The Lavrentiev phenomena

by
Alessandro Ferriero
- CMAP Ecole Polytechnique -

Abstract

- 1. The Lavrentiev phenomenon
- 2. The Manià example
- 3. A class of Lagrangians without Lavrentiev phenomenon
- 4. A multi-dimensional variational problem
- 5. The case of higher-order Lagrangians
- 6. " $+\infty$-values" phenomenon

The Lavrentiev phenomenon

Let $L:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow[-\infty,+\infty]$ be the Lagrangian function associated to an action functional

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), x^{\prime}(t)\right) d t
$$

and consider the following sets of admissible trajectories:

$$
\begin{aligned}
& \mathbf{A C}_{*}[a, b]=\left\{x \in \mathbf{A C}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\}, \\
& \mathbf{L i p}_{*}[a, b]=\left\{x \in \mathbf{L i p}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\} .
\end{aligned}
$$

The Lavrentiev phenomenon

Let $L:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow[-\infty,+\infty]$ be the Lagrangian function associated to an action functional

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), x^{\prime}(t)\right) d t
$$

and consider the following sets of admissible trajectories:

$$
\begin{aligned}
& \mathbf{A C}_{*}[a, b]=\left\{x \in \mathbf{A C}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\}, \\
& \mathbf{L i p}_{*}[a, b]=\left\{x \in \mathbf{L i p}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\} .
\end{aligned}
$$

The action \mathcal{I} exhibits the Lavrentiev phenomenon (LP) whenever

$$
\inf _{\mathbf{A \mathbf { C } _ { * }}[a, b]} \mathcal{I}<\inf _{\mathbf{L i p}_{*}[a, b]} \mathcal{I}
$$

The Lavrentiev phenomenon

Let $L:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow[-\infty,+\infty]$ be the Lagrangian function associated to an action functional

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), x^{\prime}(t)\right) d t
$$

and consider the following sets of admissible trajectories:

$$
\begin{aligned}
& \mathbf{A C}_{*}[a, b]=\left\{x \in \mathbf{A C}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\}, \\
& \mathbf{L i p}_{*}[a, b]=\left\{x \in \mathbf{L i p}\left([a, b] ; \mathbb{R}^{N}\right): x(a)=A, x(b)=B\right\} .
\end{aligned}
$$

The action \mathcal{I} exhibits the Lavrentiev phenomenon (LP) whenever

$$
\inf _{\mathbf{A \mathbf { C } _ { * }}[a, b]} \mathcal{I}<\inf _{\mathbf{L i p}_{*}[a, b]} \mathcal{I}
$$

- We cannot calculate a minimizer by using a standard finite-element method.
- The set of trajectories is a fundamental part of the physical model.

The Manià example

- The action

$$
\mathcal{I}(x)=\int_{-1}^{1}{x^{\prime}}^{6}(t)\left[x^{3}(t)-t\right]^{2} d t
$$

with boundary conditions $x(-1)=-1, x(1)=1$, exhibits (LP), i.e.

$$
\inf _{\mathbf{A C} *[0,1]} \mathcal{I}<\inf _{\mathbf{L i} \mathbf{p} *[0,1]} \mathcal{I} .
$$

$\left(\bar{x}(t)=\sqrt[3]{t}\right.$ is a minimizer for \mathcal{I} in $\left.\mathbf{A C} \mathbf{C}_{*}[-1,1].\right)$

The Manià example

- The action

$$
\mathcal{I}(x)=\int_{-1}^{1}{x^{\prime}}^{6}(t)\left[x^{3}(t)-t\right]^{2} d t
$$

with boundary conditions $x(-1)=-1, x(1)=1$, exhibits (LP), i.e.

$$
\inf _{\mathbf{A C} \mathbf{C}_{*}[0,1]} \mathcal{I}<\inf _{\mathbf{L i} \mathbf{p} *[0,1]} \mathcal{I} .
$$

$\left(\bar{x}(t)=\sqrt[3]{t}\right.$ is a minimizer for \mathcal{I} in $\left.\mathbf{A C}_{*}[-1,1].\right)$

- (LP) persists under perturbations of the Lagrangians:

$$
\int_{-1}^{1}\left\{x^{\prime 6}(t)\left[x^{3}(t)-t\right]^{2}+\epsilon\left|x^{\prime}(t)\right|^{5 / 4}\right\} d t, \quad x(-1)=-1, x(1)=1,
$$

exhibits (LP) for any "small" ϵ.

- (LP) persists under perturbations of the boundary conditions:

$$
\int_{-1}^{1} x^{\prime 6}(t)\left[x^{3}(t)-t\right]^{2} d t, \quad x\left(t_{-1}\right)=x_{-1}, x\left(t_{1}\right)=x_{1}
$$

where $\left(t_{-1}, x_{-1}\right) \in B((-1,-1), \epsilon),\left(t_{1}, x_{1}\right) \in B((1,1), \epsilon)$, exhibits (LP) for any "small" ϵ.

A class of Lagrangians without (LP)

Theorem [A. Cellina, A. F., E.M. Marchini]. Let $x:[a, b] \rightarrow \mathbb{R}^{N}$ be a trajectory in AC $[a, b]$. Assume that:

1. $L_{1}(x, \xi), \cdots, L_{m}(x, \xi): \operatorname{lm}[x] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \operatorname{lm}[x] \rightarrow[c,+\infty)$ are continuous, with $c>0$;
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x(t), x^{\prime}(t)\right) \psi_{i}(t, x(t)) d t$.

Then, given $\epsilon>0$, there exists a Lipschitzian trajectory x_{ϵ}, a reparameterization of x, such that $x(a)=x_{\epsilon}(a), x(b)=x_{\epsilon}(b)$ and $\mathcal{I}\left(x_{\epsilon}\right) \leq \mathcal{I}(x)+\epsilon$.

A class of Lagrangians without (LP)

Theorem [A. Cellina, A. F., E.M. Marchini]. Let $x:[a, b] \rightarrow \mathbb{R}^{N}$ be a trajectory in AC $[a, b]$. Assume that:

1. $L_{1}(x, \xi), \cdots, L_{m}(x, \xi): \operatorname{lm}[x] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \operatorname{lm}[x] \rightarrow[c,+\infty)$ are continuous, with $c>0$;
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x(t), x^{\prime}(t)\right) \psi_{i}(t, x(t)) d t$.

Then, given $\epsilon>0$, there exists a Lipschitzian trajectory x_{ϵ}, a reparameterization of x, such that $x(a)=x_{\epsilon}(a), x(b)=x_{\epsilon}(b)$ and $\mathcal{I}\left(x_{\epsilon}\right) \leq \mathcal{I}(x)+\epsilon$.

- The class of Lagrangians $L\left(t, x, x^{\prime}\right)=\sum_{i=1}^{m} L_{i}\left(x, x^{\prime}\right) \psi_{i}(t, x)$ does not exhibit (LP) for any boundary conditions; it includes the autonomous Lagrangians.
- Condition 2. is used only to prove that $\int_{a}^{b} L_{i}\left(x(t), x^{\prime}(t)\right) d t$ are finite. The Theorem can be proved under the more general condition:
$2^{\prime} . \quad \psi_{i}(t, x) \geq 0$ and $\int_{a}^{b} L_{i}\left(x(t), x^{\prime}(t)\right) d t<+\infty$, for any i.
- We cannot drop condition 2^{\prime}.: setting $m=1, \psi_{1}(t, x)=\left[x^{3}-t\right]^{2}$ and $L_{1}\left(x, x^{\prime}\right)={x^{\prime}}^{6}$, we obtain the Lagrangian of Manià, $\psi_{1} \geq 0$ and $\int_{0}^{1} L_{1}\left(\bar{x}(t), \bar{x}^{\prime}(t)\right) d t=\int_{0}^{1} 1 /\left(3^{6} t^{4}\right) d t=+\infty$.

A multi-dimensional variational problem without (LP)

Let $L: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a radial Lagrangian with respect to the gradient, i.e. there exists a function $h: \mathbb{R}^{N} \times[0, \infty) \rightarrow \mathbb{R}$ such that $L(u, \xi)=h(u,|\xi|)$.
Consider the action

$$
\mathcal{I}(u)=\int_{S[a, b]} L(u(x), \nabla u(x)) d x
$$

where $S[a, b]=\left\{x \in \mathbb{R}^{N}: 0<a \leq|x| \leq b\right\}$.
We denote with $\mathbf{L i p}_{r}(S[a, b])$ and $\mathbf{W}_{r}^{1,1}(S[a, b])$ respectively the sets

$$
\begin{gathered}
\left\{u \in \operatorname{Lip}(S[a, b]): u \text { radial, }\left.u\right|_{\partial B(0, a)}=A,\left.u\right|_{\partial B(0, b)}=B\right\} \\
\left\{u \in \mathbf{W}^{1,1}(S[a, b]): u \text { radial, }\left.u\right|_{\partial B(0, a)}=A,\left.u\right|_{\partial B(0, b)}=B\right\}
\end{gathered}
$$

A multi-dimensional variational problem without (LP)

Let $L: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a radial Lagrangian with respect to the gradient, i.e. there exists a function $h: \mathbb{R}^{N} \times[0, \infty) \rightarrow \mathbb{R}$ such that $L(u, \xi)=h(u,|\xi|)$.
Consider the action

$$
\mathcal{I}(u)=\int_{S[a, b]} L(u(x), \nabla u(x)) d x
$$

where $S[a, b]=\left\{x \in \mathbb{R}^{N}: 0<a \leq|x| \leq b\right\}$.
We denote with $\mathbf{L i p}_{r}(S[a, b])$ and $\mathbf{W}_{r}^{1,1}(S[a, b])$ respectively the sets

$$
\begin{gathered}
\left\{u \in \operatorname{Lip}(S[a, b]): u \text { radial, }\left.u\right|_{\partial B(0, a)}=A,\left.u\right|_{\partial B(0, b)}=B\right\} \\
\left\{u \in \mathbf{W}^{1,1}(S[a, b]): u \text { radial, }\left.u\right|_{\partial B(0, a)}=A,\left.u\right|_{\partial B(0, b)}=B\right\}
\end{gathered}
$$

- Let L be continuous and convex with respect to the gradient.

Then,

$$
\inf _{\mathbf{W}_{r}^{1,1}(S[a, b])} \mathcal{I}=\inf _{\mathbf{L i p}_{r}(S[a, b])} \mathcal{I}
$$

(LP) for higher-order Lagrangians

The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order $\nu+1$, with $\nu \in \mathbb{N}$:

- minimize

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), \cdots, x^{(\nu+1)}(t)\right) d t
$$

on a set \mathbf{X} of admissible trajectories $x:[a, b] \rightarrow \mathbb{R}^{N}$ satisfying the boundary conditions $x(a)=A, x(b)=B, \cdots, x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}$.

(LP) for higher-order Lagrangians

The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order $\nu+1$, with $\nu \in \mathbb{N}$:

- minimize

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), \cdots, x^{(\nu+1)}(t)\right) d t
$$

on a set \mathbf{X} of admissible trajectories $x:[a, b] \rightarrow \mathbb{R}^{N}$ satisfying the boundary conditions $x(a)=A, x(b)=B, \cdots, x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}$.
\mathcal{I} exhibits the Lavrentiev phenomenon (LP) whenever

$$
\inf _{\mathbf{W}_{*}^{\nu+1,1}(a, b)} \mathcal{I}<\inf _{\mathbf{W}_{*}^{\nu+1, \infty}}^{(a, b)} \boldsymbol{\mathcal { I } .}
$$

(LP) for higher-order Lagrangians

The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order $\nu+1$, with $\nu \in \mathbb{N}$:

- minimize

$$
\mathcal{I}(x)=\int_{a}^{b} L\left(t, x(t), \cdots, x^{(\nu+1)}(t)\right) d t
$$

on a set \mathbf{X} of admissible trajectories $x:[a, b] \rightarrow \mathbb{R}^{N}$ satisfying the boundary conditions $x(a)=A, x(b)=B, \cdots, x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}$.
\mathcal{I} exhibits the Lavrentiev phenomenon (LP) whenever

$$
\inf _{\mathbf{W}_{*}^{\nu+1,1}(a, b)} \mathcal{I}<\inf _{\mathbf{W}_{*}^{\nu+1, \infty}(a, b)} \mathcal{I}
$$

- Autonomous higher-order Lagrangians can present (LP):

$$
\mathcal{I}(x)=\int_{0}^{1}\left|x^{\prime \prime}(t)\right|^{7}\left[3 x(t)-3\left|x^{\prime}(t)-1\right|^{2}-2\left|x^{\prime}(t)-1\right|^{3}\right]^{2} d t
$$

with boundary conditions $x(0)=0, x(1)=5 / 3, x^{\prime}(0)=1, x^{\prime}(1)=2$ [A.V. Sarychev, 1997].

A class of higher-order Lagrangians without (LP)

Theorem [A. F.]. Let $x:[a, b] \rightarrow \mathbb{R}^{N}$ be a trajectory in $\mathbf{W}^{\nu+1,1}[a, b]$. Assume that:

1. $L_{1}(w, \xi), \cdots, L_{m}(w, \xi): \operatorname{lm}_{\delta}\left[x^{(\nu)}\right] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \mathrm{T}_{\delta}^{\nu}[x] \rightarrow[0,+\infty)$ are continuous and $\psi_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(\nu)}(t)\right) \neq 0$, for any t in $[a, b], i=1, \cdots, m ;$
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(\nu)}(t)\right) d t$.

Then, given $\epsilon>0$, there exist a trajectory x_{ϵ} in $\mathbf{W}^{\nu+1, \infty}(a, b)$ such that $x_{\epsilon}(a)=x(a)$, $x_{\epsilon}(b)=x(b), \cdots, x_{\epsilon}^{(\nu)}(a)=x^{(\nu)}(a), x_{\epsilon}^{(\nu)}(b)=x^{(\nu)}(b)$ and $\mathcal{I}\left(x_{\epsilon}\right) \leq \mathcal{I}(x)+\epsilon$.

A class of higher-order Lagrangians without (LP)

Theorem [A. F.]. Let $x:[a, b] \rightarrow \mathbb{R}^{N}$ be a trajectory in $\mathbf{W}^{\nu+1,1}[a, b]$. Assume that:

1. $L_{1}(w, \xi), \cdots, L_{m}(w, \xi): \operatorname{lm}_{\delta}\left[x^{(\nu)}\right] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \mathrm{T}_{\delta}^{\nu}[x] \rightarrow[0,+\infty)$ are continuous and $\psi_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(\nu)}(t)\right) \neq 0$, for any t in $[a, b], i=1, \cdots, m$;
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), x^{\prime}(t), \cdots, x^{(\nu)}(t)\right) d t$.

Then, given $\epsilon>0$, there exist a trajectory x_{ϵ} in $\mathbf{W}^{\nu+1, \infty}(a, b)$ such that $x_{\epsilon}(a)=x(a)$, $x_{\epsilon}(b)=x(b), \cdots, x_{\epsilon}^{(\nu)}(a)=x^{(\nu)}(a), x_{\epsilon}^{(\nu)}(b)=x^{(\nu)}(b)$ and $\mathcal{I}\left(x_{\epsilon}\right) \leq \mathcal{I}(x)+\epsilon$.

- For strictly positive ψ_{i}, the class of Lagrangians $L\left(t, x, \cdots, x^{\nu+1}\right)=\sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, \cdots, x^{(\nu)}\right)$, does not exhibit (LP) for any boundary conditions.
- Condition 2. is used only to prove that $\int_{a}^{b} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) d t$ are finite. The Theorem can be proved under the more general condition:
$2^{\prime} . \quad \psi_{i} \geq 0$ and $\int_{a}^{b}\left|L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right)\right| d t<+\infty$, for any i.
- We cannot drop condition 2^{\prime} : : setting $m=1$, $\psi_{1}\left(t, x, x^{\prime}\right)=\left[3 x-3\left|x^{\prime}-1\right|^{2}-2\left|x^{\prime}-1\right|^{3}\right]^{2}$ and $L_{1}\left(x^{\prime}, x^{\prime \prime}\right)=\left|x^{\prime \prime}\right|^{7}$, we obtain the Lagrangian of Sarychev, $\psi_{1} \geq 0$ and $\int_{0}^{1} L_{1}\left(\bar{x}^{\prime}(t), \bar{x}^{\prime \prime}(t)\right) d t=\int_{0}^{1} 1 /(2 \sqrt{t})^{7} d t=+\infty$.

" $+\infty$-values" phenomenon

Theorem [A. F.]. Let $\nu \in \mathbb{N} \cup\{0\}$. Assume that:

1. $L_{1}(w, \xi), \cdots, L_{m}(w, \xi): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \mathbb{R}^{N(\nu+1)} \rightarrow[0,+\infty)$ are continuous and ψ_{i} may vanish only on the graph of $\left(\bar{x}, \cdots, \bar{x}^{(\nu)}\right)$, for any $i=1, \cdots, m$, where \bar{x} is a minimizer for \mathcal{I} in $\mathbf{W}_{*}^{\nu+1,1}[a, b]$;
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), \cdots, x^{(\nu)}(t)\right) d t$.

If \mathcal{I} exhibits the Lavrentiev phenomenon, then \mathcal{I} takes the value $+\infty$ in any neighbourhood in $\mathbf{W}_{*}^{\nu+1,1}[a, b]$ of a minimizer.

" $+\infty$-values" phenomenon

Theorem [A. F.]. Let $\nu \in \mathbb{N} \cup\{0\}$. Assume that:

1. $L_{1}(w, \xi), \cdots, L_{m}(w, \xi): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are continuous and convex in ξ;
2. $\psi_{1}, \cdots, \psi_{m}:[a, b] \times \mathbb{R}^{N(\nu+1)} \rightarrow[0,+\infty)$ are continuous and ψ_{i} may vanish only on the graph of $\left(\bar{x}, \cdots, \bar{x}^{(\nu)}\right)$, for any $i=1, \cdots, m$, where \bar{x} is a minimizer for \mathcal{I} in $\mathbf{W}_{*}^{\nu+1,1}[a, b]$;
3. $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), \cdots, x^{(\nu)}(t)\right) d t$.

If \mathcal{I} exhibits the Lavrentiev phenomenon, then \mathcal{I} takes the value $+\infty$ in any neighbourhood in $\mathbf{W}_{*}^{\nu+1,1}[a, b]$ of a minimizer.

- The Theorem applies to the actions of Manià and Sarychev, for instance.
- In case we know a priori that the action does not assume the values $+\infty$ on the admissible trajectories, (LP) does not occur.

References

- A. Cellina, A. F., E.M. Marchini

Reparameterizations and approximate values
of integrals of the Calculus of Variations
journal of Differential Equations 193 (2003), 2, 374-384;

- A. F.

The approximation of higher-order integrals of the Calculus of Variations and the Lavrentiev Phenomenon to appear in siam Journal on Control and Optimization (2004);

- A. F.

The Lavrentiev phenomenon in the Calculus of Variations PhD thesis (2004).

