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The Lavrentiev phenomenon

Let L : [a,b] x RY x RY — [—o0, +00] be the Lagrangian function associated to an
action functional

b
I(x) = / L(t, (1), o' (£))dt

and consider the following sets of admissible trajectories:
AC.[a,b] = {x € AC([a,b];RN) : z(a) = A, z(b) = B},
Lip, [a,b] = {z € Lip([a, b;RN) : z(a) = A, z(b) = B}.
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The Lavrentiev phenomenon

Let L : [a,b] x RY x RY — [—o0, +00] be the Lagrangian function associated to an
action functional

b
I(x) = / L(t, (1), o' (£))dt

and consider the following sets of admissible trajectories:
AC.[a,b] = {x € AC([a,b];RN) : z(a) = A, z(b) = B},
Lip, [a,b] = {z € Lip([a, b;RN) : z(a) = A, z(b) = B}.

The action Z exhibits the Lavrentiev phenomenon (LP) whenever

inf 7 < inf Z.
AC.[a,b] Lip, [a,b]

We cannot calculate a minimizer by using a standard finite-element method.

The set of trajectories is a fundamental part of the physical model.



The Mania example

The action

1) = [ 2O - g

—1

with boundary conditions z(—1) = —1, (1) = 1, exhibits (LP), i.e.

inf 7T< inf 7.
AC,[0,1] Lip. [0,1]

(z(t) = /t is a minimizer for Z in AC.[-1,1].)
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The action

1) = [ 2O - g

—1

with boundary conditions z(—1) = —1, (1) = 1, exhibits (LP), i.e.

inf 7T< inf 7.
AC,[0,1] Lip. [0,1]

(z(t) = /t is a minimizer for Z in AC.[-1,1].)

(LP) persists under perturbations of the Lagrangians:

/&{xmﬁﬂfﬁw-—ﬂ2+emTﬂP“}ﬁw r(—1) = -1, z(1) =1,
—1

exhibits (LP) for any "small" e.

(LP) persists under perturbations of the boundary conditions:

/11 )3 (t) — t)2dt, x(t_1) =xz_1, z(t1) = z1,

where (t_1,z_1) € B((—1,—1),¢), (t1,x1) € B((1,1), ¢€), exhibits (LP) for any
"small” e.



A class of Lagrangians without (LP)

Theorem [A. Cellina, A. F., EM. Marchini]. Let z : [a,b] — R¥ be atrajectory in AC|a, b].
Assume that:

1. Li(x,€), -, Lm(z,€) : Im[z] x RY — R are continuous and convex in &;

2. Y1, ,Um : |a,b] X Im[z] — [c, +00) are continuous, with ¢ > 0;

p m
3. I(z) = / D Li(m(t), o' (£))i(t, z(t))dt.
@ =1

Then, given € > 0, there exists a Lipschitzian trajectory x., a reparameterization of x,
such that z(a) = ze(a), x(b) = z(b) and Z(x¢) < Z(x) + €.



A class of Lagrangians without (LP)

Theorem [A. Cellina, A. F., EM. Marchini]. Let z : [a,b] — R¥ be atrajectory in AC|a, b].
Assume that:

1. Li(x,€), -, Lm(z,€) : Im[z] x RY — R are continuous and convex in &;

2. 1, ,¥m : [a,b] X Im[z] — [c, +00) are continuous, with ¢ > 0;

3. I(a:):/ ZL (z(t), 2" ()i (¢, z(t))dt.

Then, given € > 0, there exists a Lipschitzian trajectory x., a reparameterization of x,
such that z(a) = ze(a), x(b) = z(b) and Z(x¢) < Z(x) + €. []

The class of Lagrangians L(t,z,z") = > " | Li(x, 2")1;(t, «) does not exhibit
(LP) for any boundary conditions; it includes the autonomous Lagrangians.

Condition 2. is used only to prove that ff L;(x(t),z'(t))dt are finite. The Theorem
can be proved under the more general condition:

2'.  ;(t,x) > 0and / i(z(t),x’' (t))dt < o0, for any i.

We cannot drop condition 2’.: setting m = 1, ¢1 (¢, z) = [z3 — t]? and
Li(x,2") = z'®, we obtain the Lagrangian of Mania, ¢»1 > 0 and

[ Li(2(t), 7 (t))dt = [ 1/(30t%)dt =



A multi-dimensional variational problem without (LP)

Let L : RY x RY — R be a radial Lagrangian with respect to the gradient, i.e. there

exists a function h : RY x [0,00) — R such that L(u, ¢) = h(u, |£]).
Consider the action

T(u) = /S @), Vu@)as

where S[a,b] = {x € RV : 0 < a < |z| < b}.

We denote with Lip,.(S[a, b]) and W;*(S[a, b]) respectively the sets
{u c Lip(S[CL, b]) U radial,u|3B(O,a) = A7U|8B(O,b) = B},
{u € Whi(S[a,b]) : uradial, ulpp(0,q) = 4 uloB(0,p) = B}-



A multi-dimensional variational problem without (LP)

Let L : RY x RY — R be a radial Lagrangian with respect to the gradient, i.e. there

exists a function h : RY x [0,00) — R such that L(u, ¢) = h(u, |£]).
Consider the action

T(u) = /S @), Vu@)as

where S[a,b] = {x € RV : 0 < a < |z| < b}.

We denote with Lip,.(S[a, b]) and W;*(S[a, b]) respectively the sets
{u c Lip(S[CL, b]) U radial,u|3B(O,a) = A7U|8B(O,b) = B},
{u € Whi(S[a,b]) : uradial, ulpp(0,q) = 4 uloB(0,p) = B}-

Let L be continuous and convex with respect to the gradient.

Then, inf 1 = inf 7.
Wit (S[a,b)]) Lip,.(S[a,b])



(LP) for higher-order Lagrangians

The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of
order v + 1, with v € N:

minimize Z(z) = /b L(t,z(t), -,z (0))dt

on a set X of admissible trajectories z : [a,b] — R¥ satisfying the boundary
conditions z(a) = A, z(b) = B, - --, (*)(a) = AW, ) (b) = B™),
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The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of
order v + 1, with v € N:

minimize Z(z) = /b L(t,z(t), -,z (0))dt

on a set X of admissible trajectories z : [a,b] — R¥ satisfying the boundary
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7 exhibits the Lavrentiev phenomenon (LP) whenever
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Autonomous higher-order Lagrangians can present (LP):
1
I(x) = / " ()| [32(t) — 3|2 (¢) — 112 = 2] (t) — 1]°]?dt,
0

with boundary conditions z(0) = 0, (1) =5/3, 2’ (0) = 1, z'(1) = 2 [A.V.
Sarycheyv, 1997].



A class of higher-order Lagrangians without (LP)

Theorem [A.F]. Let x : [a, b] — R be a trajectory in W¥*1:1]q b]. Assume that:

1. Li(w,§), -, L (w, &) : Ims[z(*)] x RN — R are continuous and convex in ¢;
2. Y1, ,Pm 2 |a,b] x Ty [z] — [0, +00) are continuous and
Yi(t,x(t), z'(t), - () (t)) #0,forany tin[a,b,i=1,---,m;

3. I(z) = / ’ Emj Li (™) (t), VTV (6)); (¢, z(8), ' (t), - - -, (V) (t))dt.
a =1

Then, given ¢ > 0, there exist a trajectory z. in W¥+1:°°(q, b) such that z.(a) = z(a),

ze(b) = 2(b), -+, 2 (a) = 2 (a), 2 (b) = ) (b) and Z(z¢) < Z(x) + «.

[



A class of higher-order Lagrangians without (LP)

Theorem [A.F]. Let z : [a,b] — R be atrajectory in W¥*1:1[q b]. Assume that:
1. Li(w,§), -, L (w, &) : Ims[z(*)] x RN — R are continuous and convex in ¢;

2. Y1, ,Pm 2 |a,b] x Ty [z] — [0, +00) are continuous and
ity z(t), 2 (t), -, 2 (1) # 0, forany tin [a,b],i = 1, -, m;

3. I(z) = / ’ Emj Li (™) (t), VTV (6)); (¢, z(8), ' (t), - - -, (V) (t))dt.
a =1

Then, given ¢ > 0, there exist a trajectory z. in W¥+1:°°(q, b) such that z.(a) = z(a),
ze(b) = 2(b), -+, 2 (a) = 2 (a), 2 (b) = ) (b) and Z(z¢) < Z(x) + «. O

For strictly positive 1;, the class of Lagrangians
L(t,z, -,z =" 1L, (), 2+ (¢, , - - -, (), does not exhibit (LP)
for any boundary conditions.

Condition 2. is used only to prove that [ L;(z®*) (t),(*+1) (¢))dt are finite. The
Theorem can be proved under the more general condition:

2/, ;> 0and [0 |Li(x®)(t), 2D (¢))|dt < +oo, for any .
We cannot drop condition 2’.: setting m = 1,

P1(t,z,x') = [3x — 3|z’ — 12 — 2|2’ — 1]3]? and Ly (2, 2"") = |z”
the Lagrangian of Sarychev, ¢»; > 0 and

Jo La(@ (1), 2" (8))dt = [g 1/(2v/D)7dt = +oo.

7 we obtain




"+oo-values" phenomenon

Theorem [A. F]. Let v € NU {0}. Assume that:

1. Li(w,&), -, Lm(w, &) : RN x RY — R are continuous and convex in &;

2. 1, Pm ¢ [a,b] x RN+ 0, 4+00) are continuous and 1; may vanish only
on the graph of (z,---,z(®)), foranyi = 1,---,m, where  is a minimizer for Z in
W a, b);

3. I(z) = /b ij Li (™) (), 2D ()); (¢, z(2), - - -, 27 (2))de.
@ =1

If Z exhibits the Lavrentiev phenomenon, then Z takes the value +oo in any

neighbourhood in W% 1[4, b] of a minimizer. O



"+oo-values" phenomenon

Theorem [A. F]. Let v € NU {0}. Assume that:

1. Li(w,&), -, Lm(w, &) : RN x RY — R are continuous and convex in &;

2. 1, Pm ¢ [a,b] x RN+ 0, 4+00) are continuous and 1; may vanish only
on the graph of (z,---,z(®)), foranyi = 1,---,m, where  is a minimizer for Z in
W a, b);

3. I(z) = /b ij Li (™) (), 2D ()); (¢, z(2), - - -, 27 (2))de.
@ =1

If Z exhibits the Lavrentiev phenomenon, then Z takes the value +oo in any

neighbourhood in W% 1[4, b] of a minimizer. O

The Theorem applies to the actions of Mania and Sarycheyv, for instance.

In case we know a priori that the action does not assume the values +oo on the
admissible trajectories, (LP) does not occur.
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