# Functional analysis and applications 

MASTER "Mathematical Modelling"
École Polytechnique and Université Pierre et Marie Curie
September 24th, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/ allaire/master/course-funct-analysis.html

## Exercise 1

Let $E$ be a Banach space and let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightharpoonup x$ in the weak $\sigma\left(E, E^{*}\right)$ topology. Set

$$
y_{n}=\frac{1}{n} \sum_{k \leq n} x_{k}
$$

Prove that $y_{n} \rightharpoonup x$.

## Answer of exercise 1

Let $T \in E^{*}$. We have

$$
T\left(y_{n}\right)=\frac{1}{n} \sum_{k \leq n} T\left(x_{k}\right)
$$

and

$$
\left|T\left(y_{n}\right)-T(x)\right| \leq \frac{1}{n} \sum_{k \leq n}\left|T\left(x_{n}\right)-T(x)\right|
$$

Fro all $\varepsilon>0$, there exists $N$ such that for all $n>N,\left|T\left(x_{n}\right)-T(x)\right|<\varepsilon$. Thus,

$$
\left|T\left(y_{n}\right)-T(x)\right| \leq \frac{1}{n} \sum_{k \leq N}\left|T\left(x_{n}\right)-T(x)\right|+\varepsilon
$$

and for $n$ great enough,

$$
\left|T\left(y_{n}\right)-T(x)\right| \leq 2 \varepsilon
$$

## Exercise 2

Let $\Omega=(0,1)$.

1. Consider the sequence $\left(f_{n}\right)$ of functions defined by $f_{n}(x)=n e^{-n x}$. Prove that
2. $f_{n} \rightarrow 0$ a.e.
3. $\left(f_{n}\right)$ is bounded in $L^{1}(\Omega)$.
4. $f_{n} \nrightarrow 0$ in $L^{1}(\Omega)$ strongly.
5. $f_{n} \nrightarrow 0$ weakly in $\sigma\left(L^{1}, L^{\infty}\right)$.

More precisely, there is no subsequence that converges weakly $\sigma\left(L^{1}, L^{\infty}\right)$.
2. Let $1<p<\infty$ and consider the sequence $\left(g_{n}\right)$ of functions defined by $g_{n}(x)=n^{1 / p} e^{-n x}$. Prove that

1. $g_{n} \rightarrow 0$ a.e.
2. $\left(g_{n}\right)$ is bounded in $L^{p}(\Omega)$.
3. $g_{n} \nrightarrow 0$ in $L^{p}(\Omega)$ strongly but $g_{n} \rightarrow 0$ in $L^{q}(\Omega)$ strongly for every $1 \leq q<p$.
4. $g_{n} \rightharpoonup 0$ weakly in $\sigma\left(L^{p}, L^{p^{\prime}}\right)$.

## Answer of exercise 2

1. We consider $f_{n}=n e^{-n x}$. For all $x \in(0,1), f_{n}(x)=e^{-n(x+\ln (n) / n)}$ and converges toward 0 .

$$
\left\|f_{n}\right\|_{L^{1}(\Omega)=} \int_{0}^{1}\left|f_{n}\right|=\int_{0}^{1} n e^{-n x}=-\int_{0}^{1}\left(e^{-n x}\right)^{\prime}=-\left[e^{-n x}\right]_{0}^{1}=1-e^{-n}
$$

Thus, $f_{n}$ is bounded in $L^{1}(\Omega)$ and does not converge toward 0 in $L^{1}(\Omega)$. Finally, let $u \in C^{1}([0,1])$,

$$
\int_{0}^{1} f_{n} u=\int_{0}^{1}\left(e^{-n x}\right)^{\prime} u=\left[e^{-n x} u\right]_{0}^{1}-\int_{0}^{1} e^{-n x} u^{\prime} \rightarrow u(0)
$$

Thus, $f_{n}$ does not converge toward 0 in $\sigma\left(L^{1}, L^{\infty}\right)$ (and even no subsequence).
2. We have defined $g_{n}$ by

$$
g_{n}(x)=n^{1 / p} e^{-n x}
$$

with $1<p<\infty$. Obviously, $g_{n}(x)$ goes to zero for every $x \in(0,1)$. Moreover,

$$
\left\|g_{n}\right\|_{L^{p}}^{p}=\int_{0}^{1} n e^{-n p x}=\frac{1}{p}\left(1-e^{-n p}\right)
$$

Thus, $g_{n}$ is bounded in $L^{p}(0,1)$ and does not converge toward 0 in $L^{p}(0,1)$. Now, let $u \in C_{0}^{\infty}(0,1)$. As $g_{n}$ does converge uniformly toward 0 on the support of $u$, we have

$$
\int_{0}^{1} g_{n} u \rightarrow 0
$$

Let $v \in L^{p^{\prime}}(0,1)$. For all $\varepsilon>0$. there exists $u_{\varepsilon} \in C_{0}^{\infty}(0,1)$ such that $\left\|u_{\varepsilon}-v\right\|_{L^{p^{\prime}(\Omega)}}<\varepsilon$. It follows that

$$
\left|\int_{0}^{1} g_{n} v\right| \leq\left|\int_{0}^{1} g_{n}\left(u_{\varepsilon}-v\right)\right|+\left|\int_{0}^{1} g_{n} u_{\varepsilon}\right| \leq\left\|g_{n}\right\|_{L^{p}}\left\|u_{n}-v\right\|_{L^{p^{\prime}}}+\left|\int_{0}^{1} g_{n} u_{\varepsilon}\right| .
$$

As $g_{n}$ is bounded in $L^{p}(0,1)$, we get that

$$
\left|\int_{0}^{1} g_{n} v\right| \leq C \varepsilon+\left|\int_{0}^{1} g_{n} u_{\varepsilon}\right|
$$

For $n$ great enough, we obtain that

$$
\left|\int_{0}^{1} g_{n} v\right| \leq(C+1) \varepsilon
$$

It follows that $\int_{0}^{1} g_{n} v$ converges toward 0 as $n$ goes to infinity, that is $g_{n}$ converges weak toward 0 in $L^{p}(0,1)$.

## Exercise 3

Assume that $|\Omega|<\infty$. Let $1<p<\infty$. Let $\left(f_{n}\right)$ be a sequence in $L^{p}(\Omega)$ such that

1. $\left(f_{n}\right)$ is bounded in $L^{p}(\Omega)$.
2. $f_{n} \rightarrow f$ a.e. on $\Omega$.
3. Prove that $f_{n} \rightharpoonup f$ weakly in $\sigma\left(L^{p}, L^{p^{\prime}}\right)$.
4. Same conclusion if assumption (2) is replaced by

$$
\left\|f_{n}-f\right\|_{1} \rightarrow 0
$$

3. Assume now (1) and (2) and $|\Omega|<\infty$. Prove that $\left\|f_{n}-f\right\|_{q} \rightarrow 0$ for every $q$ with $1 \leq q<p$.

## Answer of exercise 3

1. To simplify the proof, we assume that $|\Omega|<\infty$. It can be easily adapt to the case where $\Omega$ is $\sigma$-finite. First, let us notice that that from Fatou's Lemma, $f \in L^{p}(\Omega)$. In a first step, we are going to prove that up to a subsequence, $f_{n}$ weakly converges toward $f$ in $L^{p}(\Omega)$. As $f_{n}$ is bounded in $L^{p}(\Omega)$, it admits a weakly convergent subsequence. That is there exists $\varphi$ monotone map from $\mathbb{N}$ into $\mathbb{N}$ and $\tilde{f} \in L^{p}(\Omega)$ such that $f_{\varphi(n)}$ weakly converges toward $\widetilde{f}$. Moreover, from the Egorov's Theorem, for all integer $m>0$, there exists a measurable subset $A_{m}$ of $\Omega$ such that $f_{\varphi(n)}$ converges toward $f$ uniformly. It follows that for all $g \in L^{p^{\prime}}(\Omega)$,

$$
\int_{\Omega \backslash A_{m}} f_{\varphi(n)} g \rightarrow \int_{\Omega \backslash A_{m}} f g
$$

and

$$
\int_{\Omega \backslash A_{m}} f_{\varphi(n)} g \rightarrow \int_{\Omega \backslash A_{m}} \tilde{f} g
$$

Thus,

$$
\int_{\Omega \backslash A_{m}}(f-\widetilde{f}) g=0
$$

for every $g \in L^{p^{\prime}}(\Omega)$. Choosing $g=\operatorname{sign}(f-\widetilde{f})$, it follows that $f=\widetilde{f}$ a.e. in $\Omega \backslash A_{m}$. In particular, $f=\widetilde{f}$ a.e. in $\Omega \backslash\left(\cap_{m} A_{m}\right)$. As $\left|\cap_{m} A_{m}\right|=0$, we deduce that $f=\widetilde{f}$ almost everywhere. It remains to prove that the whole sequence $f_{n}$ weakly converges toward $f$ in $L^{p}(\Omega)$. Assume this is not the case. Then, there exists $h \in L^{p^{\prime}}(\Omega)$ and $\psi: \mathbb{N} \rightarrow \mathbb{N}$ monotone such that

$$
\left|\int_{\Omega}\left(f_{\psi(n)}-f\right) h\right|>\delta>0
$$

Replacing $f_{n}$ by $f_{\psi(n)}$ in the first part of the proof, we conclude that there exists $\varphi ; \mathbb{N} \rightarrow \mathbb{N}$ monotone such that

$$
f_{\varphi \circ \psi(n)} \rightharpoonup f \text { in } L^{p}(\Omega)
$$

and

$$
\left|\int_{\Omega}\left(f_{\varphi \circ \psi(n)}-f\right) h\right|>\delta>0
$$

what is contradictory. We conclude as the whole sequence $f_{n}$ weakly converges toward $f$ in $L^{p}(\Omega)$.
2. The proof is exactly the same as in the previous case. It departs only in to establish that $\tilde{f}=f$. In this case, we have immediately that

$$
\int_{\Omega}(f-\widetilde{f}) g=0
$$

for all $g \in L^{\infty}(\Omega)$. Choosing once again $g=\operatorname{sign}(f-\widetilde{f})$, we get that $f=\tilde{f}$ a.e.
3. For every $\varepsilon>0$, from the Egorov's Theorem, there exists a measurable subset $A$ of $\Omega$, such that $|A|<\varepsilon$ and $f_{n}$ converges uniformly toward $f$ in $\Omega \backslash A$. We have

$$
\int_{\Omega}\left|f_{n}-f\right|^{q}=\int_{A}\left|f_{n}-f\right|^{q}+\int_{\Omega \backslash A}\left|f_{n}-f\right|^{q}
$$

From Hölder's inequality, we have

$$
\int_{A}\left|f_{n}-f\right|^{q} \leq\left(\int_{A}\left|f_{n}-f\right|^{p}\right)^{q / p}|A|^{\frac{p-q}{p}}<C \varepsilon^{\frac{p-q}{p}}
$$

Moreover, as $f_{n}$ uniformly converges toward $f$ on $\Omega \backslash A$, for $n$ great enough, we have

$$
\int_{\Omega \backslash A}\left|f_{n}-f\right|^{q}<\varepsilon
$$

We conclude that for $n$ great enough,

$$
\int_{\Omega}\left|f_{n}-f\right|^{q}<C \varepsilon^{\frac{p-q}{p}}+\varepsilon
$$

and that $f_{n}$ converges toward $f$ in $L^{q}(\Omega)$ for all $1 \leq q<p$.

## Exercise 4

Let $E$ be a Banach space and $x_{0} \in E$ be fixed. Prove that there exists $T \in E^{*}$ such that

$$
T\left(x_{0}\right)=\left\|x_{0}\right\|_{E}^{2}
$$

and $\|T\|_{E^{*}}=\left\|x_{0}\right\|_{E}$.

## Answer of exercise 4

Let $G=\mathbb{R} x$ and $T$ be the linear continuous map defined on $G$ by

$$
T\left(t x_{0}\right)=t\left\|x_{0}\right\|^{2} .
$$

From the Hahn-Banach Theorem, there exists an extension of $T$ on $E$ such that $\|T\|_{E^{*}}=\|T\|_{G^{*}}=\left\|x_{0}\right\|_{E}$.

## Exercise 5

Let $E$ be a Banach space and let $A \subset E$ be a subset that is sequentially compact for the weak topology of $E$. Prove that $A$ is bounded.

Answer of exercise 5
Let $\left(x_{n}\right)$ be a sequence of elements of $A$. As $A$ is sequentially compact, there exists $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that $\varphi$ is increasing and $x \in A$, with

$$
x_{\varphi(n)} \rightharpoonup x
$$

In particular, for all $T \in E^{*}, T\left(x_{\varphi(n)}\right)$ is bounded and, from the BanachSteinhauss Theorem, there exists $C$ such that for all $T \in E^{*}$,

$$
T\left(x_{\varphi(n)}\right) \leq C\|T\|_{E^{*}}
$$

From the Exercise 4, there exists $T$ such $T\left(x_{\varphi(n)}\right)=\left\|x_{\varphi(n)}\right\|^{2}$ and $\|T\|=$ $\left\|x_{\varphi(n)}\right\|$. It follows that

$$
\left\|x_{\varphi(n)}\right\| \leq C
$$

If $A$ was not bounded, we could construct a sequence $x_{n}$ of elements of $A$ such that $\left\|x_{n}\right\|_{E} \geq n$, what is impossible from the last inequality.

## Exercise 6 Rademacher's functions

Let $1 \leq p \leq \infty$ and let $f \in L_{\text {loc }}^{p}(\mathbb{R})$. Assume that $f$ is $T$-periodic, i.e., $f(x+T)=f(x)$, a.e. on $\mathbb{R}$. Set

$$
\bar{f}=|T|^{-1} \int_{0}^{T} f(t) d t
$$

Consider the sequence $\left(u_{n}\right)$ in $L^{p}(0,1)$ defined by

$$
u_{n}(x)=f(n x), \quad x \in(0,1)
$$

1. Prove that $u_{n} \rightharpoonup \bar{f}$ with respect to the topology $\sigma\left(L^{p}, L^{p^{\prime}}\right)$.
2. Determine $\lim _{n \rightarrow \infty}\left\|u_{n}-\bar{f}\right\|_{p}$.
3. Examine the following examples:
4. $u_{n}(x)=\sin (n x)$.
5. $u_{n}(x)=f_{n}(x)$ where $f$ is 1 -periodic and

$$
f(x)= \begin{cases}\alpha & \text { for } x \in(0,1 / 2), \\ \beta & \text { for } x \in(1 / 2,1) .\end{cases}
$$

The functions of (2) are called Rademacher's functions.

## Answer of exercise 6

1. Let $0<a<b<1$ and $v$ be the indicator function of $(a, b)$ on $(0,1)$, that is

$$
v(x)= \begin{cases}1 & \text { if } a<x<b, \\ 0 & \text { if } x \in(0,1) \backslash(a, b) .\end{cases}
$$

We have

$$
\int_{0}^{1} u_{n} v=\int_{0}^{1} f(n x) v(x) d x=n^{-1} \int_{0}^{n} f(x) v(x / n) d x=n^{-1} \int_{n a}^{n b} f(x) d x .
$$

We set $k$ and $l$ to be the integers such that

$$
(k-1) T<n a \leq k T, \quad l T<n b \leq(l+1) T .
$$

We have

$$
\begin{aligned}
\int_{0}^{1} u_{n} v & =\frac{1}{n}\left[\int_{n a}^{k T} f+\sum_{k \leq i \leq l-1} \int_{i T}^{(i+1) T} f+\int_{l T}^{n b} f\right] \\
& =\frac{1}{n}\left[\sum_{k \leq i \leq l-1} \int_{0}^{T} f\right]+\frac{1}{n}\left[\int_{n a}^{k T} f+\int_{l T}^{n b} f\right] \\
& =\frac{l-k}{n} \int_{0}^{T} f+\frac{1}{n}\left[\int_{n a}^{k T} f+\int_{l T}^{n b} f\right] .
\end{aligned}
$$

From the definition of $k$ and $l$, we have

$$
\frac{l-k}{n} \leq \frac{b-a}{T} \leq \frac{l-k+2}{n} .
$$

Thus, $(l-k) / n \rightarrow(b-a) / T$. Moreover,

$$
\frac{1}{n}\left|\int_{n a}^{k T} f+\int_{l T}^{n b} f\right| \leq \frac{2}{n}\|f\|_{L^{1}(0, T)} \rightarrow 0
$$

It follows that

$$
\int_{0}^{1} u_{n} v \rightarrow \bar{f}(b-a)
$$

as $n$ goes to infinity. We deduce that for any step function $v$, we have

$$
\int_{0}^{1} u_{n} v \rightarrow \bar{f} \int_{0}^{1} v
$$

As the set of step functions is dense in $L^{p^{\prime}}(0,1)$, with $1 \leq p^{\prime}<\infty$, we deduce that if $f \in L_{l o c}^{p}(0, T)$, with $1<p \leq \infty, u_{n}$ does converge toward $\bar{f}$ in $\sigma\left(L^{p}, L^{p^{\prime}}\right)$. Indeed, for every $v \in L^{p^{\prime}}(0,1)$ and for every $\varepsilon>0$, there exists a step function $w$ such that $\|v-w\|_{L^{p^{\prime}(0,1)}} \leq \varepsilon$. We then have

$$
\left|\int_{0}^{1} u_{n} v-\bar{f} \int_{0}^{1} v\right| \leq\left|\int_{0}^{1} u_{n} w-\bar{f} \int_{0}^{1} w\right|+\int_{0}^{1}\left|u_{n}\right||v-w|+|\bar{f}| \int_{0}^{1}|v-w|
$$

From Hölder inequality,

$$
\int_{0}^{1}\left|u_{n}\right||v-w| \leq\left\|u_{n}\right\|_{L^{p(0,1)}}\|v-w\|_{L^{p^{\prime}}(0,1)}
$$

and

$$
|\bar{f}| \int_{0}^{1}|v-w| \leq|\bar{f}|\|v-w\|_{L^{p^{\prime}(0,1)}}
$$

Moreover, from the previous analysis, we have

$$
\left\|u_{n}\right\|_{L^{p}(0,1)}^{p}=\int_{0}^{1} u_{n}^{p} d x \rightarrow T^{-1} \int_{0}^{T} f^{p}
$$

In particular, $u_{n}$ is bounded in $L^{p}(0,1)$. We have obtained that

$$
\left|\int_{0}^{1} u_{n} v-\bar{f} \int_{0}^{1} v\right| \leq\left|\int_{0}^{1} u_{n} w-\bar{f} \int_{0}^{1} w\right|+C\|v-w\|_{L^{p^{\prime}(0,1)}}
$$

Finally, has $w$ is a step function, for $n$ great enough,

$$
\left|\int_{0}^{1} u_{n} w-\bar{f} \int_{0}^{1} w\right| \leq \varepsilon
$$

and

$$
\left|\int_{0}^{1} u_{n} v-\bar{f} \int_{0}^{1} v\right| \leq(1+C) \varepsilon
$$

It remains to consider the case $p=1$ and $f \in L_{l o c}^{1}(\mathbb{R})$. For every $\varepsilon>0$, there exists a $T$ periodic function, $g \in L^{\infty}$ such that

$$
T^{-1}\|f-g\|_{L^{1}(0, T)} \leq \varepsilon
$$

For every $v \in L^{\infty}(0,1)$, we have from the previous analysis,

$$
\int_{0}^{1} g(n x) v(x) d x \rightarrow \bar{g} \int_{0}^{1} v .
$$

On the hand, we have

$$
\left|\int_{0}^{1} u_{n} v-\bar{f} \int_{0}^{1} v\right| \leq\|f(n x)-g(n x)\|_{L^{1}(0,1)}\|v\|_{\infty}+\left|\int_{0}^{1} g(n x) v-\bar{f} \int_{0}^{1} v\right|
$$

We have

$$
\|f(n x)-g(n x)\|_{L^{1}(0,1)} \rightarrow \frac{1}{T} \int_{0}^{T}|f-g| \leq \varepsilon
$$

Thus, for $n$ great enough, we have

$$
\| f(n x)-g\left(n(x) \|_{L^{1}(0,1)} \leq 2 \varepsilon\right.
$$

and

$$
\left|\int_{0}^{1} g(n x) v-\bar{f} \int_{0}^{1} v\right| \leq \varepsilon+|\bar{f}-\bar{g}|\|v\|_{L^{1}(0,1)}
$$

Furthermore

$$
|\bar{f}-\bar{g}| \leq T^{-1} \int_{0}^{T}|f-g| \leq \varepsilon
$$

We thus have proved that for $n$ great enough

$$
\left|\int_{0}^{1} u_{n} v-\bar{f} \int_{0}^{1} v\right| \leq 2 \varepsilon\|v\|_{\infty}+\varepsilon+\varepsilon\|v\|_{1}
$$

and that $\int u_{n} v \rightarrow \bar{f} \int v$ as claimed.
2. We set $g(s)=|f(s)-\bar{f}|^{p}$. As $g$ is $T$-periodic ans $g \in L_{l o c}^{1}(\mathbb{R})$, we have from the previous question

$$
\int_{0}^{1} g(n x) d x \rightarrow \bar{g}
$$

that is

$$
\lim \left\|u_{n}-\bar{f}\right\|^{p}=\frac{1}{|T|^{2}} \int_{0}^{T}\left|\int_{0}^{T}(f(s)-f(t)) d s\right|^{p} d t
$$

3. 4. $u_{n}=\sin (n x)$. We have $u_{n} \rightharpoonup 0$ weakly-* in $L^{\infty}$,
1. $u_{n}=f(n x)$ where $f$ is one periodic and

$$
f(x)= \begin{cases}\alpha & \text { if } x \in(0,1 / 2) \\ \beta & \text { if } x \in(1 / 2,1)\end{cases}
$$

Then $u_{n} \rightharpoonup(\alpha+\beta) / 2$ for the weak-* topology of $L^{\infty}(0,1)$.

