Functional analysis and applications

MASTER "Mathematical Modelling"
École Polytechnique and Université Pierre et Marie Curie
October 5th, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/~allaire/master/course-funct-analysis.html

Exercise 1

Let $E=L^{2}(0,1)$. Given $u \in E$, set

$$
T u(x)=\int_{0}^{x} u(t) d t
$$

1. Prove that $T \in \mathcal{K}(E)$. [Hint: Use Ascoli-Arzelà Theorem]
2. Determine the set $E V(T)$ of eigenvalues of T.
3. Determine T^{*}.

Answer of exercise 1

1. Let $\left(u_{n}\right)$ be a bounded sequence in $L^{2}(0,1)$. Let $0<y<x<1$. We want to prove that $T u_{n}$ is compact in E. From Hölder inequality, we have for all $u \in E$,

$$
|T u(x)-T u(y)|=\left|\int_{y}^{x} u(s) d s\right| \leq|x-y|^{1 / 2}\left(\int_{y}^{x}|u|^{2}\right)^{1 / 2} \leq|x-y|^{1 / 2}\|u\|_{E}
$$

It follows that the sequence $T u_{n}$ is uniformly equicontinuous and from Ascoli-Arzelà Theorem, there exists a subsequence $T u_{\varphi(n)}$ (where φ is an increasing map from \mathbb{N} into $\mathbb{N})$ converging in $C([0,1])$. In particular, it converges in $L^{2}(0,1)$ (for the strong topology).
2. Let $\lambda \in E V(T)$, there exists $u \nsucceq 0$ in E such that

$$
\int_{0}^{x} u(s) d s=\lambda u(x)
$$

a.e. in Ω. Not that $T u$ admits a weak derivative and that

$$
(T u)^{\prime}=u
$$

It follows that

$$
u=\lambda u^{\prime}
$$

The solution of this equation are $u=C e^{x / \lambda}$. But, a $u(0)=0$ we get that $u=0$ is the only possible solution. Thus, $V P(T)=\emptyset$. Finally, as T is compact, we have $\sigma(T) \backslash\{0\}=V P(T) \backslash\{0\}$ and $0 \in \sigma(T)$. Thus, $\sigma(T)=0$.
3. Let $u, v \in E,\left(u, T^{*} v\right)=\int_{t}^{1} v(x) d x$.

Exercise 2

1. Let $-\infty \leq a<b \leq \infty$ and $T \in \mathcal{D}^{\prime}\left((a, b)^{n}\right)$ such that $\partial_{i} T=0$ for all $i \in\{1, \cdots, n\}$. Prove that there exists a constant $C \in \mathbb{R}$ such that $T=C$.
2. Extend the previous result to the distribution $\mathcal{D}^{\prime}(\Omega)$, where Ω is an open and connected subset of \mathbb{R}^{n}.

Answer of exercise 2

1. We will only treat the case $a=-\infty$ and $b=\infty$ (in fact, the proof is exactly the same for every interval). Let us first consider the case $n=1$. Let T be a distribution such that $T^{\prime}=0$. We have for all $\psi \in C_{0}^{\infty}(\mathbb{R})$,

$$
\left\langle T, \partial_{1} \psi\right\rangle=0
$$

Let $\theta \in C_{0}^{\infty}(\mathbb{R})$ such that $\int \theta=1$ Let $\varphi \in C_{0}^{\infty}(\mathbb{R})$. We set

$$
\psi(x)=\int_{-\infty}^{x} \varphi(s)-C \theta(s) d s
$$

We have $\psi \in C^{\infty}(\mathbb{R})$ and $\psi^{\prime}=\varphi+C \theta$. We are going to choose C for ψ to be of compact support. To this end, it suffices to have

$$
\int \varphi-C \theta=0
$$

that is

$$
C=\int \varphi
$$

Then,

$$
\left\langle T, \psi^{\prime}\right\rangle=0
$$

that is

$$
\langle T, \varphi-C \theta\rangle=0
$$

and

$$
\langle T, \varphi\rangle=C\langle T, \theta\rangle
$$

and finally

$$
\langle T, \varphi\rangle=\langle T, \theta\rangle \int \varphi
$$

Thus, T is the constant distribution $\langle T, \theta\rangle$.
Let us now tackle the general case. Assume that the result as been proven in \mathbb{R}^{n-1}. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. We set for every $x=\left(\widetilde{x}, x_{n}\right) \in \mathbb{R}^{n}$,

$$
\psi(x)=\int_{-\infty}^{s} \varphi(\widetilde{x}, s)-\widetilde{\varphi}(\widetilde{x}) \theta(s) d s
$$

where

$$
\widetilde{\varphi}(\widetilde{x})=\int \varphi\left(\widetilde{x}, x_{n}\right) d x_{n}
$$

It is easy to check that $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Moreover, $\partial_{n} \psi(x)=\varphi(x)-$ $\widetilde{\varphi}(\widetilde{x}) \theta\left(x_{n}\right)$. It follows that

$$
\langle T, \varphi\rangle=\left\langle T, \widetilde{\varphi}(\widetilde{x}) \theta\left(x_{n}\right)\right\rangle .
$$

Let $S \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n-1}\right)$ be defined by

$$
\langle S, \widetilde{\psi}\rangle=\left\langle T, \widetilde{\psi}(\widetilde{x}) \theta\left(x_{n}\right)\right\rangle
$$

We have for all $i \in\{1, \cdots, n-1\}$,

$$
\left\langle\partial_{i} S, \widetilde{\psi}\right\rangle=-\left\langle\partial_{i} S, \partial_{i} \widetilde{\psi}\right\rangle=-\left\langle T, \partial_{i}(\widetilde{\psi}(\widetilde{x})) \theta\left(x_{n}\right)\right\rangle=-\left\langle T, \partial_{i}\left(\widetilde{\psi}(\widetilde{x}) \theta\left(x_{n}\right)\right)\right\rangle=0
$$

From the recursive assumption, we S there exists C such that

$$
\langle S, \widetilde{\psi}\rangle=C \int_{\mathbb{R}^{n-1}} \widetilde{\psi}
$$

Thus,

$$
\begin{aligned}
\langle T, \varphi\rangle & =\left\langle T, \widetilde{\varphi}(\widetilde{x}) \theta\left(x_{n}\right)\right\rangle=\langle S, \widetilde{\varphi}\rangle=C \int_{\mathbb{R}^{n-1}} \widetilde{\varphi} \\
& =C \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \varphi\left(\widetilde{x}, x_{n}\right) d x_{n} d \widetilde{x}=C \int \varphi
\end{aligned}
$$

2. Let $T \in \mathcal{D}^{\prime}(\Omega)$ such that $\partial_{i} T=0$ for all $i \in\{1, \cdots, n\}$. From the previous question, we know that the restriction of T to any cube (with edged parallel to the axes) included in Ω can be identified to a constant. Next let x be an element of Ω belonging to two cubes Q_{1} and Q_{2} included in Ω. There exists a small cube Q^{\prime} centered at x included in the intersection of Q_{1} and Q_{2}. Let T_{i} we the restriction of T to $Q_{i}(i=1,2)$. We know that T_{1} and T_{2} are equal to constants (denoted C_{1} and C_{2} respectively). Obviously we have

$$
C_{1}=\left.T_{1}\right|_{Q^{\prime}}=\left.T\right|_{Q^{\prime}}=\left.T_{2}\right|_{Q^{\prime}}=C_{2}
$$

Thus, we can define for all $x \in \Omega$ a real $C(x)=C$, where $C=T_{\mid} Q, Q$ being any cube included in Ω centered at X. The map $C: \Omega \rightarrow \mathbb{R}$ is continuous (it is constant on open cubes) and as Ω is connected, it is a constant map.

Exercise 3

Let $I=(0,1)$.

1. Prove that for every $1 \leq p \leq \infty, W^{1, p}(I)$ is included in $L^{\infty}(I)$ with continuous injection.
2. Assume that $\left(u_{n}\right)$ is a bounded sequence in $W^{1, p}(I)$ with $1<p \leq \infty$. Show that there exists a subsequence $\left(u_{\varphi(n)}\right)$ and $u \in W^{1, p}(I)$ such that

$$
\left\|u_{\varphi(n)}-u\right\|_{\infty} \rightarrow 0
$$

Moreover, $u_{\varphi(n)}^{\prime} \rightarrow u^{\prime}$ weakly in $L^{p}(I)$ if $1<p<\infty$.
3. Construct a bounded sequence $\left(u_{n}\right)$ in $W^{1,1}(I)$ that does not admit any subsequence converging in $L^{\infty}(I)$.

Answer of exercise 3

1. If $p=\infty$, the inclusion is obvious. Let $1 \leq p<\infty$. Let $v \in C^{\infty}([0,1])$, we have for very $x, y \in I$,

$$
v(x)-v(y)=\int_{x}^{y} v^{\prime}(s) d s
$$

thus,

$$
|v(x)-v(y)| \leq \int_{0}^{1}\left|v^{\prime}\right| \leq\left(\int_{0}^{1}\left|v^{\prime}\right|^{p}\right)^{1 / p}=\|v\|_{1, p}
$$

Then

$$
|v(x)| \leq|v(x)-v(y)|+|v(y)|
$$

and

$$
|v(x)| \leq \int|v(x)-v(y)|+|v(y)| d y \leq 2\|v\|_{1, p}
$$

As the set of $C^{\infty}([0,1])$ is dense in $W^{1, p}(I)$, it follows that the injection of $W^{1, p}(I)$ into $L^{\infty}(I)$ is continuous.
2. Let $1<p<\infty$, and $v \in W^{1, p}(I)$, we have
$v(x)-v(y)=\int_{x}^{y} v^{\prime}(s) d s \leq\left(\int_{x}^{y} 1\right)^{1 / p^{\prime}}\left(\int_{x}^{y}\left|v^{\prime}\right|^{p}\right)^{1 / p} \leq|x-y|^{1 / p^{\prime}}\|v\|_{1, p}$.
In the case $p=\infty$, we have

$$
v(x)-v(y) \leq|x-y|\|v\|_{\infty}
$$

It follows that any bounded sequence in $W^{1, p}(I)(1<p<\leq \infty)$ is bounded and equicontinuous in $C([0,1])$ and thus admits a converging subsequence in $C([0,1])$ from the Ascoly-Arzelà Theorem.
3. Let $u_{n} \in W^{1,1}(I)$ be a sequence defined by

$$
u_{n}^{\prime}(x)=\left\{\begin{array}{l}
n \text { if } x<1 / n \\
0 \text { if } x>1 / n
\end{array}\right.
$$

and $u_{n}(0)=0$. Assume that it admits a converging subsequence in $L^{\infty}(I)$ toward an element $u \in L^{\infty}(I)$. The only possible limit is $u=1$ but

$$
\left\|u_{n}-1\right\|_{\infty}=1
$$

Exercise 4

Let $I=(0,1)$. For every $u \in L^{p}(I)$, we denote \bar{u} the extension of $u \in L^{p}(\mathbb{R})$ outside I by 0 .

1. Prove that if $1 \leq p<\infty$, then $u \in W_{0}^{1, p}(I) \Rightarrow \bar{u} \in W^{1, p}(\mathbb{R})$.
2. Conversely, let $u \in L^{p}(I)$ (with $\left.1 \leq p<\infty\right)$. Prove that $\bar{u} \in W^{1, p}(I) \Rightarrow$ $u \in W_{0}^{1, p}(I)$.
3. Let $u \in L^{p}(I)$ (with $\left.1 \leq p<\infty\right)$. Show that $u \in W_{0}^{1, p}(I)$ iff there exists a constant C such that for every $\varphi \in C_{0}^{1}(\mathbb{R})$,

$$
\left|\int_{0}^{1} u \varphi^{\prime}\right| \leq C\|\varphi\|_{L^{p^{\prime}}(\mathbb{R})}
$$

Answer of exercise 4

1. Let $u \in W^{1,0}(I)$, then there exists a sequence $\left(u_{n}\right)$ in $C_{0}^{\infty}(I)$ that converges toward u in $W^{1, p}(I)$. Obviously, \bar{u}_{n} is a Cauchy sequence in $W^{1, p}(\mathbb{R})$. Thus, it is converging in $W^{1, p}(\mathbb{R})$ and $\in W^{1, p}(\mathbb{R})$.
2. Let $u \in W^{1, p}(I)$ such that $\bar{u} \in W^{1, p}(I)$. For every integer n, there exits $\chi_{n} \in C_{0}^{\infty}(I)$ such that

$$
\chi_{n}(x)=1 \text { for every } x \in(1 / n, 1-1 / n)
$$

and

$$
\left|\chi_{n}^{\prime}\right| \leq n C
$$

where C is a constant that does not depend on n. We have

$$
\left\|\left(\chi_{n} \bar{u}\right)^{\prime}-\bar{u}^{\prime}\right\|_{p} \leq\left\|\chi_{n}^{\prime} \bar{u}\right\|_{p}+\left\|\left(\chi_{n}-1\right) \bar{u}^{\prime}\right\|_{p}
$$

Moreover,

$$
\begin{aligned}
\left\|\chi_{n}^{\prime} \bar{u}\right\|_{p} & =\left(\int_{0}^{1 / n}\left|\chi_{n}^{\prime} \bar{u}\right|^{p}\right)^{1, p}+\left(\int_{1-1 / n}^{1}\left|\chi_{n}^{\prime} \bar{u}\right|^{p}\right)^{1, p} \\
& \leq \frac{1}{n} C n\left(\sup _{x \in(0,1 / n)}|\bar{u}(x)|+\sup _{x \in(1-1 / n, 1)}|\bar{u}(x)|\right) \\
& =C\left(\sup _{x \in(0,1 / n)}|\bar{u}(x)|+\sup _{x \in(1-1 / n, 1)}|\bar{u}(x)|\right)
\end{aligned}
$$

As \bar{u} is continuous, the right-hand side of this inequality goes to zero when n goes to infinity and

$$
\left\|\chi_{n}^{\prime} \bar{u}\right\|_{p} \rightarrow_{n \rightarrow \infty} 0
$$

It follows that $\chi_{n} \bar{u}$ converges toward \bar{u} as n goes to infinity. Similar, we can prove similarly that the map from $W^{1, p}(\mathbb{R})$ into itself $v \mapsto \chi_{n} v$ is
uniformly continuous in $W^{1, p}(I)$. We deduce than for every $\varepsilon>0$, there exists n such that

$$
\left\|\chi_{n} \bar{u}-\bar{u}\right\|_{1, p} \leq \varepsilon .
$$

As $C_{0}^{\infty}(\mathbb{R})$ is dens in $W^{1, p}(\mathbb{R})$, there exists $v \in C_{0}^{\infty}(\mathbb{R})$ such that

$$
\|v-\bar{u}\|_{1, p} \leq \varepsilon
$$

It follows that

$$
\begin{aligned}
\left\|\chi_{n} v-u\right\|_{W^{1, p}(I)} & =\left\|\chi_{n} v-\bar{u}\right\|_{W^{1, p}(\mathbb{R})} \leq\left\|\chi_{n} v-\chi_{n} \bar{u}\right\|_{1, p}+\left\|\chi_{n} \bar{u}-\bar{u}\right\|_{1, p} \\
& \leq C\|v-\bar{u}\|_{1, p}+\left\|\chi_{n} \bar{u}-\bar{u}\right\|_{1, p} \leq 2 \varepsilon
\end{aligned}
$$

3. From the inequality, we have that \bar{u} does belong to the dual of $W^{1, p^{\prime}}(\mathbb{R})$ which is equal to $W^{1, p}(\mathbb{R})$.
