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Exercise 1

Let E = `2. Let λn be a bounded sequence in R and consider the operator
T ∈ L(E) defined by

Tx = (λ1x1, · · · , λnxn, · · · ),

where x = (x1, · · · , xn, · · · ). Prove that T is a compact operator iff λn → 0.

Answer of exercise 1

First of all, we are going to prove that if T is compact, then λn is a sequence
that does converge toward zero. Let (λn) be a sequence that does not converge
toward zero. There exists M > 0 and an increasing sequence from N∗ into N∗
such that for all n,

|λϕ(n)| > M

Let us introduce the sequence (xn) in `2 defined by

xnk =

{
1 if k = ϕ(n)
0 if k 6= ϕ(n).

The sequence xn is bounded in `2 and for all n > m > 0, we have

‖T (xn)− T (xm)‖`2 = (|λϕ(n)|2 + |λϕ(m)|2)1/2.

So that for all n 6= m,
‖T (xn)− T (xm)‖`2 > M

It follows that no subsequence of (T (xn)) can be convergent in `p, whereas (xn)
is bounded in `p. Thus, T is not a compact operator on `p.

Now, we have to prove the converse. Let us assume this time that (λn) is a
sequence that does converge toward zero. Let (xn) be a bounded sequence in
`p. Using a diagonal process, there exists an increasing map ϕ : N → N such

that x
ϕ(n)
k is converging for all k ∈ N∗ as n goes to infinity.

Exercise 2

Let (λn) be a sequence of positive numbers (λn > 0) such that limn→∞ λn =
+∞. Let V be the space of sequences (un)n≥1 such that

∞∑
n=1

λn|un|2 <∞.
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The space V is equipped with the scalar product

((u, v)) =

∞∑
n=1

λnunvn.

Prove that V is a Hilbert space and that V ⊂ `2 with compact injection.

Answer of exercise 2

First, let us prove that V is a Hilbert space. Obviously, ((·, ·)) defines a
scalar product and

‖u‖V = (((u, u)))
1/2

is a norm on V . It remains to prove that V , endowed with this norm is complete.
Let un be a Cauchy sequence in V . We have

‖un − um‖2V =

∞∑
k=1

λn|unk − umk |2.

Thus for every k ∈ N∗, unk is a Cauchy sequence, and is convergent toward an
element uk ∈ R. Moreover, for every ε > 0,

‖un − u‖2V =

∞∑
k=1

λk|unk − uk|2 ≤ lim inf
m→∞

∞∑
k=1

λk|unk − umk |2 ≤ ε,

for n great enough. Thus, V is indeed a Banach space.
Next, we would like to prove that the V ⊂ `2. This is a straightforward

consequence of the inequality

‖u‖`2 ≤ inf
n
λ1/2n ‖u‖V .

It remains to prove that the injection is compact. Let (un) be a sequence in
the unit ball of V , Using a diagonal process, we can extract a subsequence (still
denoted (un)) such that unk is convergent toward an element uk ∈ R. Finally,
for every N > 0,

∑
k

|unk − umk |2 ≤
N∑
k=1

|unk − umk |2 +

(
inf
k≥N

λk

)−1∑
λk|unk − umk |2

≤
N∑
k=1

|unk − umk |2 + 4

(
inf
k≥N

λk

)−1
(‖un‖2 + ‖vn‖2V )

≤
N∑
k=1

|unk − umk |2 + 8

(
inf
k≥N

λk

)−1
.

For every ε > 0, there exists N such that

inf
k≥N

λk > ε/16,
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and for n and m great enough,

N∑
k=1

|unk − umk |2 < ε/2.

It follows, that for n and m great enough,

‖un − um‖2`2 < ε,

meaning that (un) is a Cauchy sequence in `2. Thus, the injection of V into `2

is compact as claimed.

Exercise 3

Let E = L2(0, 1). Given u ∈ E, set

Tu(x) =

∫ x

0

u(t) dt.

1. Prove that T ∈ K(E). [Hint: Use Ascoli-Arzelà Theorem ]

2. Determine the set EV (T ) of eigenvalues of T .

3. Determine T ∗.

Answer of exercise 3

1. Let (un) be a bounded sequence in L2(0, 1). Let 0 < y < x < 1. We
want to prove that Tun is compact in E. From Hölder inequality, we
have for all u ∈ E,

|Tu(x)−Tu(y)| =
∣∣∣∣∫ x

y

u(s) ds

∣∣∣∣ ≤ |x−y|1/2(∫ x

y

|u|2
)1/2

≤ |x−y|1/2‖u‖E .

It follows that the sequence Tun is uniformly equicontinuous and from
Ascoli-Arzelà Theorem, there exists a subsequence Tuϕ(n) (where ϕ is
an increasing map from N into N) converging in C([0, 1]). In particular,
it converges in L2(0, 1) (for the strong topology).

2. Let λ ∈ EV (T ), there exists u 6' 0 in E such that∫ x

0

u(s) ds = λu(x)

a.e. in Ω. Not that Tu admits a weak derivative and that

(Tu)′ = u.

It follows that
u = λu′.

The solution of this equation are u = Cex/λ. But, a u(0) = 0 we get
that u = 0 is the only possible solution. Thus, V P (T ) = ∅. Finally, as
T is compact, we have σ(T ) \ {0} = V P (T ) \ {0} and 0 ∈ σ(T ). Thus,
σ(T ) = 0.

3. Let u, v ∈ E, i(u, T ∗v) =
∫ 1

t
v(x)dx.
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