy 0
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This shape optimization problem can be approximated by a two-phase
optimization problem: the original material A and the holes of rigidity B ~ 0.

The Hooke’s law of the mixture in D is
xo(r)A + (1 — XQ(:E))B ~ xo(xr)A

The admissible set is

Ung = {x e L= (D;{0,1}) }

As in conductivity /membrane case we can apply the relaxation approach
based on homogenization theory.

The homogenization method can be generalized to the elasticity setting.
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[Homogenized formulation of shape optimizationj

We introduce composite structures characterized by a local volume fraction

6(x) of the phase A (taking any values in the range [0, 1]) and an homogenized

tensor A*(x), corresponding to its microstructure.

The set of admissible homogenized designs is

w0 ={(0,4%) € 1 (D3[0,1] x RN') , A*(2) € Gy in D},

The homogenized state equation is

(

o= A%e(u)
dive = 0
u =20

on =g

on =0

\
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with e(u) = 3 (Vu+ (Vu)?),
in D,
on FD

on FN

on 0D \ (FD U FN)
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The homogenized compliance is defined by

C(H,A*):/ g-uds.
I'n

The relaxed or homogenized optimization problem is

min {J(@,A*) — c(6, A") +£/

0(x) d:r;} :
(0,A*)eur, D

Major inconvenient: in the elasticity setting an explicit characterization of Gy
is still lacking !

Fortunately, for compliance one can replace Gy by its explicit subset of

laminated composites.
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The key argument to avoid the knowledge of Gg is that, thanks to the

complementary energy minimization, compliance can be rewritten as

divo=0 in D
oNnN=—g on FN
on=0 on 8D\FNUFD

C(H,A*)z/ g-uds= min /A*_la-ad:r;.
T'n D

The shape optimization problem thus becomes a double minimization (we
already used this argument in chapter 5).
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[Exchanging the order of minimizations]

The shape optimization problem is

(

min < min / Ao odr + E/ 0(x)dx
0,A*)eU* divo=0 in D

( )E ad ONnN=—g on FN D D
L on=0 on 8D\I‘NUI‘D

Since the order of minimization is irrelevent, it can be rewritten

min min {/ Ao odr —I—E/ 0(x) d:z:}.
divo=0 1nF£ (0,A*)eur, D D

ONn—g on
on=0 on 8D\I‘NUI‘D

The minimization with respect to the design parameters (6, A*) is local, thus

min min (A* oo+ E@) (x) dex.
divo=0 in D p 0<6<1
OoNnN=—¢g on FN A*GGQ

on=0 on 8D\FNUFD
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For a given stress tensor o, the minimization of complementary energy

min A* oo
ATEGy

is a classical problem in homogenization, of finding optimal bounds on the

effective properties of composite materials.

It turns out that we can restrict ourselves to sequential laminates which form
an explicit subset Lg of Gy.

Such a simplification is made possible because compliance is the objective

function.
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‘ 7.5.2 Sequential laminates in elasticity.

AL =2pa8 + Aa(tré)I, BE=2upé+ Ap(tré)l,
with the identity matrix Is, and k4 B = Aa. g + 24 /N. We assume B to be

weaker than A
0<up <pa, 0<kKp<kKa.
We work with stresses rather than strains, thus we use inverse elasticity

tensors.

Lemma 7.24. The Hooke’s law of a simple laminate of A and B in
proportions 6 and (1 — ), respectively, in the direction e, is

(1-6) (A*_l _ A—l) = (B =AY T 4+ 0f5(e)
with f4(e) the tensor defined, for any symmetric matrix &, by

A+ Aa

TS ((A&)e; - e;)~.

Fo(e)E € = A€ — | Ates)? +
HA

G. Allaire, Ecole Polytechnique Optimal design of structures



Reiterated lamination formula

Proposition 7.25. A rank-p sequential laminate with matrix A and
inclusions B, in proportions ¢ and (1 — ), respectively, in the directions
(ei)1<i<p With parameters (m;)1<;<p such that 0 <m; < 1and >, _, m; =1,

is given by

—1

(1-6) (A*—l _ A—l) — (B —A) Qimifj(ei)

G. Allaire, Ecole Polytechnique Optimal design of structures



‘ 7.5.3 Hashin-Shtrikman bounds in elasticity.

Theorem 7.26. Let A* be a homogenized elasticity tensor in GGy which is
assumed isotropic

204
A* = 25 1g4 + (/{3*— j\?)]g@]g

Its bulk k., and shear u, moduli satisfy

1—46 1 0 0 1 1—46
< and <
KA — K« KA —KB 204+ Aa K« —KB ~ KA — KB 2UB+ AB

1—6 < 1 N O(N —1)(ka +2ua)
2(ma — ps) — 2(pa —pB)  (N?2+N —=2)pa(Zpa + Aa)
0 1 - (A=0)(N-1)(kB +2u5B)

< :
2(ps —pp) — 2(pa —pp)  (N*+ N =2)pp(2up + Ap)
Furthermore, the two lower bounds, as well as the two upper bounds are

simultaneously attained by a rank-p sequential laminate with p = 3 if N = 2,
and p =06 if N = 3.
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[Hashin-Shtrikman bounds in elasticityj
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Proposition 7.27. Let Gy be the set of all homogenized elasticity tensors
obtained by mixing the two phases A and B in proportions 6 and (1 — ). Let
Ly be the subset of Gy made of sequential laminated composites. For any
stress o,

: ~1 : —1
HS(c)= min A" "0-0= min A" "o-o0.
A*eGy A*€Lg

Furthermore, the minimum is attained by a rank-/NV sequential laminate with

lamination directions given by the eigendirections of o.

Remark.

An optimal tensor A* can be interpreted as the most rigid composite

material in GGy able to sustain the stress o.

HS(0) is called Hashin-Shtrikman optimal energy bound.

In the conductivity setting, a rank-1 laminate was enough...

Practical conclusion: Gy can be replaced by Lyg.
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(Explicit computation of the optimal boundj

When B = 0 one can obtain an explicit formula for the bound:

1—-6
min A* ‘o0 =HS(o)=A"10-0+ ——g"(0)
A*EGQ 9

* K =+ 2 2
= + |o
0'(0) = S (] + o)
with 01,09 the eigenvalues of o. Furthermore, an optimal rank-2 sequential

laminate is given by the parameters

|02

mi1 = y

01| + |o2|
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3-D simplified case with A4 = 0. We label the eigenvalues of o as
1| < |oa| < o).

( .
(|lo1| + |o2| + |oa])? if |o3| < |o1| + [o2]

L 2 ((lo1] + lo2]) 4 [o3]?)  if o] > |ou| + |o|
In the first regime, an optimal rank-3 sequential laminate is given by

o3|+ o] — |o1] o] = |oz| + |o3] o+ o] — o3|

1= 2 = 3=
1] + o2| + |os]” 1] + o2| + |os] 1] + o2| + |os]
and in the second regime, an optimal rank-2 sequential laminate is

my— A2l el
o1 | + |o2|’

= ma = 0.
o]+ oo 7

(General 3-D case known but more complicated.)
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7.5.4 Homogenized formulation of shape optimizationl

min min (A* lo. 0+ EH) dzx.
divo=0 in D D OSQS]_
on=g on I'N A¥ea,

on=0 on 8D\FNUI‘D

Optimality condition. If (#, A*, o) is a minimizer, then A* is a rank-N

sequential laminate aligned with o and with explicit proportions

—1
x*—1 —1 1—06 " c
A = A + T ZmzfA(ez) y
=1

and 6 is given in 2-D (similar formula in 3-D)

0opt = min (1, \/ Z:ﬁlz (lo1| + \02|)> ,

where o is the solution of the homogenized equation.
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[Existence theory]

Original shape optimization problem

inf J(Q):/ g-uds+€/d:v.
QCD Iy 0

Homogenized (or relaxed) formulation of the problem

min J(@,A*)z/ g-uderE/ 0 dz.
A*EGy 'y D

0<6<1

Theorem 7.30. The homogenized formulation (2) is the relaxation of the
original problem (1) in the sense where

. there exists, at least, one optimal composite shape (6, A*) minimizing (2),

. any minimizing sequence of classical shapes €2 for (1) converges, in the
sense of homogenization, to a minimizer (6, A*) of (2),

. the minimal values of the original and homogenized objective functions
coincide.
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7.5.5 Numerical algorithm.

Double “alternating” minimization in ¢ and in (6, A*).
e intialization of the shape (6, Af)

e iterations n > 1 until convergence

— given a shape (6,,_1, A>_;), we compute the stress o,, by solving a
linear elasticity problem (by a finite element method)

— given a stress field o,,, we update the new design parameters (6,,, A’)

with the explicit optimality formula in terms of o,,.
Remarks.
[ For compliance, the problem is self-adjoint.

[0 Micro-macro method (local microstructure / global density).
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[Remarks}

The objective function always decreases.
Algorithm of the type “optimality criteria”.
Algorithme of “shape capturing” on a fixed mesh of ().

We replace void by a weak “ersatz” material, or we impose 6 > 1073 to

get an invertible rigidity matrix.

A few tens of iterations are sufficient to converge.
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[Example: optimal cantileverj
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[ Penalization

The previous algorithm compute composite shapes instead of classical

shapes.

We thus use a penalization technique to force the density in taking values

close to 0 or 1.

Algorithm: after convergence to a composite shape, we perform a few more

iterations with a penalized density

1 — cos(m8opt)
epen — 9

If 0 < Oopr < 1/2, then Open, < Oope, while, if 1/2 < 0, < 1, then Opepn, > Oopt.
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[Convergence history:j

objective function (left), and residual (right),

in terms of the iteration number.

obj ective function
conver gence criterion

iteration number iteration number
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[Example: optimal bridgej
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‘ 7.5.6. Convexification and *“fictitious materials” .

Idea. In the homogenization method composite materials are introduced but
discarded at the end by penalization. Can we simplify the approach by

introducing merely a density 6 7

A classical shape is parametrized by x(x) € {0, 1}.

If we convexify this admissible set, we obtain 6(x) € [0, 1].

The Hooke’s law, which was x(z)A, becomes 6(x)A. We also call this
fictitious materials because one can not realize them by a true
homogenization process (in general). Combined with a penalization scheme,
this methode is called SIMP (Solid Isotropic Material with Penalization).
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Convexified formulation with 0 < f(z) <1

(

o =0(z)Ae(u) with e(u) = 2 (Vu+ (Vu)'),
dive =0 in D,
u=0 onlp

on I'y

on D\ (Tp UTw).

Compliance minimization

min_ (0(9) n, /D e(g;)) |

[ gu=[ @00 wmn [ @@t
Ly D Thigonty D

Tn=0 on 8D\I‘NUI‘D

Now, there is only one single design parameter: the material density 6 (the
microstructure A* has disappeared).
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[Existence of solutions]

Theorem 7.33. The convexified formulation

min min /(0(%)14)_17'°de—|—€/ 0 dx
oot dpmomn o p

Tn=0 on 8D\I‘NUI‘D

admits at least one solution.

Proof. The function, defined on R* x M?
pla,0) =arA o0,

is convex because

1

¢(a7 U) — ¢(a’07 00) + D¢(a07 UO) ) (CL — ap,0 — 00) + ¢(a7 g — CLCLE 00)7

where the derivative D¢ is given by

b
Do¢(ag,00) - (b,7) = —?A_lao <00 + 2a51A_100 - T
0
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[Optimality conditionj

If we exchange the minimizations in 7 and in #, we can compute the optimal 6
which is
1 if A=lr .7 >/

0(z) =
VITTA= .7 if A </

Again we can use an “alternating” double minimization algorithm.

G. Allaire, Ecole Polytechnique Optimal design of structures



‘ Numerical algorithm I

e intialization of the shape 6,

e iterations k£ > 1 until convergence

— given a shape 0;_1, we compute the stress o, by solving an elasticity
problem (by a finite element method)

— given a stress field o5, we update the new material density 0, with the

explicit optimality formula in terms of .

Penalization: we use a penalized density

1 — cos(m6,
Bpon = COSZ(” pt) o (SIMP)  fpen =67 p> 1.

In practice: it is extremely simple ! But the numerical results are not as
good ! An explanation is the lack of a relaxation theorem.

Be careful: very delicate monitoring of the penalization...
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[Optimal bridge by the convexification method)

compliance

0.45

0.5t

04

035 [

034
0.25 [

02}

0

50

iteration number
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[Conclusion

SIMP (or convexification, or “fictitious materials”) is very simple and

very popular (many commercial codes are using it).
SIMP uses very few informations on composites !

On the contrary to the homogenization method, SIMP is not a

relaxation method: it changes the problem !

There is a gap between the true minimal value of the objective function
and that of SIMP.

SIMP can be delicate to monitor: how to increase the penalization

parameter ?
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Generalizations of the homogenization method'

[1 multiple loads
[1 vibration eigenfrequency
[1 general criterion of the least square type

The two first cases are self-adjoint and we have a complete understanding and

justification of the relaxation process. However, the third case is not

self-adjoint and only a partial relaxation is known.
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[Multiple loads]

For n loads (f;)1<i<n, the homogenized formulation is

mn
. : : —1
min min min E A* o0+ 00 | dx
dive;=0 in D D 0§9§1 A*ELQ 1
1=

o;,n=g; on I'pn

with A* € Ly and

—1

(1-6) (A*_l _ A—l)

b
— (B_l — A_1>_1 —+ HZm@fﬁ(ez)
1=1

The optimal laminate is no more of rank N. The m;’s optimization is now

done numerically (with numerous enough lamination directions).
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[Optimal bridge for 3 simultaneously applied loadsj
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[ Optimal bridge for 3 independently applied loadsj
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[Vibration eigenfrequencies]

We maximize the first vibration eigenfrequency

/ A¥e(u) - e(u)dx
w?(0, A*) = min “L£ :

ueH / ﬁ|u\2dx
D

with the density p = 0pa + (1 — 0)pp, and the space of admissible
displacements H = {u € H*(D)" such that u=0onI'p}.

The homogenized formulation is

( /D (max A*e(u) - e(u)

A*ELyg

max < min

0<6<1 | ueH /ﬁ|u\2daz
\ D

with Ly the set of sequential laminates.

Be careful: there is a max-min which can not be exchanged...
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(Least square objective functions]

Classical two-phase formulation:

inf J(x) = /Qk(a:)|ux(a:) —uo(a:)|2da:—|—€/ x(x)dx

x€L>(£2;{0,1}) Q

where u, is solution of

—div(Aye(uy)) = f inQ
Uy =0 on OS2,

with a Hooke’s law A, = xyA+ (1 — x)B.
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Homogenized formulation:

in J*(0,A4%) = [ (klu—uol®+10)d
(g{%})g}(, ) /Q(|u uo\—i—):r;

with « solution of

—div (A*e(u)) = f in

u =20 on 0f,

Difficulty: we don’t know Gy and we cannot replace it by Ly. In other

words, we don’t know which microstructures are optimal...

Partial relaxation: we nevertheless replace Gy by Lg. We thus loose the
existence of an optimal solution but we keep the link with the original

problem.
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Partial relaxation

We restrict ourselves to sequential laminates A* with matrix A and inclusions
B. The number of laminations and their directions are fixed. We merely
optimize with respect to § and the proportions (m;)i1<i<p

1-0)(A-A)" = (A-B)"' - 0> mifales),

with Ve € RY, |e| = 1, V¢ symmetric matrix

1

N2
* )\A‘|‘2NA(£6 e

1 2 2
e) - &= — (|€e|” — (Ee- e
fae)g - &= -~ ([gel” — (€e - e)%)
Thus, the objective function is
J*(0,A%) = J*(0,m;)
with the constraints 0 <6 <1, m; > 0, Zle m; = 1.

We compute its gradient with the help of an adjoint state.
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(Adj oint State]

Typical example of an objective function

J*(Q,A*):Lk($)|u(x)—uo(x)\2d:1:—|—€‘/99d:c

Adjoint state

—div (A*e(p)) 2k(x)(u(x) —up(z)) in Q
D 0 on 0f)
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Gradient

VoJ*(2)

Vi, J" ()

71 ((A ~B) - ZmifA(ez')> T,

—9(1 — Q)T_lfA(ei)T_l,

(A—-B)™' - HZmz-fA(ei) .
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[Numerical algorithm of gradient type]

Projected gradient with a variable step:

1. Initialization of the design parameters 6y, m; ¢ (for example, constants
satisfying the constraints).
2. Iterations until convergence, for k& > 0:

(a) Computation of the state uy and the adjoint px, with the previous

design parameters 0y, m; k.

(b) Update of the design parameters :

Ori1 max (0, min (1,0, — txVeJ})),

mi,k+1 max (O, m@',k — thmi J,: + Ek) ,

where /. is a Lagrange multiplier for the constraint 2321 m; 1 = 1, iteratively
updated, and t; > 0 is a descent step such that J* (011, mgr1) < J* (O, mi).
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[Example: force inverterj

B

~

Cx)=1
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‘ Other methods of topology optimization I

[1 Discrete 0/1 optimization: genetic algorithms.

[1 Level set methods based on geometric optimization.

[1 Topological derivative: sensitivity to the nucleation of a small hole.

[ Phase-field methods.
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[Commercial softwares and industrial applicationsj

See the web page:
http://www.cmap.polytechnique.fr/“optopo/links.html

ANALYSIS

DESIGN OPTIMIZATION
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[Industrial applicationsj

Automotive industry.
Aerospace industry.
Civil engineering, architecture.

Nano-technologies, MEMS.

Optics, wave guides.
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