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Exercise 1

Let E = L2(0, 1). Given u ∈ E, set

Tu(x) =

∫ x

0

u(t) dt.

1. Prove that T ∈ K(E). [Hint: Use Ascoli-Arzelà Theorem ]

2. Determine the set EV (T ) of eigenvalues of T .

3. Determine T ∗.

Answer of exercise 1

1. Let (un) be a bounded sequence in L2(0, 1). Let 0 < y < x < 1. We
want to prove that Tun is compact in E. From Hölder inequality, we
have for all u ∈ E,

|Tu(x)−Tu(y)| =
∣∣∣∣∫ x

y

u(s) ds

∣∣∣∣ ≤ |x−y|1/2(∫ x

y

|u|2
)1/2

≤ |x−y|1/2‖u‖E .

It follows that the sequence Tun is uniformly equicontinuous and from
Ascoli-Arzelà Theorem, there exists a subsequence Tuϕ(n) (where ϕ is
an increasing map from N into N) converging in C([0, 1]). In particular,
it converges in L2(0, 1) (for the strong topology).

2. Let λ ∈ EV (T ), there exists u 6' 0 in E such that∫ x

0

u(s) ds = λu(x)

a.e. in Ω. Not that Tu admits a weak derivative and that

(Tu)′ = u.

It follows that
u = λu′.

The solution of this equation are u = Cex/λ. But, a u(0) = 0 we get
that u = 0 is the only possible solution. Thus, V P (T ) = ∅. Finally, as
T is compact, we have σ(T ) \ {0} = V P (T ) \ {0} and 0 ∈ σ(T ). Thus,
σ(T ) = 0.
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3. Let u, v ∈ E, (u, T ∗v) =
∫ 1

t
v(x)dx.

Exercise 2

1. Let −∞ ≤ a < b ≤ ∞ and T ∈ D′((a, b)n) such that ∂iT = 0 for all
i ∈ {1, · · · , n}. Prove that there exists a constant C ∈ R such that
T = C.

2. Extend the previous result to the distribution D′(Ω), where Ω is an open
and connected subset of Rn.

Answer of exercise 2

1. We will only treat the case a = −∞ and b = ∞ (in fact, the proof is
exactly the same for every interval). Let us first consider the case n = 1.
Let T be a distribution such that T ′ = 0. We have for all ψ ∈ C∞0 (R),

〈T, ∂1ψ〉 = 0.

Let θ ∈ C∞0 (R) such that
∫
θ = 1 Let ϕ ∈ C∞0 (R). We set

ψ(x) =

∫ x

−∞
ϕ(s)− Cθ(s) ds.

We have ψ ∈ C∞(R) and ψ′ = ϕ+ Cθ. We are going to choose C for ψ
to be of compact support. To this end, it suffices to have∫

ϕ− Cθ = 0,

that is

C =

∫
ϕ.

Then,
〈T, ψ′〉 = 0,

that is
〈T, ϕ− Cθ〉 = 0,

and
〈T, ϕ〉 = C〈T, θ〉,

and finally

〈T, ϕ〉 = 〈T, θ〉
∫
ϕ.

Thus, T is the constant distribution 〈T, θ〉.
Let us now tackle the general case. Assume that the result as been proven
in Rn−1. Let ϕ ∈ C∞0 (Rn). We set for every x = (x̃, xn) ∈ Rn,

ψ(x) =

∫ s

−∞
ϕ(x̃, s)− ϕ̃(x̃)θ(s) ds,
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where

ϕ̃(x̃) =

∫
ϕ(x̃, xn) dxn

It is easy to check that ψ ∈ C∞0 (Rn). Moreover, ∂nψ(x) = ϕ(x) −
ϕ̃(x̃)θ(xn). It follows that

〈T, ϕ〉 = 〈T, ϕ̃(x̃)θ(xn)〉.

Let S ∈ D′(Rn−1) be defined by

〈S, ψ̃〉 = 〈T, ψ̃(x̃)θ(xn)〉.

We have for all i ∈ {1, · · · , n− 1},

〈∂iS, ψ̃〉 = −〈∂iS, ∂iψ̃〉 = −〈T, ∂i(ψ̃(x̃))θ(xn)〉 = −〈T, ∂i(ψ̃(x̃)θ(xn))〉 = 0.

From the recursive assumption, we S there exists C such that

〈S, ψ̃〉 = C

∫
Rn−1

ψ̃.

Thus,

〈T, ϕ〉 = 〈T, ϕ̃(x̃)θ(xn)〉 = 〈S, ϕ̃〉 = C

∫
Rn−1

ϕ̃

= C

∫
Rn−1

∫
R
ϕ(x̃, xn) dxn dx̃ = C

∫
ϕ.

2. Let T ∈ D′(Ω) such that ∂iT = 0 for all i ∈ {1, · · · , n}. From the previous
question, we know that the restriction of T to any cube (with edged
parallel to the axes) included in Ω can be identified to a constant. Next
let x be an element of Ω belonging to two cubes Q1 and Q2 included in
Ω. There exists a small cube Q′ centered at x included in the intersection
of Q1 and Q2. Let Ti we the restriction of T to Qi (i = 1, 2). We know
that T1 and T2 are equal to constants (denoted C1 and C2 respectively).
Obviously we have

C1 = T1|Q′ = T |Q′ = T2|Q′ = C2.

Thus, we can define for all x ∈ Ω a real C(x) = C, where C = T|Q, Q
being any cube included in Ω centered at X. The map C : Ω → R is
continuous (it is constant on open cubes) and as Ω is connected, it is a
constant map.

Exercise 3

Let I = (0, 1).
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1. Prove that for every 1 ≤ p ≤ ∞, W 1,p(I) is included in L∞(I) with
continuous injection.

2. Assume that (un) is a bounded sequence in W 1,p(I) with 1 < p ≤ ∞.
Show that there exists a subsequence (uϕ(n)) and u ∈W 1,p(I) such that

‖uϕ(n) − u‖∞ → 0.

Moreover, u′ϕ(n) → u′ weakly in Lp(I) if 1 < p <∞.

3. Construct a bounded sequence (un) in W 1,1(I) that does not admit any
subsequence converging in L∞(I).

Answer of exercise 3

1. If p = ∞, the inclusion is obvious. Let 1 ≤ p < ∞. Let v ∈ C∞([0, 1]),
we have for very x, y ∈ I,

v(x)− v(y) =

∫ y

x

v′(s) ds.

thus,

|v(x)− v(y)| ≤
∫ 1

0

|v′| ≤ (

∫ 1

0

|v′|p)1/p = ‖v‖1,p.

Then
|v(x)| ≤ |v(x)− v(y)|+ |v(y)|

and

|v(x)| ≤
∫
|v(x)− v(y)|+ |v(y)| dy ≤ 2‖v‖1,p.

As the set of C∞([0, 1]) is dense in W 1,p(I), it follows that the injection
of W 1,p(I) into L∞(I) is continuous.

2. Let 1 < p <∞, and v ∈W 1,p(I), we have

v(x)−v(y) =

∫ y

x

v′(s) ds ≤ (

∫ y

x

1)1/p
′
(∫ y

x

|v′|p
)1/p

≤ |x−y|1/p
′
‖v‖1,p.

In the case p =∞, we have

v(x)− v(y) ≤ |x− y|‖v‖∞.

It follows that any bounded sequence in W 1,p(I) (1 < p <≤ ∞) is
bounded and equicontinuous in C([0, 1]) and thus admits a converging
subsequence in C([0, 1]) from the Ascoly-Arzelà Theorem.

3. Let un ∈W 1,1(I) be a sequence defined by

u′n(x) =

{
n if x < 1/n
0 if x > 1/n

and un(0) = 0. Assume that it admits a converging subsequence in
L∞(I) toward an element u ∈ L∞(I). The only possible limit is u = 1
but

‖un − 1‖∞ = 1.
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Exercise 4

Let I = (0, 1). For every u ∈ Lp(I), we denote u the extension of u ∈ Lp(R)
outside I by 0.

1. Prove that if 1 ≤ p <∞, then u ∈W 1,p
0 (I)⇒ u ∈W 1,p(R).

2. Conversely, let u ∈ Lp(I) (with 1 ≤ p <∞). Prove that u ∈ W 1,p(I)⇒
u ∈W 1,p

0 (I).

3. Let u ∈ Lp(I) (with 1 ≤ p <∞). Show that u ∈ W 1,p
0 (I) iff there exists

a constant C such that for every ϕ ∈ C1
0 (R),∣∣∣∣∫ 1

0

uϕ′
∣∣∣∣ ≤ C‖ϕ‖Lp′ (R)

Answer of exercise 4

1. Let u ∈ W 1,0(I), then there exists a sequence (un) in C∞0 (I) that con-
verges toward u in W 1,p(I). Obviously, un is a Cauchy sequence in
W 1,p(R). Thus, it is converging in W 1,p(R) and ∈W 1,p(R).

2. Let u ∈ W 1,p(I) such that u ∈ W 1,p(I). For every integer n, there exits
χn ∈ C∞0 (I) such that

χn(x) = 1 for every x ∈ (1/n, 1− 1/n),

and
|χ′n| ≤ nC,

where C is a constant that does not depend on n. We have

‖(χnu)′ − u′‖p ≤ ‖χ′nu‖p + ‖(χn − 1)u′‖p.

Moreover,

‖χ′nu‖p =

(∫ 1/n

0

|χ′nu|p
)1,p

+

(∫ 1

1−1/n
|χ′nu|p

)1,p

≤ 1

n
Cn

(
sup

x∈(0,1/n)
|u(x)|+ sup

x∈(1−1/n,1)
|u(x)|

)

= C

(
sup

x∈(0,1/n)
|u(x)|+ sup

x∈(1−1/n,1)
|u(x)|

)
.

As u is continuous, the right-hand side of this inequality goes to zero
when n goes to infinity and

‖χ′nu‖p →n→∞ 0.

It follows that χnu converges toward u as n goes to infinity. Similar, we
can prove similarly that the map from W 1,p(R) into itself v 7→ χnv is
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uniformly continuous in W 1,p(I). We deduce than for every ε > 0, there
exists n such that

‖χnu− u‖1,p ≤ ε.

As C∞0 (R) is dens in W 1,p(R), there exists v ∈ C∞0 (R) such that

‖v − u‖1,p ≤ ε.

It follows that

‖χnv − u‖W 1,p(I) = ‖χnv − u‖W 1,p(R) ≤ ‖χnv − χnu‖1,p + ‖χnu− u‖1,p
≤ C‖v − u‖1,p + ‖χnu− u‖1,p ≤ 2ε.

3. From the inequality, we have that u does belong to the dual of W 1,p′(R)
which is equal to W 1,p(R).
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