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Exercise 1 Sequence spaces `p are Banach spaces

Given a sequence (x1, x2, . . . , xk, . . . ), set

‖x‖p =

[∑
k

|xk|p
]1/p

for 1 ≤ p <∞ and ‖x‖∞ = sup
k
|xk|.

Prove that the spaces `p = {x, ‖x‖p <∞} with 1 ≤ p ≤ ∞. are Banach space.

Answer of exercise 1

We start with the case p < ∞. Let un be a Cauchy sequence in `p: for all
ε > 0 there exists N ∈ N∗ such that

‖xn − xm‖p =

[∑
k

|xnk − xmk |p
]1/p

≤ ε, ∀n,m ≥ N.

This implies that for a fixed k ∈ N∗, the sequence xnk is a Cauchy sequence.

Since R is complete, there exists x∞k ∈ R such that xnk
n→∞−−−−→ x∞k .

(i) x∞ ∈ `p: Since xn is a Cauchy sequence it is bounded by some constant
C > 0 (in lp). Let K,N ∈ N∗ then[

K∑
k=1

|xnk |p
]1/p

≤ ‖xn‖p ≤ C.

Let n→∞ to obtain
[∑K

k=1 |x∞k |p
]1/p

≤ C.

Let K →∞ to obtain [
∑∞

k=1 |x∞k |p]
1/p

= ‖x∞‖p ≤ C.

(ii) xn converges toward x∞ in `p: Let ε > 0. For K ∈ N∗ and n,m
sufficiently large [

K∑
k=1

|xnk − xmk |p
]1/p

≤ ‖xn − xm‖p ≤ ε.

Letting n→∞ and then K →∞ allows to conclude (‖x∞ − xm‖p ≤ ε).
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For p =∞ we assume that xn is a Cauchy sequence and easily deduce pointwise
convergence toward some sequence x∞ (i.e. for all k ∈ N∗, xnk

n→∞−−−−→ x∞k ). Since
it is a Cauchy sequence, xn is bounded in `∞ and in turn x∞ ∈ `∞. Finally
|x∞k − xnk | ≤ ε for all k ∈ N∗ implies ‖x∞ − xn‖∞ = supk{|x∞k − xnk |} ≤ ε.

Exercise 2 The theorems of Egorov and Vitali

Assume |Ω| < ∞ Let (fn) be a sequence of measurable functions such that
such that fn → f a.e. (with |f | <∞ a.e.).

1. Let α > 0 be fixed. Prove that

meas[|fn − f | > α] −−−−→
n→∞

0.

2. More precisely, let

Sn(α) =
⋃
k≥n

[|fk − f | > α].

Prove that |Sn(α)| −−−−→
n→∞

0.

3. (Egorov) Prove that{
∀δ > 0,∃A ⊂ Ω mesurable such that
|A| < δ and fn → funiformely on Ω \A.

4. (Vitali) Let (fn) be a sequence in Lp(Ω) with 1 ≤ p <∞. Assume that

(i) ∀ε > 0, ∃δ > 0 such that
∫
A
|fn|p < ε, ∀n and ∀A ∈ Ω measurable

with |A| < δ.

(ii) fn → f a.e.

Prove that f ∈ Lp(Ω) and that fn → f in Lp(Ω).

Answer of exercise 2

1. Let α > 0 and gn ∈ L∞(Ω) defined by

gn(x) =

{
1 if |fn − f | > α
0 if |fn − f | ≤ α

As fn → f a.e., gn converges toward 0 a.e. Moreover, it is bounded by the
constant map 1, which belongs to L1(Ω) as Ω is of finite measure. Thus,
from the Lebesgue Theorem, gn converges toward 0 in L1(Ω). Finally,

meas[|fn − f | > α] =

∫
Ω

gn → 0.
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2. We set
Fn = sup

k≥n
|fk − f |.

Fn converges toward 0 almost everywhere, thus, from the previous ques-
tion,

|Sn(α)| = meas[|Fn| > α]→ 0.

3. For every integer m ≥ 1, there exists Nm such that

|Sn(1/m)| < δ/2m.

for every n ≥ Nm. Setting Σm = SNm
(1/m), we have

|fk(x)− f | < 1

m
,∀k ≥ Nm,∀x ∈ Ω \ Σm.

Let Σ = ∪mΣm. We have |Σ| < δ. Moreover, fn does uniformly converge
toward f on Ω\Σ. Indeed, for all m, for all x ∈ Ω\Σ and for all k ≥ Nm,
we have

|fk(x)− f(x)| < 1

m
.

4. For every ε > 0, let δ as in (i). From the Egorov Theorem, there exists
a measurable subset A of Ω such that |A| < δ and fn converges toward
f uniformly on Ω \A. First, notice that∫

A

|f |p ≤ lim inf

∫
A

|fn|p ≤ ε.

We have∫
Ω

|fn − f |p =

∫
Ω\A
|fn − f |p +

∫
A

|fn − f |p ≤
∫

Ω\A
|fn − f |p + 2ε.

Finally, as fn converges toward f uniformly on Ω\A, for n large enough,

|fn − f | < |Ω|−1ε

and ∫
|fn − f |p < 3ε.

We conclude that fn does converge toward f in Lp(Ω).

Exercise 3

Let j : R→ (−∞,∞] be a convex function. The domain of j is defined by

D(j) = {x ∈ R : j(x) <∞}.
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1. Prove that for all x− < x < x+, such that x− and x+ ∈ D(j), we have

j(x−)− j(x)

x− − x
≤ j(x+)− j(x)

x+ − x
.

2. Let x be an element of the interior of j. We set

α = inf
x+>x

j(x+)− j(x)

x+ − x
.

Prove that α ∈ R (that is |α| 6=∞).

3. Prove that for every x of the interior of the domain of j, there exists
α ∈ R such that

j(x+ y) ≥ αy + j(x) ∀y ∈ R. (1)

Answer of exercise 3

In a first step, we are going to prove that for all x− < x < x+ such that
x−, x+ ∈ D(j), we have

j(x−)− j(x)

x− − x
≤ j(x+)− j(x)

x+ − x
(2)

There exists θ ∈ [0, 1], such that x = θx+ + (1− θ)x−. As j is convex,

j(x) ≤ θj(x+) + (1− θ)j(x−),

thus
(θ − 1)(j(x−)− j(x)) ≤ θ(j(x+)− j(x)). (3)

Moreover, we have
x− x− = θ(x+ − x−)

and
x− x+ = (θ − 1)(x+ − x−).

Hence, by multiplying (3) by (x+ − x−) we get

(x− x+)(j(x−)− j(x)) ≤ (x− x−)(j(x+)− j(x))

and (2) as claimed. Let

α = inf
x+>x

j(x+)− j(x)

x+ − x
.

As x belongs to the interior of the domain of j, α <∞ and from (2), α > −∞.
Finally, from the definition of α, for every x+ > x, we have

α ≤ j(x+)− j(x)

x+ − x
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that is
α(x+ − x) + j(x) ≤ j(x+). (4)

and from (2), for every x− < x,

α ≥ j(x−)− j(x)

x− − x
,

that is
α(x− − x) + j(x) ≤ j(x−). (5)

Finally, (1) follows from (4) and (5).

Exercise 4 Jensen’s inequality

Assume that |Ω| < ∞. Let j : R → (−∞,∞] be a convex l.s.c. function,
j 6≡ ∞. Let f ∈ L1(Ω) be such that j(f(x)) <∞ a.e. and j(f) ∈ L1(Ω). Prove
that

j

(
1

|Ω|

∫
Ω

f

)
≤ 1

|Ω|

∫
Ω

j(f).

Answer of exercise 4

Firstly, let us remark that as j is a convex function, its domain is also convex.
Thus, as f(x) ∈ D(j) a.e., m = |Ω|−1

∫
Ω
f ∈ D(j). Secondly, without lost of

generality, we can assume that m belongs to the interior of the domain D(j)
(if m belongs to the boundary of the domain, f is constant and the result is
obvious). The function j being convex, there exists α ∈ R such that for all
x ∈ R,

j(x+m) ≥ αx+ j(m).

In particular,
j(f(x)) ≥ α(f(x)−m) + j(m).

By integration over Ω, we get∫
Ω

j(f) ≥ α
(∫

Ω

f − |Ω|m
)

+ |Ω|j(m) = |Ω|j(m),

as desired.
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