Functional analysis and applications
 MASTER "Mathematical Modelling"

École Polytechnique and Université Pierre et Marie Curie
September 17th, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/ allaire/master/course-funct-analysis.html

Exercise $1 \quad$ Duality in ℓ^{p}

Let $1<p<\infty$ and p^{\prime} such that $1 / p+1 / p^{\prime}=1$.

1. (Young's inequality) Prove using the concavity of the \ln that for every $a, b>0$,

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{p^{\prime}} b^{p^{\prime}} .
$$

2. Prove that for every $x \in \ell^{p}$ and $y \in \ell^{p^{\prime}}, x y \in \ell^{1}$ and that

$$
\|x y\|_{\ell^{1}} \leq \frac{1}{p}\|x\|_{\ell^{p}}^{p}+\frac{1}{p^{\prime}}\|y\|_{\ell^{p^{\prime}}}^{p^{\prime}}
$$

3. Prove that for every $x \in \ell^{p}$ and $y \in \ell^{p^{\prime}}$,

$$
\sum_{n=0}^{\infty} x_{n} y_{n} \leq\|x\|_{\ell^{p}}\|y\|_{\ell^{p^{\prime}}}
$$

4. Prove that for every $y \in \ell^{p^{\prime}}$ the map

$$
x \rightarrow \sum_{n=0}^{\infty} x_{n} y_{n}
$$

is correctly defined, linear and continuous on ℓ^{p}.
5. Let $L \in\left(\ell^{p}\right)^{*}$ prove that there exists $y \in \ell^{p^{\prime}}$ such that for every $x \in \ell^{p}$,

$$
L(x)=\sum_{n=0}^{\infty} y_{n} x_{n}
$$

Moreover, show that

$$
\|y\|_{\ell^{p^{\prime}}}=\|L\|_{\left(\ell^{p}\right)^{*}}
$$

Answer of exercise 1

1. As \ln is concave, for all $a, b>0$, we have

$$
\ln (a b)=\frac{1}{p} \ln \left(a^{p}\right)+\frac{1}{p^{\prime}} \ln \left(b^{p^{\prime}}\right) \leq \ln \left(\frac{1}{p} a^{p}+\frac{1}{p^{\prime}} b^{p^{\prime}}\right)
$$

Taking the exponential of this inequality leads to

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{p^{\prime}} a^{p^{\prime}} .
$$

2. Let $x \in \ell^{p}$ and $y \in \ell^{p}$. We have, from the Young's inequality

$$
\sum_{n}\left|x_{n}\right|\left|y_{n}\right| \leq \frac{1}{p} \sum_{n}\left|x_{n}\right|^{p}+\frac{1}{p^{\prime}} \sum_{n}\left|y_{n}\right|^{p^{\prime}}
$$

3. We already now that $\sum x_{n} y_{n}$ is absolutely convergent. Moreover, applying the previous inequality to $x /\|x\|_{\ell^{p}}$ and $y /\|y\|_{\ell^{p^{\prime}}}$ instead of x and y leads to

$$
\|x\|_{\ell^{p}}^{-1}\|y\|_{\ell^{p^{\prime}}}^{-1} \sum_{n}\left|x_{n}\right|\left|y_{n}\right| \leq \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

4. Firstly, the sum $\sum x_{n} y_{n}$ is convergent as already mentioned. Moreover the map $x \mapsto \sum x_{n} y_{n}$ is obviously linear and as

$$
\sum x_{n} y_{n} \leq\|y\|_{\ell^{p^{\prime}}}\|x\|_{\ell^{p}}
$$

it is continuous.
5. Let $\left(e^{n}\right)$ be a basis of ℓ^{p} defined by $e_{k}^{n}=\delta_{k}^{n}$. Let us set $y \in \mathbb{R}^{\mathbb{N}}$, defined by $y_{n}=L\left(e_{n}\right)$. For all $x_{n} \in \ell^{p}(\Omega)$,

$$
\sum_{n} y_{n} x_{n}=L(x) \leq\|L\|_{\left(\ell^{p}\right)^{*}}\|x\|_{\ell^{p}}
$$

Choosing $x_{n}=\left|y_{n}\right|^{p^{\prime}-2} y_{n}$, we get

$$
\begin{aligned}
\|y\|_{\ell^{p^{\prime}}}^{p^{\prime}} & =\sum_{n}\left|y_{n}\right|^{p^{\prime}} \leq\|L\|_{\left(\ell^{p}\right)^{*}}\left(\sum_{n}\left|y_{n}\right|^{p\left(p^{\prime}-1\right)}\right)^{1 / p} \\
& =\|L\|_{\left(\ell^{p}\right)^{*}}\left(\sum_{n}\left|y_{n}\right|^{p^{\prime}}\right)^{1 / p}=\|L\|_{\left(\ell^{p}\right)^{*}}\|y\|_{\ell^{p^{\prime}}}^{p^{\prime} / p}
\end{aligned}
$$

and thus

$$
\|y\|_{\ell^{p^{\prime}}=}\|y\|_{\ell^{p^{\prime}}}^{p^{\prime}-p^{\prime} / p} \leq\|L\|_{\left(\ell^{p}\right)^{*}}
$$

We have thus obtained that $y \in \ell^{p^{\prime}}$ and

$$
\|L\|_{\left(\ell^{p}\right)^{*}} \geq\|y\|_{\ell^{p^{\prime}}}
$$

As we already have proven the converse inequality, we get

$$
\|L\|_{\left(\ell^{p}\right)^{*}}=\|y\|_{\ell^{p^{\prime}}} .
$$

Exercise 2 Decomposition in Banach spaces

Let E be a Banach space. Assume that F and G are closed subspaces of E such that $F+G$ is closed. Then there exists $C>0$ such that for every $z \in F+G$, there exists $x \in F$ and $y \in G$ such that

$$
z=x+y
$$

and

$$
\|x\| \leq C\|z\| \text { and }\|y\| \leq C\|z\|
$$

Answer of exercise 2

Let $T: F \times G \rightarrow F+G$ defined by $T(x, y)=x+y$. The map T is a linear continuous map between Banach space. Moreover, it is onto. Thus, from the open mapping Theorem, there exists $r>0$ such that

$$
\begin{aligned}
& \left\{z \in F+G \text { such that }\|z\|_{F+G}<r\right\} \\
& \qquad \subset T\left(\left\{(x, y) \in F \times G \text { such that }\|x\|_{F}<1 \text { and }\|y\|_{G}<1\right\}\right)
\end{aligned}
$$

Note, that all the spaces F, G and $F+G$ are all endowed with the norm of E. It follow that, for every $z \in F+G$, let $\widetilde{z}=\alpha z$, with $\alpha=r /(2\|z\|)$. We have $\|\widetilde{z}\|<r$ and from the inclusion given by the open mapping Theorem, there exists $\widetilde{x} \in F$ and $\widetilde{y} \in G$ such that

$$
\widetilde{z}=\widetilde{x}+\widetilde{y}
$$

and $\|\widetilde{x}\|<1,\|\widetilde{y}\|<1$. Setting $x=\widetilde{x} / \alpha$ and $y=\widetilde{y} / \alpha$, we get

$$
z=x+y
$$

with

$$
\|x\| \leq \alpha^{-1}=2\|z\| / r
$$

and

$$
\|y\| \leq \alpha^{-1}=2\|z\| / r
$$

Exercise 3 Sum of two closed subspaces

We want to prove that the assumption $F+G$ closed in Exercise 2 is not trivial (meaning that it is not a consequence of the other assumptions) and is necessary.

1. Find E Banach space and F and G closed subspaces of E such that the subspace $F+G$ of E is not closed.
[Hint: Let $E=\ell_{1}, F=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell_{1} ; x_{2 n}=0, \forall n \in \mathbb{N}\right\}$ and $G=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell_{1} ; x_{2 n-1}=n x_{2 n}, \forall n \in \mathbb{N}\right\}$. Prove that $F+G$ is dense in E but $F+G \neq E$.]
2. Using the example found, prove that there is no constant C such that for all $z \in F+G$, there exists $x \in F$ and $y \in G$ such that $z=x+y$ whereas $\|x\| \leq C\|z\|$ and $\|y\| \leq C\|z\|$.

Answer of exercise 3

Write the answer for $E=\ell_{1}$.

Exercise 4

Let $X \subset L^{1}(\Omega)$ be a closed vector space in $L^{1}(\Omega)$. Assume that

$$
X \subset \bigcup_{1<q \leq \infty} L^{q}(\Omega)
$$

1. Prove that there exists some $p>1$ such that $X \subset L^{p}(\Omega)$. [Hint: For every integer $n \geq 1$ consider the set

$$
X_{n}=\left\{f \in X \cap L^{1+1 / n}(\Omega) ;\|f\|_{1+1 / n} \leq n\right\}
$$

]
2. Prove that there is a constant C such that

$$
\|f\|_{p} \leq C\|f\|_{1}, \quad \forall f \in X
$$

Answer of exercise 4

The set X_{n} are closed subsets of X. Indeed, let $f_{k} \in X_{n}$ such that $f_{k} \rightarrow f$ in $L^{1}(\Omega)$, without lost of generality, we can assume that f_{k} does converge almost everywhere. Then, from Beppo - Levi's Theorem,

$$
\|f\|_{1+1 / n} \leq \liminf _{k}\left\|f_{k}\right\|_{1+1 / n} \leq n
$$

Moreover, $X \subset \cup_{n} X_{n}$. Indeed, for all $f \in X$, there exists $q>1$ such that $f \in L^{1}(\Omega) \cap L^{q}(\Omega)$ and for every $1 \leq r \leq q f \in L^{r}(\Omega)$ with

$$
\|f\|_{r} \leq\|f\|_{1}^{\alpha}\|f\|_{q} 1-\alpha
$$

with

$$
\alpha+\frac{1-\alpha}{q}=\frac{1}{r} .
$$

It follows that for every every $1 \leq r \leq q$,

$$
\|f\|_{r} \leq \max \left(1,\|f\|_{1}\right) \max \left(\|f\|_{q}, 1\right)=C(f)
$$

For n great enough, $1+1 / n \leq q$ and $C(f) \leq n$, so that

$$
\|f\|_{r} \leq n
$$

with $r=1+1 / n$ and $f \in X_{n}$ as claimed.
We thus have $X=\cup_{n} X_{n}$, and as X is a Banach space and X_{n} is a sequence of closed subset of X, from the Baire's Lemma, there exists n such that the interior of X_{n} in X is not void. There exists $g \in X_{n}$ and $\beta>0$, such that

$$
\left\{h \in X:\|h-g\|_{1} \leq \beta\right\} \subset X_{n}
$$

Thus, for every $f \in X$, let $h=g+\beta f /\|f\|_{1}$, we have $\|h-g\|_{1} \leq \beta$ and

$$
\|g+\beta f /\| f\left\|_{1}\right\|_{1+1 / n}=\|h\|_{1+1 / n} \leq n
$$

We conclude that

$$
\beta \frac{\|f\|_{1+1 / n}}{\|f\|_{1}} \leq n+\|g\|_{1+1 / n}
$$

and

$$
\|f\|_{1+1 / n} \leq\left(n+\|g\|_{1+1 / n}\right) / \beta<\infty
$$

