Functional analysis and applications
 MASTER "Mathematical Modelling"

École Polytechnique and Université Pierre et Marie Curie
September 10th, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/ allaire/master/course-funct-analysis.html

Exercise 1 Sequence spaces ℓ^{p} are Banach spaces

Given a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots\right)$, set

$$
\|x\|_{p}=\left[\sum_{k}\left|x_{k}\right|^{p}\right]^{1 / p} \text { for } 1 \leq p<\infty \text { and }\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|
$$

Prove that the spaces $\ell_{p}=\left\{x,\|x\|_{p}<\infty\right\}$ with $1 \leq p \leq \infty$. are Banach space.

Answer of exercise 1

We start with the case $p<\infty$. Let u^{n} be a Cauchy sequence in ℓ^{p} : for all $\epsilon>0$ there exists $N \in \mathbb{N}^{*}$ such that

$$
\left\|x^{n}-x^{m}\right\|_{p}=\left[\sum_{k}\left|x_{k}^{n}-x_{k}^{m}\right|^{p}\right]^{1 / p} \leq \epsilon, \quad \forall n, m \geq N
$$

This implies that for a fixed $k \in \mathbb{N}^{*}$, the sequence x_{k}^{n} is a Cauchy sequence. Since \mathbb{R} is complete, there exists $x_{k}^{\infty} \in \mathbb{R}$ such that $x_{k}^{n} \xrightarrow{n \rightarrow \infty} x_{k}^{\infty}$.
(i) $x^{\infty} \in \ell_{p}$: Since x^{n} is a Cauchy sequence it is bounded by some constant $C>0\left(\right.$ in $\left.l^{p}\right)$. Let $K, N \in \mathbb{N}^{*}$ then

$$
\left[\sum_{k=1}^{K}\left|x_{k}^{n}\right|^{p}\right]^{1 / p} \leq\left\|x^{n}\right\|_{p} \leq C
$$

Let $n \rightarrow \infty$ to obtain $\left[\sum_{k=1}^{K}\left|x_{k}^{\infty}\right|^{p}\right]^{1 / p} \leq C$.
Let $K \rightarrow \infty$ to obtain $\left[\sum_{k=1}^{\infty}\left|x_{k}^{\infty}\right|^{p}\right]^{1 / p}=\left\|x^{\infty}\right\|_{p} \leq C$.
(ii) x^{n} converges toward x^{∞} in ℓ_{p} : Let $\epsilon>0$. For $K \in \mathbb{N}^{*}$ and n, m sufficiently large

$$
\left[\sum_{k=1}^{K}\left|x_{k}^{n}-x_{k}^{m}\right|^{p}\right]^{1 / p} \leq\left\|x^{n}-x^{m}\right\|_{p} \leq \epsilon
$$

Letting $n \rightarrow \infty$ and then $K \rightarrow \infty$ allows to conclude $\left(\left\|x^{\infty}-x^{m}\right\|_{p} \leq \epsilon\right)$.

For $p=\infty$ we assume that x^{n} is a Cauchy sequence and easily deduce pointwise convergence toward some sequence x^{∞} (i.e. for all $k \in \mathbb{N}^{*}, x_{k}^{n} \xrightarrow{n \rightarrow \infty} x_{k}^{\infty}$). Since it is a Cauchy sequence, x^{n} is bounded in ℓ_{∞} and in turn $x^{\infty} \in \ell_{\infty}$. Finally $\left|x_{k}^{\infty}-x_{k}^{n}\right| \leq \epsilon$ for all $k \in \mathbb{N}^{*}$ implies $\left\|x^{\infty}-x^{n}\right\|_{\infty}=\sup _{k}\left\{\left|x_{k}^{\infty}-x_{k}^{n}\right|\right\} \leq \epsilon$.

Exercise 2 The theorems of Egorov and Vitali

Assume $|\Omega|<\infty$ Let $\left(f_{n}\right)$ be a sequence of measurable functions such that such that $f_{n} \rightarrow f$ a.e. (with $|f|<\infty$ a.e.).

1. Let $\alpha>0$ be fixed. Prove that

$$
\operatorname{meas}\left[\left|f_{n}-f\right|>\alpha\right] \underset{n \rightarrow \infty}{ } 0
$$

2. More precisely, let

$$
S_{n}(\alpha)=\bigcup_{k \geq n}\left[\left|f_{k}-f\right|>\alpha\right]
$$

Prove that $\left|S_{n}(\alpha)\right| \xrightarrow[n \rightarrow \infty]{ } 0$.
3. (Egorov) Prove that

$$
\left\{\begin{array}{l}
\forall \delta>0, \exists A \subset \Omega \text { mesurable such that } \\
|A|<\delta \text { and } f_{n} \rightarrow f \text { uniformely on } \Omega \backslash A .
\end{array}\right.
$$

4. (Vitali) Let $\left(f_{n}\right)$ be a sequence in $L^{p}(\Omega)$ with $1 \leq p<\infty$. Assume that
(i) $\forall \varepsilon>0, \exists \delta>0$ such that $\int_{A}\left|f_{n}\right|^{p}<\varepsilon, \forall n$ and $\forall A \in \Omega$ measurable with $|A|<\delta$.
(ii) $f_{n} \rightarrow f$ a.e.

Prove that $f \in L^{p}(\Omega)$ and that $f_{n} \rightarrow f$ in $L^{p}(\Omega)$.

Answer of exercise 2

1. Let $\alpha>0$ and $g_{n} \in L^{\infty}(\Omega)$ defined by

$$
g_{n}(x)= \begin{cases}1 & \text { if }\left|f_{n}-f\right|>\alpha \\ 0 & \text { if }\left|f_{n}-f\right| \leq \alpha\end{cases}
$$

As $f_{n} \rightarrow f$ a.e., g_{n} converges toward 0 a.e. Moreover, it is bounded by the constant map 1 , which belongs to $L^{1}(\Omega)$ as Ω is of finite measure. Thus, from the Lebesgue Theorem, g_{n} converges toward 0 in $L^{1}(\Omega)$. Finally,

$$
\operatorname{meas}\left[\left|f_{n}-f\right|>\alpha\right]=\int_{\Omega} g_{n} \rightarrow 0
$$

2. We set

$$
F_{n}=\sup _{k \geq n}\left|f_{k}-f\right| .
$$

F_{n} converges toward 0 almost everywhere, thus, from the previous question,

$$
\left|S_{n}(\alpha)\right|=\operatorname{meas}\left[\left|F_{n}\right|>\alpha\right] \rightarrow 0
$$

3. For every integer $m \geq 1$, there exists N_{m} such that

$$
\left|S_{n}(1 / m)\right|<\delta / 2^{m}
$$

for every $n \geq N_{m}$. Setting $\Sigma_{m}=S_{N_{m}}(1 / m)$, we have

$$
\left|f_{k}(x)-f\right|<\frac{1}{m}, \forall k \geq N_{m}, \forall x \in \Omega \backslash \Sigma_{m}
$$

Let $\Sigma=\cup_{m} \Sigma_{m}$. We have $|\Sigma|<\delta$. Moreover, f_{n} does uniformly converge toward f on $\Omega \backslash \Sigma$. Indeed, for all m, for all $x \in \Omega \backslash \Sigma$ and for all $k \geq N_{m}$, we have

$$
\left|f_{k}(x)-f(x)\right|<\frac{1}{m}
$$

4. For every $\varepsilon>0$, let δ as in (i). From the Egorov Theorem, there exists a measurable subset A of Ω such that $|A|<\delta$ and f_{n} converges toward f uniformly on $\Omega \backslash A$. First, notice that

$$
\int_{A}|f|^{p} \leq \liminf \int_{A}\left|f_{n}\right|^{p} \leq \varepsilon
$$

We have

$$
\int_{\Omega}\left|f_{n}-f\right|^{p}=\int_{\Omega \backslash A}\left|f_{n}-f\right|^{p}+\int_{A}\left|f_{n}-f\right|^{p} \leq \int_{\Omega \backslash A}\left|f_{n}-f\right|^{p}+2 \varepsilon
$$

Finally, as f_{n} converges toward f uniformly on $\Omega \backslash A$, for n large enough,

$$
\left|f_{n}-f\right|<|\Omega|^{-1} \varepsilon
$$

and

$$
\int\left|f_{n}-f\right|^{p}<3 \varepsilon
$$

We conclude that f_{n} does converge toward f in $L^{p}(\Omega)$.

Exercise 3

Let $j: \mathbb{R} \rightarrow(-\infty, \infty]$ be a convex function. The domain of j is defined by

$$
D(j)=\{x \in \mathbb{R}: j(x)<\infty\}
$$

1. Prove that for all $x^{-}<x<x^{+}$, such that x^{-}and $x^{+} \in D(j)$, we have

$$
\frac{j\left(x^{-}\right)-j(x)}{x^{-}-x} \leq \frac{j\left(x^{+}\right)-j(x)}{x^{+}-x}
$$

2. Let x be an element of the interior of j. We set

$$
\alpha=\inf _{x^{+}>x} \frac{j\left(x^{+}\right)-j(x)}{x^{+}-x} .
$$

Prove that $\alpha \in \mathbb{R}$ (that is $|\alpha| \neq \infty)$.
3. Prove that for every x of the interior of the domain of j, there exists $\alpha \in \mathbb{R}$ such that

$$
\begin{equation*}
j(x+y) \geq \alpha y+j(x) \quad \forall y \in \mathbb{R} \tag{1}
\end{equation*}
$$

Answer of exercise 3

In a first step, we are going to prove that for all $x^{-}<x<x^{+}$such that $x^{-}, x^{+} \in D(j)$, we have

$$
\begin{equation*}
\frac{j\left(x^{-}\right)-j(x)}{x^{-}-x} \leq \frac{j\left(x^{+}\right)-j(x)}{x^{+}-x} \tag{2}
\end{equation*}
$$

There exists $\theta \in[0,1]$, such that $x=\theta x^{+}+(1-\theta) x^{-}$. As j is convex,

$$
j(x) \leq \theta j\left(x^{+}\right)+(1-\theta) j\left(x^{-}\right)
$$

thus

$$
\begin{equation*}
(\theta-1)\left(j\left(x^{-}\right)-j(x)\right) \leq \theta\left(j\left(x^{+}\right)-j(x)\right) . \tag{3}
\end{equation*}
$$

Moreover, we have

$$
x-x^{-}=\theta\left(x^{+}-x^{-}\right)
$$

and

$$
x-x^{+}=(\theta-1)\left(x^{+}-x^{-}\right) .
$$

Hence, by multiplying (3) by $\left(x^{+}-x^{-}\right)$we get

$$
\left(x-x^{+}\right)\left(j\left(x^{-}\right)-j(x)\right) \leq\left(x-x^{-}\right)\left(j\left(x^{+}\right)-j(x)\right)
$$

and 2 as claimed. Let

$$
\alpha=\inf _{x^{+}>x} \frac{j\left(x^{+}\right)-j(x)}{x^{+}-x} .
$$

As x belongs to the interior of the domain of $j, \alpha<\infty$ and from (2), $\alpha>-\infty$. Finally, from the definition of α, for every $x^{+}>x$, we have

$$
\alpha \leq \frac{j\left(x^{+}\right)-j(x)}{x^{+}-x}
$$

that is

$$
\begin{equation*}
\alpha\left(x^{+}-x\right)+j(x) \leq j\left(x^{+}\right) . \tag{4}
\end{equation*}
$$

and from (2), for every $x^{-}<x$,

$$
\alpha \geq \frac{j\left(x_{-}\right)-j(x)}{x^{-}-x}
$$

that is

$$
\begin{equation*}
\alpha\left(x^{-}-x\right)+j(x) \leq j\left(x^{-}\right) \tag{5}
\end{equation*}
$$

Finally, (1) follows from (4) and (5).

Exercise 4 Jensen's inequality

Assume that $|\Omega|<\infty$. Let $j: \mathbb{R} \rightarrow(-\infty, \infty]$ be a convex l.s.c. function, $j \not \equiv \infty$. Let $f \in L^{1}(\Omega)$ be such that $j(f(x))<\infty$ a.e. and $j(f) \in L^{1}(\Omega)$. Prove that

$$
j\left(\frac{1}{|\Omega|} \int_{\Omega} f\right) \leq \frac{1}{|\Omega|} \int_{\Omega} j(f)
$$

Answer of exercise 4

Firstly, let us remark that as j is a convex function, its domain is also convex. Thus, as $f(x) \in D(j)$ a.e., $m=|\Omega|^{-1} \int_{\Omega} f \in D(j)$. Secondly, without lost of generality, we can assume that m belongs to the interior of the domain $D(j)$ (if m belongs to the boundary of the domain, f is constant and the result is obvious). The function j being convex, there exists $\alpha \in \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$
j(x+m) \geq \alpha x+j(m) .
$$

In particular,

$$
j(f(x)) \geq \alpha(f(x)-m)+j(m)
$$

By integration over Ω, we get

$$
\int_{\Omega} j(f) \geq \alpha\left(\int_{\Omega} f-|\Omega| m\right)+|\Omega| j(m)=|\Omega| j(m)
$$

as desired.

