Functional analysis and applications

MASTER "Mathematical Modelling"

École Polytechnique and Université Pierre et Marie Curie

September 17th, 2015

See also the course webpage:

http://www.cmap.polytechnique.fr/ allaire/master/course-funct-analysis.html

Exercise 1 Duality in ℓ^p

Let 1 and <math>p' such that 1/p + 1/p' = 1.

1. (Young's inequality) Prove using the concavity of the ln that for every a, b > 0,

$$ab \le \frac{1}{p}a^p + \frac{1}{p'}b^{p'}.$$

2. Prove that for every $x \in \ell^p$ and $y \in \ell^{p'}$, $xy \in \ell^1$ and that

$$||xy||_{\ell^1} \le \frac{1}{p} ||x||_{\ell^p}^p + \frac{1}{p'} ||y||_{\ell^{p'}}^{p'}$$

3. Prove that for every $x \in \ell^p$ and $y \in \ell^{p'}$,

$$\sum_{n=0}^{\infty} x_n y_n \le \|x\|_{\ell^p} \|y\|_{\ell^{p'}}$$

4. Prove that for every $y \in \ell^{p'}$ the map

$$x \to \sum_{n=0}^{\infty} x_n y_n,$$

is correctly defined, linear and continuous on $\ell^p.$

5. Let $L \in (\ell^p)^*$ prove that there exists $y \in \ell^{p'}$ such that for every $x \in \ell^p$,

$$L(x) = \sum_{n=0}^{\infty} y_n x_n.$$

Moreover, show that

$$\|y\|_{\ell^{p'}} = \|L\|_{(\ell^p)^*}$$

Answer of exercise 1

1. As ln is concave, for all a, b > 0, we have

$$\ln(ab) = \frac{1}{p}\ln(a^{p}) + \frac{1}{p'}\ln(b^{p'}) \le \ln\left(\frac{1}{p}a^{p} + \frac{1}{p'}b^{p'}\right)$$

Taking the exponential of this inequality leads to

$$ab \le \frac{1}{p}a^p + \frac{1}{p'}a^{p'}$$

2. Let $x \in \ell^p$ and $y \in \ell^{p'}$. We have, from the Young's inequality

$$\sum_{n} |x_{n}||y_{n}| \leq \frac{1}{p} \sum_{n} |x_{n}|^{p} + \frac{1}{p'} \sum_{n} |y_{n}|^{p'}.$$

3. We already now that $\sum x_n y_n$ is absolutely convergent. Moreover, applying the previous inequality to $x/||x||_{\ell^p}$ and $y/||y||_{\ell^{p'}}$ instead of x and y leads to

$$||x||_{\ell^p}^{-1} ||y||_{\ell^{p'}}^{-1} \sum_n |x_n| |y_n| \le \frac{1}{p} + \frac{1}{p'} = 1.$$

4. Firstly, the sum $\sum x_n y_n$ is convergent as already mentioned. Moreover the map $x \mapsto \sum x_n y_n$ is obviously linear and as

$$\sum x_n y_n \le \|y\|_{\ell^{p'}} \|x\|_{\ell^p},$$

it is continuous.

5. Let (e^n) be a basis of ℓ^p defined by $e_k^n = \delta_k^n$. Let us set $y \in \mathbb{R}^{\mathbb{N}}$, defined by $y_n = L(e_n)$. For all $x_n \in \ell^p(\Omega)$,

$$\sum_{n} y_n x_n = L(x) \le \|L\|_{(\ell^p)^*} \|x\|_{\ell^p}$$

Choosing $x_n = |y_n|^{p'-2} y_n$, we get

$$\begin{aligned} \|y\|_{\ell^{p'}}^{p'} &= \sum_{n} |y_{n}|^{p'} \le \|L\|_{(\ell^{p})^{*}} \left(\sum_{n} |y_{n}|^{p(p'-1)}\right)^{1/p} \\ &= \|L\|_{(\ell^{p})^{*}} \left(\sum_{n} |y_{n}|^{p'}\right)^{1/p} = \|L\|_{(\ell^{p})^{*}} \|y\|_{\ell^{p'}}^{p'/p} \end{aligned}$$

and thus

$$||y||_{\ell^{p'}} = ||y||_{\ell^{p'}}^{p'-p'/p} \le ||L||_{(\ell^p)^*}.$$

We have thus obtained that $y \in \ell^{p'}$ and

$$||L||_{(\ell^p)^*} \ge ||y||_{\ell^{p'}}.$$

As we already have proven the converse inequality, we get

$$||L||_{(\ell^p)^*} = ||y||_{\ell^{p'}}.$$

Exercise 2 Decomposition in Banach spaces

Let E be a Banach space. Assume that F and G are closed subspaces of E such that F + G is closed. Then there exists C > 0 such that for every $z \in F + G$, there exists $x \in F$ and $y \in G$ such that

z = x + y

and

$$||x|| \le C ||z||$$
 and $||y|| \le C ||z||$

Answer of exercise 2

Let $T: F \times G \to F + G$ defined by T(x, y) = x + y. The map T is a linear continuous map between Banach space. Moreover, it is onto. Thus, from the open mapping Theorem, there exists r > 0 such that

$$\{z \in F + G \text{ such that } \|z\|_{F+G} < r\}$$

$$\subset T\left(\{(x, y) \in F \times G \text{ such that } \|x\|_F < 1 \text{ and } \|y\|_G < 1\}\right)$$

Note, that all the spaces F, G and F + G are all endowed with the norm of E. It follow that, for every $z \in F + G$, let $\tilde{z} = \alpha z$, with $\alpha = r/(2||z||)$. We have $\|\tilde{z}\| < r$ and from the inclusion given by the open mapping Theorem, there exists $\tilde{x} \in F$ and $\tilde{y} \in G$ such that

$$\widetilde{z} = \widetilde{x} + \widetilde{y}$$

and $\|\widetilde{x}\| < 1$, $\|\widetilde{y}\| < 1$. Setting $x = \widetilde{x}/\alpha$ and $y = \widetilde{y}/\alpha$, we get

$$z = x + y$$

with

$$||x|| \le \alpha^{-1} = 2||z||/r$$

and

$$\|y\| \le \alpha^{-1} = 2\|z\|/r.$$

Exercise 3 Sum of two closed subspaces

We want to prove that the assumption F + G closed in Exercise 2 is not trivial (meaning that it is not a consequence of the other assumptions) and is necessary.

1. Find E Banach space and F and G closed subspaces of E such that the subspace F + G of E is not closed.

[Hint: Let $E = \ell_1$, $F = \{(x_n)_{n \in \mathbb{N}} \in \ell_1; x_{2n} = 0, \forall n \in \mathbb{N}\}$ and $G = \{(x_n)_{n \in \mathbb{N}} \in \ell_1; x_{2n-1} = nx_{2n}, \forall n \in \mathbb{N}\}$. Prove that F + G is dense in E but $F + G \neq E$.

2. Using the example found, prove that there is no constant C such that for all $z \in F + G$, there exists $x \in F$ and $y \in G$ such that z = x + y whereas $||x|| \leq C||z||$ and $||y|| \leq C||z||$.

Answer of exercise 3

Write the answer for $E = \ell_1$.

Exercise 4

Let $X \subset L^1(\Omega)$ be a closed vector space in $L^1(\Omega)$. Assume that

$$X \subset \bigcup_{1 < q \le \infty} L^q(\Omega).$$

1. Prove that there exists some p > 1 such that $X \subset L^p(\Omega)$. [Hint: For every integer $n \ge 1$ consider the set

$$X_n = \left\{ f \in X \cap L^{1+1/n}(\Omega); \, \|f\|_{1+1/n} \le n \right\}$$

]

2. Prove that there is a constant C such that

 $||f||_p \le C ||f||_1, \quad \forall f \in X.$

Answer of exercise 4

The set X_n are closed subsets of X. Indeed, let $f_k \in X_n$ such that $f_k \to f$ in $L^1(\Omega)$, without lost of generality, we can assume that f_k does converge almost everywhere. Then, from Beppo - Levi's Theorem,

$$||f||_{1+1/n} \le \liminf_{k} ||f_k||_{1+1/n} \le n.$$

Moreover, $X \subset \bigcup_n X_n$. Indeed, for all $f \in X$, there exists q > 1 such that $f \in L^1(\Omega) \cap L^q(\Omega)$ and for every $1 \leq r \leq q$ $f \in L^r(\Omega)$ with

$$||f||_r \le ||f||_1^{\alpha} ||f||_q 1 - \alpha,$$

with

$$\alpha + \frac{1-\alpha}{q} = \frac{1}{r}.$$

It follows that for every every $1 \le r \le q$,

$$||f||_{r} \le \max(1, ||f||_{1}) \max(||f||_{q}, 1) = C(f).$$

For n great enough, $1 + 1/n \le q$ and $C(f) \le n$, so that

$$\|f\|_r \leq n$$

with r = 1 + 1/n and $f \in X_n$ as claimed.

We thus have $X = \bigcup_n X_n$, and as X is a Banach space and X_n is a sequence of closed subset of X, from the Baire's Lemma, there exists n such that the interior of X_n in X is not void. There exists $g \in X_n$ and $\beta > 0$, such that

$$\{h \in X : \|h - g\|_1 \le \beta\} \subset X_n$$

Thus, for every $f \in X$, let $h = g + \beta f / ||f||_1$, we have $||h - g||_1 \le \beta$ and

$$||g + \beta f / ||f||_1 ||_{1+1/n} = ||h||_{1+1/n} \le n.$$

We conclude that

$$\beta \frac{\|f\|_{1+1/n}}{\|f\|_1} \le n + \|g\|_{1+1/n}$$

and

$$||f||_{1+1/n} \le (n+||g||_{1+1/n})/\beta < \infty.$$