Functional analysis and applications
 MASTER "Mathematical Modelling"

École Polytechnique and Université Pierre et Marie Curie
October 15th, 2015
See also the course webpage:
http://www.cmap.polytechnique.fr/ ~allaire/master/course-funct-analysis.html

Exercise 1

Let Ω be a bounded regular open subset of \mathbb{R}^{N}.

1. Prove that for every $u \in H_{0}^{2}(\Omega)$,

$$
\int_{\Omega}|\Delta u|^{2}=\int_{\Omega}\left(\sum_{|\alpha|=2}\left|D^{\alpha} u\right|^{2}\right) .
$$

2. Prove that there exists a constant C such that for every $u \in H_{0}^{2}(\Omega)$,

$$
\int_{\Omega}\left(|\Delta u|^{2}+|u|^{2}\right) \geq C\|u\|_{H^{2}}^{2} .
$$

3. Prove that for every $f \in L^{2}(\Omega)$, there exists a unique $u=T(f) \in H_{0}^{2}(\Omega)$ such that for all $v \in H_{0}^{2}(\Omega)$,

$$
\int_{\Omega}(\Delta u \Delta v+u v)=\int_{\Omega} f v .
$$

4. Prove that T is a compact and self adjoint operator from $L^{2}(\Omega)$ into $L^{2}(\Omega)$.
5. Prove that the eigenvectors u solution of

$$
\int_{\Omega}(\Delta u \Delta v+u v)=\lambda \int_{\Omega} u v
$$

defines a Hilbert basis of $L^{2}(\Omega)$.

Exercise 2

Let $I=(0,1)$. Let $u \in W^{1, p}(I)$ with $1 \leq p<\infty$. Our goal is to prove that $u^{\prime}=0$ a.e. on the set $E=\{x \in I: u(x)=0\}$. Fix a function $G \in C^{1}(\mathbb{R}, \mathbb{R})$ such that $|G(t)| \leq 1$ and $\left|G^{\prime}(t)\right| \leq C$ for every $t \in \mathbb{R}$ for a constant C, and

$$
G(t)= \begin{cases}1 & \text { if } t \geq 1 \\ t & \text { if }|t| \leq 1 / 2 \\ -1 & \text { if } t \leq-1 .\end{cases}
$$

Set

$$
v_{n}(x)=\frac{G(n u(x))}{n} .
$$

1. Check that $\left\|v_{n}\right\|_{L^{\infty}} \rightarrow 0$ as $n \rightarrow \infty$.
2. Show that $v_{n} \in W^{1, p}(I)$ and compute v_{n}^{\prime}.
3. Deduce that $\left|v_{n}^{\prime}\right|$ is bounded by a fixed function in $L^{p}(I)$.
4. Prove that $v_{n}^{\prime}(x) \rightarrow f(x)$ a.e. on I, as $n \rightarrow \infty$ and identify f.
[Hint: Consider separately the cases $x \notin E$ and $x \in E$.]
5. Deduce that $v_{n}^{\prime} \rightarrow f$ in $L^{p}(I)$.
6. Prove that $f=0$ a.e. on I and conclude that $u^{\prime}=0$ a.e. on E.

Answer of exercise 2

1. $\left\|v_{n}\right\| \leq 1 / n \rightarrow 0$.
2. Assume first that u is a regular map, then

$$
v_{n}^{\prime}(x)=G^{\prime}(n u(x)) u^{\prime}(x) .
$$

Moreover,

$$
\left|v_{n}^{\prime}\right| \leq C\left|u^{\prime}\right|
$$

Thus, we get

$$
\left\|v_{n}\right\|_{1, p} \leq\left\|v_{n}\right\|_{p}+\left\|v_{n}^{\prime}\right\|_{p} \leq 1+C\left\|u_{n}^{\prime}\right\|_{1, p}
$$

Now, we only have to extend the previous analysis to every $u \in W^{1, p}(I)$. Let $\left(u_{k}\right) \in C^{\infty}(\bar{I})^{\mathbb{N}}$ be a sequence converging toward u in $W^{1, p}(I)$. we have that

$$
\frac{G\left(n u_{k}\right)}{n}
$$

is bounded in $L^{\infty}(I)$ and converging almost everywhere toward $G(n u) / n$. Thus, from the dominated converge Theorem, it converges in $L^{p}(I)$. Without lost of generality, we can assume that $\left|u_{k}^{\prime}\right|$ is bounded by a $\operatorname{map} \varphi \in L^{p}(I)$. The sequence $G^{\prime}\left(n u_{k}\right) u_{k}^{\prime}$ converges a.e. toward $G^{\prime}(u) u^{\prime}$ (because G in C^{1}). Moreover, $\left|G^{\prime}\left(n u_{k}\right) u_{k}^{\prime}\right|$ is bounded by $C\left|u_{k}^{\prime}\right|$ and thus by $C \varphi$. From the dominated convergence Theorem, we deduce that $G^{\prime}\left(n u_{k}\right) u_{k}^{\prime}$ converges toward $G^{\prime}(n u) u^{\prime}$ in L^{p}. It follows that $G\left(n u_{k}\right) / n$ is a Cauchy sequence in $W^{1, p}(I)$ and that is it convergent. Moreover, the limit is $G(n u) / n$ and

$$
(G(n u) / n)^{\prime}=\lim _{k}\left(G\left(n u_{k}\right) / n\right)^{\prime}=G^{\prime}(n u) u^{\prime}
$$

3. We have $v_{n}^{\prime}=G^{\prime}(n u) u^{\prime}$ and $\left|v_{n}^{\prime}\right|$ bounded by $C\left|u^{\prime}\right| \in L^{p}(I)$.
4. If $x \notin E$ then $v_{n}^{\prime}(x)=G^{\prime}(n u(x)) u^{\prime}(x)=0$ for n sufficiently large.

If $x \in E$ then $v_{n}^{\prime}(x)=u^{\prime}(x)$.
Finally, $\lim _{n \rightarrow \infty} v_{n}^{\prime}(x) \rightarrow f(x)$ a.e. in I with $f(x)=0$ if $x \notin E$ and $f(x)=u^{\prime}(x)$ if $x \in E$.
5. From the dominated convergence Theorem, v_{n}^{\prime} does converge toward f in L^{p}.
6. The sequence v_{n} is converging in $W^{1, p}(I)$. Let v its limit. We have $v^{\prime}=f$. We have proved that $v=0$, thus $f=0$. As $f=u^{\prime}$ almost everywhere on E, we conclude that $u=0$ a.e. on E.

Exercise 3 Helly's selection theorem

Let $\left(u_{n}\right)$ be a bounded sequence in $W^{1,1}(0,1)$. The goal is to prove that there exists a subsequence $\left(u_{n_{k}}\right)$ such that $u_{n_{k}}(x)$ converges to a limit for every $x \in[0,1]$.

1. Show that we may always assume in addition that

$$
\begin{equation*}
\forall n, u_{n} \text { is a nondecreasing on }[0,1] . \tag{1}
\end{equation*}
$$

[Hint: Consider the sequences $v_{n}(x)=\int_{0}^{x}\left|u_{n}^{\prime}(t)\right| d t$ and $w_{n}=v_{n}-u_{n}$] In what follows we assume that (1) holds.
2. Prove that there exist a subsequence $\left(u_{n_{k}}\right)$ and a measurable set $E \subset$ $[0,1]$ with $|E|=0$ such that $u_{n_{k}}(x)$ convergences to a limit, denoted $u(x)$, for every $x \in[0,1] \backslash E .\left[\right.$ Hint: Use the fact that $W^{1,1} \subset L^{1}$ with compact injection.]
3. Show that u is nondecreasing on $[0,1] \backslash E$ and deduce that there are a countable set $D \subset(0,1))$ and a nondecreasing function $\bar{u}:(0,1) \rightarrow \mathbb{R}$ such that $\bar{u}(x+0)=\bar{u}(x-0), \forall x \in(0,1) \backslash D$ and $\bar{u}(x)=u(x), \forall x \in$ $(0,1) \backslash(D \cup E)$.
4. Prove that $u_{n_{k}}(x) \rightarrow \bar{u}(x), \forall x \in(0,1) \backslash D$.
5. Construct a subsequence from the sequence $\left(u_{n_{k}}\right)$ that converges for every $x \in[0,1]$. [Hint: Use a diagonal process.]

Answer of exercise 3

1. Let T be the map from $C^{\infty}([0,1])$ into $W^{1,1}(0,1)$ be defined by

$$
T(\varphi)=\int_{0}^{x}\left|\varphi^{\prime}(t)\right| d t
$$

We have $T(\varphi)^{\prime}=\left|\varphi^{\prime}\right|$. Moreover,

$$
|T(\varphi)| \leq\|\varphi\|_{1,1} .
$$

Thus, T is a linear map such that

$$
\|T(\varphi)\|_{1,1} \leq\|\varphi\|_{1,1}
$$

As $C^{\infty}(0,1)$ is dense in $W^{1,1}(0,1)$ It follows that T can be uniquely extend into a linear continuous map (also denoted T) from $W^{1,1}(0,1)$ into itself and as

$$
T(\varphi)^{\prime}=\left|\varphi^{\prime}\right|
$$

for every $\varphi \in C_{0}^{\infty}([0,1])$, we have

$$
T(u)^{\prime}=\left|u^{\prime}\right| \text { for all } u \in W^{1,1}(0,1)
$$

Moreover, for all $u \in W^{1,1}(0,1)$, there exists $\varphi_{n} \in C^{\infty}([0,1])$ such that φ_{n} does converge toward u in $W^{1,1}(0,1)$. By definition, we have

$$
T(u)=\lim T\left(\varphi_{n}\right),
$$

and

$$
\begin{aligned}
\left|T\left(\varphi_{n}\right)(x)-\int_{0}^{x}\right| u^{\prime}|(t) d t|= & \int_{0}^{x}\left|\varphi_{n}^{\prime}(t)\right|-\left|u^{\prime}(t)\right| d t \\
& \leq \int_{0}^{x}\left|\varphi_{n}^{\prime}(t)-u^{\prime}(t)\right| d t \leq\left\|\varphi_{n}-u\right\|_{1,1}
\end{aligned}
$$

Thus, $T\left(\varphi_{n}\right)$ converges toward $\int_{0}^{x}\left|u^{\prime}(t)\right| d t$ in $L^{\infty}(0,1)$. In particular, it converges in $L^{1}(0,1)$. As $T\left(\varphi_{n}\right)$ does also converges toward $T(u)$ in $W^{1,1}(0,1)$, and thus in $L^{1}(0,1)$, we have

$$
T(u)=\int_{0}^{x}\left|u^{\prime}(t)\right| d t
$$

It follows that $w_{n}=v_{n}-u_{n}$ with

$$
v_{n}=\int_{0}^{x}\left|u_{n}^{\prime}(t)\right| d s
$$

belongs to $W^{1,1}(0,1)$ and that

$$
w_{n}^{\prime}=\left|u_{n}^{\prime}\right|-u_{n}^{\prime} \geq 0
$$

Thus, w_{n} is a nondecreasing map. Let us assume that the result is proved for nondecreasing maps. As $\left(u_{n}\right)$ is bounded in $W^{1,1}(0,1),\left(v_{n}\right)$ and $\left(w_{n}\right)$ are both bounded in $W^{1,1}(0,1)$ and nondecreasing. Thus, they admit everywhere converging subsequences $\left(w_{\varphi(n)}\right)$ and $\left(v_{\varphi(n)}\right)$ and $\left(u_{\varphi(n)}\right)$ is everywhere converging.
2. As the injection from $W^{1,1}(0,1)$ into $L^{1}(0,1)$ is compact, there exists a subsequence $u_{\varphi_{1}(n)}$ converging toward for the strong topology of $L^{1}(0,1)$ toward an element $u \in L^{1}(0,1)$. From the inverse Lebesgue's Theorem, there exists a subsequence $u_{\varphi_{1} \circ \varphi_{2}(n)}$ that do converge almost everywhere toward u.
3. We set $\varphi=\varphi_{1} \circ \varphi_{2}$ as in Question 2. For all $x<y \in[0,1] \backslash E$, we have $u_{\varphi(n)}(x) \leq u_{\varphi(n)}(y)$. Passing to the limit, we get $u(x) \leq u(y)$. We set

$$
\bar{u}(x)=\sup \{u(y): y \leq x, x \in[0,1] \backslash E\}
$$

It is correctly defined for all $x \in(0,1]$. If $0 \in E$, we set $\bar{u}(0)=\inf u$. Now, as \bar{u} is an increasing function defined on $[0,1]$. Moreover, it is bounded. Thus, it admits only a finite number of jump greater than a given constant C. It follows that the number of jumps is in fact countable. Finally, it is easy to check that $\bar{u}=u$ on $[0,1] \backslash E$.
4. Let $x \in(0,1) \backslash D$. For every $\varepsilon>0$, their exits $x^{-}, x^{+} \in[0,1] \backslash E$ such that $x^{-} \leq x \leq x^{+}$such that $\left|\bar{u}\left(x^{+}\right)-\bar{u}\left(x^{-}\right)\right|<\varepsilon$. As $u_{\varphi(n)}$ is nondecreasing, we have for all $n, m>0$,

$$
u_{\varphi(n)}\left(x^{-}\right) \leq u_{\varphi(n)}(x) \leq u_{\varphi(n)}\left(x^{+}\right)
$$

and

$$
-u_{\varphi(m)}\left(x^{+}\right) \leq-u_{\varphi(m)}(x) \leq-u_{\varphi(m)}\left(x^{-}\right)
$$

Summing both inequalities leads to
$u_{\varphi(n)}\left(x^{-}\right)-u_{\varphi(m)}\left(x^{+}\right) \leq u_{\varphi(n)}(x)-u_{\varphi(m)}(x) \leq u_{\varphi(n)}\left(x^{+}\right)-u_{\varphi(m)}\left(x^{-}\right)$.
and
$\left|u_{\varphi(n)}(x)-u_{\varphi(m)}(x)\right| \leq \max \left(\left|u_{\varphi(n)}\left(x^{-}\right)-u_{\varphi(m)}\left(x^{+}\right)\right|,\left|u_{\varphi(n)}\left(x^{+}\right)-u_{\varphi(m)}\left(x^{-}\right)\right|\right)$
For n and m great enough, we get

$$
\left|u_{\varphi(n)}(x)-u_{\varphi(m)}(x)\right| \leq\left|\bar{u}\left(x^{+}\right)-\bar{u}\left(x^{-}\right)\right|+\varepsilon \leq 2 \varepsilon .
$$

Hence, $u_{\varphi(n)}(x)$ is a Cauchy sequence and is convergent. Finally, we have for every $y, z \in E$ that $y<x<z$,

$$
\bar{u}(y) \leq \lim u_{\varphi(n)}(x) \leq \bar{u}(z)
$$

and thus

$$
\bar{u}(x-0) \leq \lim u_{\varphi(n)}(x) \leq \bar{u}(x+0)
$$

As $x \notin D, \bar{u}(x)=\bar{u}\left(x^{-}\right)=\bar{u}\left(x^{+}\right)$and

$$
\lim u_{\varphi(n)}(x)=\bar{u}(x)
$$

5. If D is finite, the proof is almost trivial. Otherwise, let $\left(x_{n}\right)$ be a sequence in $(0,1)$ such that

$$
D=\left\{x_{n}: n \in \mathbb{N}\right\}
$$

Assume that we have construct a subsequence $\left(u_{\Psi_{k}(n)}\right)$ of $u_{\varphi(n)}$ such that $\left(u_{\Psi_{k}(n)}\left(x_{l}\right)\right)_{n}$ is converging for every $l<k$. The sequence $\left(u_{\Psi_{k}(n)}\left(x_{k}\right)\right)_{n}$ is bounded in \mathbb{R}, so there exists an increasing map $\psi_{k+1}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\left(u_{\Psi_{k}(n)} \circ \psi_{k+1}\left(x_{k}\right)\right)_{n}$ is converging. Setting $\Psi_{k+1}=\Psi_{k} \circ \psi_{k+1}$, we have construct a sequence of subsequences $\left(u_{\Psi_{k}(n)}\right.$ such that $\left(u_{\Psi_{k}(n)}\left(x_{l}\right)\right)_{n}$ is converging for every $k<l$. Finally, setting $\Psi(n)=\Psi_{n}(n)$, the sequence $\left(u_{\Psi(n)}\right)_{n}$ is a subsequence of $\left(u_{\varphi(n)}\right)_{n}$ that converges for every $x \in D$ and thus for every $x \in[0,1]$ from Question 4.

