Functional analysis and applications

MASTER "Mathematical Modelling"

École Polytechnique and Université Pierre et Marie Curie

October 15th, 2015

See also the course webpage:

http://www.cmap.polytechnique.fr/~allaire/master/course-funct-analysis.html

Exercise 1

Let Ω be a bounded regular open subset of \mathbb{R}^N .

1. Prove that for every $u \in H_0^2(\Omega)$,

$$\int_{\Omega} |\Delta u|^2 = \int_{\Omega} \left(\sum_{|\alpha|=2} |D^{\alpha} u|^2 \right).$$

2. Prove that there exists a constant C such that for every $u \in H^2_0(\Omega)$,

$$\int_{\Omega} \left(|\Delta u|^2 + |u|^2 \right) \ge C ||u||_{H^2}^2.$$

3. Prove that for every $f \in L^2(\Omega)$, there exists a unique $u = T(f) \in H^2_0(\Omega)$ such that for all $v \in H^2_0(\Omega)$,

$$\int_{\Omega} \left(\Delta u \Delta v + u v \right) = \int_{\Omega} f v.$$

- 4. Prove that T is a compact and self adjoint operator from $L^2(\Omega)$ into $L^2(\Omega)$.
- 5. Prove that the eigenvectors u solution of

$$\int_{\Omega} \left(\Delta u \Delta v + u v \right) = \lambda \int_{\Omega} u v$$

defines a Hilbert basis of $L^2(\Omega)$.

Exercise 2

Let I = (0, 1). Let $u \in W^{1,p}(I)$ with $1 \le p < \infty$. Our goal is to prove that u' = 0 a.e. on the set $E = \{x \in I : u(x) = 0\}$. Fix a function $G \in C^1(\mathbb{R}, \mathbb{R})$ such that $|G(t)| \le 1$ and $|G'(t)| \le C$ for every $t \in \mathbb{R}$ for a constant C, and

$$G(t) = \begin{cases} 1 & \text{if } t \ge 1 \\ t & \text{if } |t| \le 1/2 \\ -1 & \text{if } t \le -1. \end{cases}$$

 Set

$$v_n(x) = \frac{G(nu(x))}{n}.$$

- 1. Check that $||v_n||_{L^{\infty}} \to 0$ as $n \to \infty$.
- 2. Show that $v_n \in W^{1,p}(I)$ and compute v'_n .
- 3. Deduce that $|v'_n|$ is bounded by a fixed function in $L^p(I)$.
- 4. Prove that $v'_n(x) \to f(x)$ a.e. on I, as $n \to \infty$ and identify f. [Hint: Consider separately the cases $x \notin E$ and $x \in E$.]
- 5. Deduce that $v'_n \to f$ in $L^p(I)$.
- 6. Prove that f = 0 a.e. on I and conclude that u' = 0 a.e. on E.

Answer of exercise 2

- 1. $||v_n|| \le 1/n \to 0.$
- 2. Assume first that u is a regular map, then

$$v'_n(x) = G'(nu(x))u'(x)$$

Moreover,

$$|v'_n| \le C|u'|.$$

Thus, we get

$$||v_n||_{1,p} \le ||v_n||_p + ||v_n'||_p \le 1 + C ||u_n'||_{1,p}.$$

Now, we only have to extend the previous analysis to every $u \in W^{1,p}(I)$. Let $(u_k) \in C^{\infty}(\overline{I})^{\mathbb{N}}$ be a sequence converging toward u in $W^{1,p}(I)$. we have that

 $G(nu_k)$

is bounded in $L^{\infty}(I)$ and converging almost everywhere toward G(nu)/n. Thus, from the dominated converge Theorem, it converges in $L^p(I)$. Without lost of generality, we can assume that $|u'_k|$ is bounded by a map $\varphi \in L^p(I)$. The sequence $G'(nu_k)u'_k$ converges a.e. toward G'(u)u'(because G in C^1). Moreover, $|G'(nu_k)u'_k|$ is bounded by $C|u'_k|$ and thus by $C\varphi$. From the dominated convergence Theorem, we deduce that $G'(nu_k)u'_k$ converges toward G'(nu)u' in L^p . It follows that $G(nu_k)/n$ is a Cauchy sequence in $W^{1,p}(I)$ and that is it convergent. Moreover, the limit is G(nu)/n and

$$(G(nu)/n)' = \lim_{k} (G(nu_k)/n)' = G'(nu)u'.$$

- 3. We have $v'_n = G'(nu)u'$ and $|v'_n|$ bounded by $C|u'| \in L^p(I)$.
- 4. If $x \notin E$ then $v'_n(x) = G'(nu(x))u'(x) = 0$ for n sufficiently large. If $x \in E$ then $v'_n(x) = u'(x)$. Finally, $\lim_{n\to\infty} v'_n(x) \to f(x)$ a.e. in I with f(x) = 0 if $x \notin E$ and f(x) = u'(x) if $x \in E$.
- 5. From the dominated convergence Theorem, v'_n does converge toward f in L^p .

6. The sequence v_n is converging in $W^{1,p}(I)$. Let v its limit. We have v' = f. We have proved that v = 0, thus f = 0. As f = u' almost everywhere on E, we conclude that u = 0 a.e. on E.

Exercise 3 Helly's selection theorem

Let (u_n) be a bounded sequence in $W^{1,1}(0,1)$. The goal is to prove that there exists a subsequence (u_{n_k}) such that $u_{n_k}(x)$ converges to a limit for every $x \in [0,1]$.

1. Show that we may always assume in addition that

$$\forall n, u_n \text{ is a nondecreasing on } [0, 1].$$
 (1)

[**Hint:** Consider the sequences $v_n(x) = \int_0^x |u'_n(t)| dt$ and $w_n = v_n - u_n$] In what follows we assume that (1) holds.

- 2. Prove that there exist a subsequence (u_{n_k}) and a measurable set $E \subset [0,1]$ with |E| = 0 such that $u_{n_k}(x)$ convergences to a limit, denoted u(x), for every $x \in [0,1] \setminus E$. [Hint: Use the fact that $W^{1,1} \subset L^1$ with compact injection.]
- 3. Show that u is nondecreasing on $[0,1] \setminus E$ and deduce that there are a countable set $D \subset (0,1)$) and a nondecreasing function $\overline{u} : (0,1) \to \mathbb{R}$ such that $\overline{u}(x+0) = \overline{u}(x-0), \forall x \in (0,1) \setminus D$ and $\overline{u}(x) = u(x), \forall x \in (0,1) \setminus (D \cup E)$.
- 4. Prove that $u_{n_k}(x) \to \overline{u}(x), \forall x \in (0,1) \setminus D$.
- 5. Construct a subsequence from the sequence (u_{n_k}) that converges for every $x \in [0, 1]$. [Hint: Use a diagonal process.]

Answer of exercise 3

1. Let T be the map from $C^{\infty}([0,1])$ into $W^{1,1}(0,1)$ be defined by

$$T(\varphi) = \int_0^x |\varphi'(t)| \, dt.$$

We have $T(\varphi)' = |\varphi'|$. Moreover,

$$|T(\varphi)| \le \|\varphi\|_{1,1}.$$

Thus, T is a linear map such that

$$||T(\varphi)||_{1,1} \le ||\varphi||_{1,1}.$$

As $C^{\infty}(0,1)$ is dense in $W^{1,1}(0,1)$ It follows that T can be uniquely extend into a linear continuous map (also denoted T) from $W^{1,1}(0,1)$ into itself and as

$$T(\varphi)' = |\varphi'|$$

for every $\varphi \in C_0^{\infty}([0,1])$, we have

$$T(u)' = |u'|$$
 for all $u \in W^{1,1}(0,1)$.

Moreover, for all $u \in W^{1,1}(0,1)$, there exists $\varphi_n \in C^{\infty}([0,1])$ such that φ_n does converge toward u in $W^{1,1}(0,1)$. By definition, we have

$$T(u) = \lim T(\varphi_n)$$

and

$$\left| T(\varphi_n)(x) - \int_0^x |u'|(t) \, dt \right| = \int_0^x |\varphi'_n(t)| - |u'(t)| \, dt$$
$$\leq \int_0^x |\varphi'_n(t) - u'(t)| \, dt \leq \|\varphi_n - u\|_{1,1}.$$

Thus, $T(\varphi_n)$ converges toward $\int_0^x |u'(t)| dt$ in $L^{\infty}(0,1)$. In particular, it converges in $L^1(0,1)$. As $T(\varphi_n)$ does also converges toward T(u) in $W^{1,1}(0,1)$, and thus in $L^1(0,1)$, we have

$$T(u) = \int_0^x |u'(t)| \, dt.$$

It follows that $w_n = v_n - u_n$ with

$$v_n = \int_0^x |u_n'(t)| \, ds$$

belongs to $W^{1,1}(0,1)$ and that

$$w'_n = |u'_n| - u'_n \ge 0.$$

Thus, w_n is a nondecreasing map. Let us assume that the result is proved for nondecreasing maps. As (u_n) is bounded in $W^{1,1}(0,1)$, (v_n) and (w_n) are both bounded in $W^{1,1}(0,1)$ and nondecreasing. Thus, they admit everywhere converging subsequences $(w_{\varphi(n)})$ and $(v_{\varphi(n)})$ and $(u_{\varphi(n)})$ is everywhere converging.

- 2. As the injection from $W^{1,1}(0,1)$ into $L^1(0,1)$ is compact, there exists a subsequence $u_{\varphi_1(n)}$ converging toward for the strong topology of $L^1(0,1)$ toward an element $u \in L^1(0,1)$. From the inverse Lebesgue's Theorem, there exists a subsequence $u_{\varphi_1 \circ \varphi_2(n)}$ that do converge almost everywhere toward u.
- 3. We set $\varphi = \varphi_1 \circ \varphi_2$ as in Question 2. For all $x < y \in [0,1] \setminus E$, we have $u_{\varphi(n)}(x) \leq u_{\varphi(n)}(y)$. Passing to the limit, we get $u(x) \leq u(y)$. We set

$$\overline{u}(x) = \sup\{u(y) : y \le x, x \in [0,1] \setminus E\}.$$

It is correctly defined for all $x \in (0, 1]$. If $0 \in E$, we set $\overline{u}(0) = \inf u$. Now, as \overline{u} is an increasing function defined on [0, 1]. Moreover, it is bounded. Thus, it admits only a finite number of jump greater than a given constant C. It follows that the number of jumps is in fact countable. Finally, it is easy to check that $\overline{u} = u$ on $[0, 1] \setminus E$. 4. Let $x \in (0,1) \setminus D$. For every $\varepsilon > 0$, their exits $x^-, x^+ \in [0,1] \setminus E$ such that $x^- \le x \le x^+$ such that $|\overline{u}(x^+) - \overline{u}(x^-)| < \varepsilon$. As $u_{\varphi(n)}$ is nondecreasing, we have for all n, m > 0,

$$u_{\varphi(n)}(x^-) \le u_{\varphi(n)}(x) \le u_{\varphi(n)}(x^+)$$

and

$$-u_{\varphi(m)}(x^+) \le -u_{\varphi(m)}(x) \le -u_{\varphi(m)}(x^-).$$

Summing both inequalities leads to

$$u_{\varphi(n)}(x^{-}) - u_{\varphi(m)}(x^{+}) \le u_{\varphi(n)}(x) - u_{\varphi(m)}(x) \le u_{\varphi(n)}(x^{+}) - u_{\varphi(m)}(x^{-}).$$

and

$$|u_{\varphi(n)}(x) - u_{\varphi(m)}(x)| \le \max(|u_{\varphi(n)}(x^{-}) - u_{\varphi(m)}(x^{+})|, |u_{\varphi(n)}(x^{+}) - u_{\varphi(m)}(x^{-})|)$$

For n and m great enough, we get

$$|u_{\varphi(n)}(x) - u_{\varphi(m)}(x)| \le |\overline{u}(x^+) - \overline{u}(x^-)| + \varepsilon \le 2\varepsilon.$$

Hence, $u_{\varphi(n)}(x)$ is a Cauchy sequence and is convergent. Finally, we have for every $y, z \in E$ that y < x < z,

$$\overline{u}(y) \le \lim u_{\varphi(n)}(x) \le \overline{u}(z),$$

and thus

$$\overline{u}(x-0) \le \lim u_{\varphi(n)}(x) \le \overline{u}(x+0).$$

As $x \notin D$, $\overline{u}(x) = \overline{u}(x^{-}) = \overline{u}(x^{+})$ and

$$\lim u_{\varphi(n)}(x) = \overline{u}(x).$$

5. If D is finite, the proof is almost trivial. Otherwise, let (x_n) be a sequence in (0, 1) such that

$$D = \{x_n : n \in \mathbb{N}\}.$$

Assume that we have construct a subsequence $(u_{\Psi_k(n)})$ of $u_{\varphi(n)}$ such that $(u_{\Psi_k(n)}(x_l))_n$ is converging for every l < k. The sequence $(u_{\Psi_k(n)}(x_k))_n$ is bounded in \mathbb{R} , so there exists an increasing map $\psi_{k+1} : \mathbb{N} \to \mathbb{N}$ such that $(u_{\Psi_k(n)} \circ \psi_{k+1}(x_k))_n$ is converging. Setting $\Psi_{k+1} = \Psi_k \circ \psi_{k+1}$, we have construct a sequence of subsequences $(u_{\Psi_k(n)})$ such that $(u_{\Psi_k(n)}(x_l))_n$ is converging for every k < l. Finally, setting $\Psi(n) = \Psi_n(n)$, the sequence $(u_{\Psi(n)})_n$ is a subsequence of $(u_{\varphi(n)})_n$ that converges for every $x \in D$ and thus for every $x \in [0, 1]$ from Question 4.