Functional analysis and applications
 MASTER "Mathematical Modelling"
 École Polytechnique and Université Pierre et Marie Curie

October 1st, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/~ allaire/master/course-funct-analysis.html

Exercise 1

Let $E=\ell^{2}$. Let λ_{n} be a bounded sequence in \mathbb{R} and consider the operator $T \in \mathcal{L}(E)$ defined by

$$
T x=\left(\lambda_{1} x_{1}, \cdots, \lambda_{n} x_{n}, \cdots\right),
$$

where $x=\left(x_{1}, \cdots, x_{n}, \cdots\right)$. Prove that T is a compact operator iff $\lambda_{n} \rightarrow 0$.

Answer of exercise 1

First of all, we are going to prove that if T is compact, then λ_{n} is a sequence that does converge toward zero. Let $\left(\lambda_{n}\right)$ be a sequence that does not converge toward zero. There exists $M>0$ and an increasing sequence from \mathbb{N}^{*} into \mathbb{N}^{*} such that for all n,

$$
\left|\lambda_{\varphi(n)}\right|>M
$$

Let us introduce the sequence (x^{n}) in ℓ^{2} defined by

$$
x_{k}^{n}= \begin{cases}1 & \text { if } k=\varphi(n) \\ 0 & \text { if } k \neq \varphi(n) .\end{cases}
$$

The sequence x^{n} is bounded in ℓ^{2} and for all $n>m>0$, we have

$$
\left\|T\left(x^{n}\right)-T\left(x^{m}\right)\right\|_{\ell^{2}}=\left(\left|\lambda_{\varphi(n)}\right|^{2}+\left|\lambda_{\varphi(m)}\right|^{2}\right)^{1 / 2} .
$$

So that for all $n \neq m$,

$$
\left\|T\left(x^{n}\right)-T\left(x^{m}\right)\right\|_{\ell^{2}}>M
$$

It follows that no subsequence of $\left(T\left(x^{n}\right)\right)$ can be convergent in ℓ^{p}, whereas $\left(x^{n}\right)$ is bounded in ℓ^{p}. Thus, T is not a compact operator on ℓ^{p}.

Now, we have to prove the converse. Let us assume this time that $\left(\lambda_{n}\right)$ is a sequence that does converge toward zero. Let $\left(x^{n}\right)$ be a bounded sequence in ℓ^{p}. Using a diagonal process, there exists an increasing map $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that $x_{k}^{\varphi(n)}$ is converging for all $k \in \mathbb{N}^{*}$ as n goes to infinity.

Exercise 2

Let (λ_{n}) be a sequence of positive numbers $\left(\lambda_{n}>0\right)$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=$ $+\infty$. Let V be the space of sequences $\left(u_{n}\right)_{n \geq 1}$ such that

$$
\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right|^{2}<\infty .
$$

The space V is equipped with the scalar product

$$
((u, v))=\sum_{n=1}^{\infty} \lambda_{n} u_{n} v_{n}
$$

Prove that V is a Hilbert space and that $V \subset \ell^{2}$ with compact injection.

Answer of exercise 2

First, let us prove that V is a Hilbert space. Obviously, $((\cdot, \cdot))$ defines a scalar product and

$$
\|u\|_{V}=(((u, u)))^{1 / 2}
$$

is a norm on V. It remains to prove that V, endowed with this norm is complete. Let u^{n} be a Cauchy sequence in V. We have

$$
\left\|u^{n}-u^{m}\right\|_{V}^{2}=\sum_{k=1}^{\infty} \lambda_{n}\left|u_{k}^{n}-u_{k}^{m}\right|^{2}
$$

Thus for every $k \in \mathbb{N}^{*}, u_{k}^{n}$ is a Cauchy sequence, and is convergent toward an element $u_{k} \in \mathbb{R}$. Moreover, for every $\varepsilon>0$,

$$
\left\|u^{n}-u\right\|_{V}^{2}=\sum_{k=1}^{\infty} \lambda_{k}\left|u_{k}^{n}-u_{k}\right|^{2} \leq \liminf _{m \rightarrow \infty} \sum_{k=1}^{\infty} \lambda_{k}\left|u_{k}^{n}-u_{k}^{m}\right|^{2} \leq \varepsilon
$$

for n great enough. Thus, V is indeed a Banach space.
Next, we would like to prove that the $V \subset \ell^{2}$. This is a straightforward consequence of the inequality

$$
\|u\|_{\ell^{2}} \leq \inf _{n} \lambda_{n}^{1 / 2}\|u\|_{V}
$$

It remains to prove that the injection is compact. Let $\left(u^{n}\right)$ be a sequence in the unit ball of V, Using a diagonal process, we can extract a subsequence (still denoted $\left(u^{n}\right)$) such that u_{k}^{n} is convergent toward an element $u_{k} \in \mathbb{R}$. Finally, for every $N>0$,

$$
\begin{aligned}
\sum_{k}\left|u_{k}^{n}-u_{k}^{m}\right|^{2} & \leq \sum_{k=1}^{N}\left|u_{k}^{n}-u_{k}^{m}\right|^{2}+\left(\inf _{k \geq N} \lambda_{k}\right)^{-1} \sum \lambda_{k}\left|u_{k}^{n}-u_{k}^{m}\right|^{2} \\
& \leq \sum_{k=1}^{N}\left|u_{k}^{n}-u_{k}^{m}\right|^{2}+4\left(\inf _{k \geq N} \lambda_{k}\right)^{-1}\left(\left\|u^{n}\right\|^{2}+\left\|v^{n}\right\|_{V}^{2}\right) \\
& \leq \sum_{k=1}^{N}\left|u_{k}^{n}-u_{k}^{m}\right|^{2}+8\left(\inf _{k \geq N} \lambda_{k}\right)^{-1}
\end{aligned}
$$

For every $\varepsilon>0$, there exists N such that

$$
\inf _{k \geq N} \lambda_{k}>\varepsilon / 16
$$

and for n and m great enough,

$$
\sum_{k=1}^{N}\left|u_{k}^{n}-u_{k}^{m}\right|^{2}<\varepsilon / 2
$$

It follows, that for n and m great enough,

$$
\left\|u^{n}-u^{m}\right\|_{\ell^{2}}^{2}<\varepsilon
$$

meaning that $\left(u^{n}\right)$ is a Cauchy sequence in ℓ^{2}. Thus, the injection of V into ℓ^{2} is compact as claimed.

Exercise 3

Let $E=L^{2}(0,1)$. Given $u \in E$, set

$$
T u(x)=\int_{0}^{x} u(t) d t
$$

1. Prove that $T \in \mathcal{K}(E)$. [Hint: Use Ascoli-Arzelà Theorem]
2. Determine the set $E V(T)$ of eigenvalues of T.
3. Determine T^{*}.

Answer of exercise 3

1. Let $\left(u_{n}\right)$ be a bounded sequence in $L^{2}(0,1)$. Let $0<y<x<1$. We want to prove that $T u_{n}$ is compact in E. From Hölder inequality, we have for all $u \in E$,
$|T u(x)-T u(y)|=\left|\int_{y}^{x} u(s) d s\right| \leq|x-y|^{1 / 2}\left(\int_{y}^{x}|u|^{2}\right)^{1 / 2} \leq|x-y|^{1 / 2}\|u\|_{E}$.
It follows that the sequence $T u_{n}$ is uniformly equicontinuous and from Ascoli-Arzelà Theorem, there exists a subsequence $T u_{\varphi(n)}$ (where φ is an increasing map from \mathbb{N} into \mathbb{N}) converging in $C([0,1])$. In particular, it converges in $L^{2}(0,1)$ (for the strong topology).
2. Let $\lambda \in E V(T)$, there exists $u \not \not 00$ in E such that

$$
\int_{0}^{x} u(s) d s=\lambda u(x)
$$

a.e. in Ω. Not that $T u$ admits a weak derivative and that

$$
(T u)^{\prime}=u
$$

It follows that

$$
u=\lambda u^{\prime}
$$

The solution of this equation are $u=C e^{x / \lambda}$. But, a $u(0)=0$ we get that $u=0$ is the only possible solution. Thus, $V P(T)=\emptyset$. Finally, as T is compact, we have $\sigma(T) \backslash\{0\}=V P(T) \backslash\{0\}$ and $0 \in \sigma(T)$. Thus, $\sigma(T)=0$.
3. Let $u, v \in E, i\left(u, T^{*} v\right)=\int_{t}^{1} v(x) d x$.

