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1 Parametric optimization : 14 points

We consider a vibrating elastic membrane with a variable thickness h(x), occupying at
rest a plane domain  (a smooth bounded open set of R?) and clamped on its boundary.
Denoting by A the square of the vibration frequency and by wu(z) its modal displacement,
the couple (A, u) € R x H}(Q), u # 0, is a solution of the eigenvalue problem

—div (hVu) = Aphu in Q, (1)
u=20 on 0S.

where p > 0 is the given constant material density. To emphasize its dependence with
respect to h the solution of (1) is also denoted by (A(h),u(h)). We consider only the first
or smallest eigenvalue A(h) and we normalize the eigenfunction u(h) by

/ phulde = 1. (2)
Q
The thickness belongs to the following space of admissible designs
Upg ={h € L=(Q),  hmaz = h(z) > hpin > 0in Q} .
The goal is to minimize the first eigenvalue

i A(h). (3)

We admit that, as a function from U,q into Rx H (), the first eigenvalue and eigenfunction
(A(h),u(h)) is differentiable with respect to h.

1. Let k € L>*(Q) be a given function. We denote by v = (u/(h), k) the directional
derivative of u(h), solution of (1), in the direction k, and by A = (N (h), k) that of
A(h). Give the boundary value problem satisfied by v as well as the normalization
condition derived from (2).

2. By multiplying the equation for v by u(h), find an expression for A in terms of u(h)
only.

3. We admit that the first eigenfunction u(h) is positive and admits a unique point of
maximum inside €2, while its gradient does not vanish at any point on the boundary
0Q. Prove that, if it exists, a minimizer of (3) must be of minimal thickness near the
boundary and of maximal thickness near the maximum of u(h).



4. We now replace (3) by the following objective function

B0 = 3 () "

where j is a given smooth bounded even function and ||¢|| denotes the L?(2)-norm of
a function ¢. Check that (4) is independent of the normalization choice for u(h). Write
the Lagrangian L(h, \,4,p), associated to (4), defined on Uyg x R x HL () x H ().

5. For a function @ # 0 compute the directional derivative in L2(Q) of

and show that the directional derivative vanishes in the direction of «.

6. Deduce the variational formulation of the adjoint boundary value problem, the solu-
tion of which is denoted by p.

7. Write the boundary value problem satisfied by the adjoint p. Show that the right
hand side in the adjoint equation is orthogonal to u, the solution of (1). Show that,
if p is a solution, then (p + Cu) is another solution for any constant C. From the
partial derivative of £ with respect to 5\, find the normalization condition for p that
determines the constant C.

8. Compute (at least formally) the derivative J'(h) of (4).

2 Geometric optimization : 6 points

We consider a bounded smooth domain 2 € RY. For a given source term f € L?(RY)
and a given boundary condition g € H'(R"), we define the solution u € H'(Q) of

{ —Au=f inQ,

U=y on 0f). (5)

We minimize the objective function

uiny {J(Q): /Q j(u)d:z:}, (6)

where j is a smooth function satisfying
j()] < C(v*+1) and [j'(v)] < C(lv| +1).

We use Hadamard’s method of shape variations.

1. Write the Lagrangian corresponding to (6), taking care of the non-homogeneous
Dirichlet boundary condition on 0f).

2. Deduce the adjoint problem, the solution of which is denoted by p.
3. Compute (formally) the shape derivative of (6).



