Functional analysis and applications

MASTER "Mathematical Modelling"

Ecole Polytechnique and Université Pierre et Marie Curie

October 5th, 2015

See also the course webpage: http://www.cmap.polytechnique.fr/~allaire/master/course-funct-analysis.html

Exercise 1

Let $E = L^2(0, 1)$. Given $u \in E$, set

$$Tu(x) = \int_0^x u(t) \, dt.$$

- 1. Prove that $T \in \mathcal{K}(E)$. [Hint: Use Ascoli-Arzelà Theorem]
- 2. Determine the set EV(T) of eigenvalues of T.
- 3. Determine T^* .

Answer of exercise 1

1. Let (u_n) be a bounded sequence in $L^2(0,1)$. Let 0 < y < x < 1. We want to prove that Tu_n is compact in E. From Hölder inequality, we have for all $u \in E$,

$$|Tu(x) - Tu(y)| = \left| \int_y^x u(s) \, ds \right| \le |x - y|^{1/2} \left(\int_y^x |u|^2 \right)^{1/2} \le |x - y|^{1/2} ||u||_E$$

It follows that the sequence Tu_n is uniformly equicontinuous and from Ascoli-Arzelà Theorem, there exists a subsequence $Tu_{\varphi(n)}$ (where φ is an increasing map from \mathbb{N} into \mathbb{N}) converging in C([0, 1]). In particular, it converges in $L^2(0, 1)$ (for the strong topology).

2. Let $\lambda \in EV(T)$, there exists $u \not\simeq 0$ in E such that

$$\int_0^x u(s)\,ds = \lambda u(x)$$

a.e. in Ω . Not that Tu admits a weak derivative and that

$$(Tu)' = u.$$

It follows that

$$u = \lambda u'.$$

The solution of this equation are $u = Ce^{x/\lambda}$. But, a u(0) = 0 we get that u = 0 is the only possible solution. Thus, $VP(T) = \emptyset$. Finally, as T is compact, we have $\sigma(T) \setminus \{0\} = VP(T) \setminus \{0\}$ and $0 \in \sigma(T)$. Thus, $\sigma(T) = 0$.

3. Let $u, v \in E$, $(u, T^*v) = \int_t^1 v(x) dx$.

Exercise 2

- 1. Let $-\infty \leq a < b \leq \infty$ and $T \in \mathcal{D}'((a,b)^n)$ such that $\partial_i T = 0$ for all $i \in \{1, \dots, n\}$. Prove that there exists a constant $C \in \mathbb{R}$ such that T = C.
- 2. Extend the previous result to the distribution $\mathcal{D}'(\Omega)$, where Ω is an open and connected subset of \mathbb{R}^n .

Answer of exercise 2

1. We will only treat the case $a = -\infty$ and $b = \infty$ (in fact, the proof is exactly the same for every interval). Let us first consider the case n = 1. Let T be a distribution such that T' = 0. We have for all $\psi \in C_0^{\infty}(\mathbb{R})$,

$$\langle T, \partial_1 \psi \rangle = 0.$$

Let $\theta \in C_0^{\infty}(\mathbb{R})$ such that $\int \theta = 1$ Let $\varphi \in C_0^{\infty}(\mathbb{R})$. We set

$$\psi(x) = \int_{-\infty}^{x} \varphi(s) - C\theta(s) \, ds$$

We have $\psi \in C^{\infty}(\mathbb{R})$ and $\psi' = \varphi + C\theta$. We are going to choose C for ψ to be of compact support. To this end, it suffices to have

$$\int \varphi - C\theta = 0,$$

that is

$$C = \int \varphi.$$

Then,

$$\langle T, \psi' \rangle = 0$$

that is

$$\langle T, \varphi - C\theta \rangle = 0$$

and

$$\langle T, \varphi \rangle = C \langle T, \theta \rangle,$$

and finally

$$\langle T,\varphi\rangle=\langle T,\theta\rangle\int\varphi.$$

Thus, T is the constant distribution $\langle T, \theta \rangle$.

Let us now tackle the general case. Assume that the result as been proven in \mathbb{R}^{n-1} . Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. We set for every $x = (\tilde{x}, x_n) \in \mathbb{R}^n$,

$$\psi(x) = \int_{-\infty}^{s} \varphi(\widetilde{x}, s) - \widetilde{\varphi}(\widetilde{x})\theta(s) \, ds,$$

where

$$\widetilde{\varphi}(\widetilde{x}) = \int \varphi(\widetilde{x}, x_n) \, dx_n$$

It is easy to check that $\psi \in C_0^\infty(\mathbb{R}^n)$. Moreover, $\partial_n \psi(x) = \varphi(x) - \widetilde{\varphi}(\widetilde{x})\theta(x_n)$. It follows that

$$\langle T, \varphi \rangle = \langle T, \widetilde{\varphi}(\widetilde{x})\theta(x_n) \rangle.$$

Let $S \in \mathcal{D}'(\mathbb{R}^{n-1})$ be defined by

$$\langle S, \widetilde{\psi} \rangle = \langle T, \widetilde{\psi}(\widetilde{x})\theta(x_n) \rangle.$$

We have for all $i \in \{1, \cdots, n-1\}$,

$$\langle \partial_i S, \widetilde{\psi} \rangle = -\langle \partial_i S, \partial_i \widetilde{\psi} \rangle = -\langle T, \partial_i (\widetilde{\psi}(\widetilde{x})) \theta(x_n) \rangle = -\langle T, \partial_i (\widetilde{\psi}(\widetilde{x}) \theta(x_n)) \rangle = 0$$

From the recursive assumption, we S there exists C such that

$$\langle S, \widetilde{\psi} \rangle = C \int_{\mathbb{R}^{n-1}} \widetilde{\psi}.$$

Thus,

$$\begin{aligned} \langle T, \varphi \rangle &= \langle T, \widetilde{\varphi}(\widetilde{x}) \theta(x_n) \rangle = \langle S, \widetilde{\varphi} \rangle = C \int_{\mathbb{R}^{n-1}} \widetilde{\varphi} \\ &= C \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \varphi(\widetilde{x}, x_n) \, dx_n \, d\widetilde{x} = C \int \varphi. \end{aligned}$$

2. Let $T \in \mathcal{D}'(\Omega)$ such that $\partial_i T = 0$ for all $i \in \{1, \dots, n\}$. From the previous question, we know that the restriction of T to any cube (with edged parallel to the axes) included in Ω can be identified to a constant. Next let x be an element of Ω belonging to two cubes Q_1 and Q_2 included in Ω . There exists a small cube Q' centered at x included in the intersection of Q_1 and Q_2 . Let T_i we the restriction of T to Q_i (i = 1, 2). We know that T_1 and T_2 are equal to constants (denoted C_1 and C_2 respectively). Obviously we have

$$C_1 = T_1|_{Q'} = T|_{Q'} = T_2|_{Q'} = C_2.$$

Thus, we can define for all $x \in \Omega$ a real C(x) = C, where C = T|Q, Qbeing any cube included in Ω centered at X. The map $C : \Omega \to \mathbb{R}$ is continuous (it is constant on open cubes) and as Ω is connected, it is a constant map.

Exercise 3

Let I = (0, 1).

- 1. Prove that for every $1 \leq p \leq \infty$, $W^{1,p}(I)$ is included in $L^{\infty}(I)$ with continuous injection.
- 2. Assume that (u_n) is a bounded sequence in $W^{1,p}(I)$ with 1 . $Show that there exists a subsequence <math>(u_{\varphi(n)})$ and $u \in W^{1,p}(I)$ such that

$$\|u_{\varphi(n)} - u\|_{\infty} \to 0$$

Moreover, $u'_{\varphi(n)} \to u'$ weakly in $L^p(I)$ if 1 .

3. Construct a bounded sequence (u_n) in $W^{1,1}(I)$ that does not admit any subsequence converging in $L^{\infty}(I)$.

Answer of exercise 3

1. If $p = \infty$, the inclusion is obvious. Let $1 \le p < \infty$. Let $v \in C^{\infty}([0,1])$, we have for very $x, y \in I$,

$$v(x) - v(y) = \int_x^y v'(s) \, ds.$$

thus,

$$|v(x) - v(y)| \le \int_0^1 |v'| \le (\int_0^1 |v'|^p)^{1/p} = ||v||_{1,p}.$$

Then

$$|v(x)| \le |v(x) - v(y)| + |v(y)|$$

and

$$|v(x)| \le \int |v(x) - v(y)| + |v(y)| \, dy \le 2 \|v\|_{1,p}$$

As the set of $C^{\infty}([0,1])$ is dense in $W^{1,p}(I)$, it follows that the injection of $W^{1,p}(I)$ into $L^{\infty}(I)$ is continuous.

2. Let $1 , and <math>v \in W^{1,p}(I)$, we have

$$v(x) - v(y) = \int_x^y v'(s) \, ds \le \left(\int_x^y 1\right)^{1/p'} \left(\int_x^y |v'|^p\right)^{1/p} \le |x - y|^{1/p'} \|v\|_{1,p}.$$

In the case $p = \infty$, we have

$$v(x) - v(y) \le |x - y| ||v||_{\infty}$$

It follows that any bounded sequence in $W^{1,p}(I)$ (1 isbounded and equicontinuous in <math>C([0,1]) and thus admits a converging subsequence in C([0,1]) from the Ascoly-Arzelà Theorem.

3. Let $u_n \in W^{1,1}(I)$ be a sequence defined by

$$u'_n(x) = \begin{cases} n \text{ if } x < 1/n \\ 0 \text{ if } x > 1/n \end{cases}$$

and $u_n(0) = 0$. Assume that it admits a converging subsequence in $L^{\infty}(I)$ toward an element $u \in L^{\infty}(I)$. The only possible limit is u = 1 but

$$||u_n - 1||_{\infty} = 1.$$

Exercise 4

Let I = (0, 1). For every $u \in L^p(I)$, we denote \overline{u} the extension of $u \in L^p(\mathbb{R})$ outside I by 0.

- 1. Prove that if $1 \leq p < \infty$, then $u \in W_0^{1,p}(I) \Rightarrow \overline{u} \in W^{1,p}(\mathbb{R})$.
- 2. Conversely, let $u \in L^p(I)$ (with $1 \le p < \infty$). Prove that $\overline{u} \in W^{1,p}(I) \Rightarrow u \in W^{1,p}_0(I)$.
- 3. Let $u \in L^p(I)$ (with $1 \le p < \infty$). Show that $u \in W_0^{1,p}(I)$ iff there exists a constant C such that for every $\varphi \in C_0^1(\mathbb{R})$,

$$\left|\int_{0}^{1} u\varphi'\right| \le C \|\varphi\|_{L^{p'}(\mathbb{R})}$$

Answer of exercise 4

- 1. Let $u \in W^{1,0}(I)$, then there exists a sequence (u_n) in $C_0^{\infty}(I)$ that converges toward u in $W^{1,p}(I)$. Obviously, \overline{u}_n is a Cauchy sequence in $W^{1,p}(\mathbb{R})$. Thus, it is converging in $W^{1,p}(\mathbb{R})$ and $\in W^{1,p}(\mathbb{R})$.
- 2. Let $u \in W^{1,p}(I)$ such that $\overline{u} \in W^{1,p}(I)$. For every integer *n*, there exits $\chi_n \in C_0^{\infty}(I)$ such that

$$\chi_n(x) = 1$$
 for every $x \in (1/n, 1 - 1/n)$,

and

$$|\chi'_n| \leq nC,$$

where C is a constant that does not depend on n. We have

$$\|(\chi_n \overline{u})' - \overline{u}'\|_p \le \|\chi'_n \overline{u}\|_p + \|(\chi_n - 1)\overline{u}'\|_p.$$

Moreover,

$$\begin{aligned} \|\chi'_{n}\overline{u}\|_{p} &= \left(\int_{0}^{1/n} |\chi'_{n}\overline{u}|^{p}\right)^{1,p} + \left(\int_{1-1/n}^{1} |\chi'_{n}\overline{u}|^{p}\right)^{1,p} \\ &\leq \frac{1}{n}Cn\left(\sup_{x\in(0,1/n)} |\overline{u}(x)| + \sup_{x\in(1-1/n,1)} |\overline{u}(x)|\right) \\ &= C\left(\sup_{x\in(0,1/n)} |\overline{u}(x)| + \sup_{x\in(1-1/n,1)} |\overline{u}(x)|\right). \end{aligned}$$

As \overline{u} is continuous, the right-hand side of this inequality goes to zero when n goes to infinity and

$$\|\chi'_n \overline{u}\|_p \to_{n \to \infty} 0.$$

It follows that $\chi_n \overline{u}$ converges toward \overline{u} as n goes to infinity. Similar, we can prove similarly that the map from $W^{1,p}(\mathbb{R})$ into itself $v \mapsto \chi_n v$ is

uniformly continuous in $W^{1,p}(I)$. We deduce than for every $\varepsilon > 0$, there exists n such that

$$\|\chi_n \overline{u} - \overline{u}\|_{1,p} \le \varepsilon.$$

As $C_0^\infty(\mathbb{R})$ is dens in $W^{1,p}(\mathbb{R})$, there exists $v \in C_0^\infty(\mathbb{R})$ such that

$$\|v - \overline{u}\|_{1,p} \le \varepsilon.$$

It follows that

$$\begin{aligned} \|\chi_n v - u\|_{W^{1,p}(I)} &= \|\chi_n v - \overline{u}\|_{W^{1,p}(\mathbb{R})} \le \|\chi_n v - \chi_n \overline{u}\|_{1,p} + \|\chi_n \overline{u} - \overline{u}\|_{1,p} \\ &\le C \|v - \overline{u}\|_{1,p} + \|\chi_n \overline{u} - \overline{u}\|_{1,p} \le 2\varepsilon. \end{aligned}$$

3. From the inequality, we have that \overline{u} does belong to the dual of $W^{1,p'}(\mathbb{R})$ which is equal to $W^{1,p}(\mathbb{R})$.