

Marie Curie Research Training Network MULTIMAT Workshop on Multiscale Numerical Methods for Advanced Materials Institute Henri Poincaré, Paris March 14th – 16th, 2005

Numerical relaxation of nonconvex functionals in phase transitions of solids and finite strain elastoplasticity

Sören Bartels[‡], Carsten Carstensen[†] & <u>Antonio Orlando</u>[†] [‡] Department of Mathematics, University of Maryland, College Park [†] Humboldt-Universität zu Berlin, Institut für Mathematik

Thanks to: G. Dolzmann, K. Hackl, A. Mielke, P. Plecháč, A. Prohl.

Supported by: DFG Schwerpunktprogram 1095 AMSMP

Computational microstructures in phase-transition solids & finite-strain elastoplasticity

Overview

Concluding Remarks

A 2D scalar benchmark problem

• Ericksen-James density energy in antiplane shear conditions (m = 1, n = 2) motivates

$$W(F) := |F - (3,2)/\sqrt{13}|^2 |F + (3,2)/\sqrt{13}|^2$$

 $(P) \text{ Minimize } \underbrace{E(u) := \int_{\Omega} W(Du) \, dx + \int_{\Omega} |u - f|^2 \, dx \text{ over } u \in \mathcal{A} = u_D + W_0^{1,4}(\Omega)}_{0,1} \text{ with } \Omega = (0,1) \times (0,3/2), f(x,y) := -3t^5/128 - t^3/3 \text{ for } t = (3(x-1)+2y)(\sqrt{13})$

- \bullet inf $E(\mathcal{A}) < E(u)$ for all $u \in \mathcal{A}$
- All the weakly converging infimising sequences (u_j) of (P) have the same weak limit u

(RP) Minimize $RE(u) := \int_{\Omega} W^{**}(Du) \, dx + \int_{\Omega} |u - f|^2 \, dx$ with $W^{**}(F) = ((|F|^2 - 1)_+)^2 + 4(|F|^2 - ((3,2) \cdot F)^2 / \sqrt{13}).$

- $\bullet \; (RP)$ has a unique solution $u \in \mathcal{A}$ equals to the weak limit u
- $E(u_j) \to \inf E(\mathcal{A}) \Rightarrow \sigma_j := DW(Du_j) \to \sigma := DW^{**}(Du)$ in measure

- No oscillations and interface no sharp
- Simple numerics
 - \Rightarrow Where is the microstructure?

There exists a unique gradient Young measure (C & Plecháč '97)

$$\nu_x = \lambda(F)\delta_{S_+(F)} + (1 - \lambda(F))\delta_{S_-(F)}$$
with $\mathbb{P} = \mathbb{I} - F_2 \otimes F_2$, $\lambda(F) = \frac{\ell_1}{\ell_1 + \ell_2}$, and $S_{\pm}(F) = \begin{cases} \mathbb{P}F \pm F_2(1 - |\mathbb{P}F|^2)^{-1/2} \text{ if } |F| \leq 1; \\ F \text{ if } 1 < |F|. \end{cases}$

Volume fraction from u_h of (RP) on $(\mathcal{T}_{15}, N=2485)$

0.2

0

0.4

0.6

0.8

Convergence rate on uniform meshes for (P) & (RP)

A priori error analysis for (RP_h) $\|u - u_h\|_{L^2} + \|\sigma - \sigma_h\|_{L^{4/3}} \lesssim \inf_{v_h \in \mathcal{A}_h} \|D(u - v_h)\|_{L^4(\Omega)} \lesssim |u - Iu|_{W^{1,4}(\Omega)}$

A posteriori error estimate and adaptivity for $\left(RP \right)$

Convexification () Stabilization

- In general, $E^{c}(u)$ with multipla minima and $D^{2}E^{c}$ positive semidefinite
- Need for stabilization $\Rightarrow E_{\gamma}^{c}(v) = E^{c}(v) + \gamma \|\nabla v\|_{L^{2}(\Omega)}^{2}$

Proof in (C et al '04) of global convergence for a damped Quasi-Newton scheme applied to the minimization of E_{γ}^{c} .

- FEs (u_h) form infimizing sequence for $E^c := \int_{\Omega} W^{**}(Du) \, dx + \mathcal{L}(u)$ such that $u_h \rightharpoonup u$ in $W^{1,p}$ with $u_h \rightarrow u$ in L^p and $Du_h \rightharpoonup Du$ in L^p
- For each h > 0, let u_h minimize $E^c + J_h$ over \mathcal{A}_h

Proof in (B et al '04) of

$$\begin{array}{l} Du_h \to Du \text{ in } L^p \\ \text{for the following stabilization terms for standard low-order FEM} \\ \bullet \quad J_h(v_h) = \sum_{E \in \mathcal{E}_{\Omega}} h_E^{\gamma} \int_E |[Dv_h]|^2 \, ds \\ \bullet \quad J_h(v_h) = \int_{\Omega} h_T^{\gamma-1} |Dv_h - \mathcal{A}Dv_h|^2 \, dx \\ \bullet \quad J_h(v_h) = h^{\gamma} \int_{\Omega} |Dv_h|^2 \, dx \end{array}$$

0.2

Computational microstructures in phase-transition solids & finite-strain elastoplasticity

Computational Microstructures in 2D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ξ

Concluding Remarks

MULTIMAT Workshop on Multiscale Numerical Methods, Paris 2005

• For vector nonconvex variational problems, the relaxed formulation reads

- $\bullet\; W^{qc}$ known only for few energy densities W
- Simpler notions are Polyconvexity and Rank-1-convexity with

 $W^c \le W^{pc} \le W^{qc} \le W^{rc} \le W$

 \bullet Restrict y=y(x) only to some microstructural patterns \Rightarrow Laminates

Finite laminates and microstructures

Numerical lamination: algorithm

Strain hardening in FCC metal crystals (Experiments)

Optical micrographs of Al single crystal (Fig 9-10) & Au single crystal (Fig 12-13) in a shear deformation test (Sawkill & Honeycombe)

Modeling crystal plasticity with single slip system

 \Rightarrow Closed form for $W^{red}_{\gamma_0,p_0}$ (C et al '02)

$$W^{red}_{\gamma_0,p_0}(F) = U(\det F) + \frac{\mu}{2} (\operatorname{tr} F^T F - 2\gamma_0 s \cdot n + \gamma_0^2 s \cdot s - \frac{\left(|s \cdot n - \gamma_0 s \cdot s| - \frac{r - ap_0}{\mu}\right)_+^2}{|s|^2 + \frac{a}{\mu}})$$

 $W^{red}(\alpha)$ is not convex $\Rightarrow W^{red}(F)$ is not rank-one convex $\Rightarrow W^{red}(F)$ is not quasiconvex \Rightarrow microstrctures as minimizers of the energy

Clustering algorithm (C et al. '04)

Input F, initial starting points (z_i) , tolerance

(a) Sampling and reduction

(b) Clustering

(c) Center of attraction

(d) Local search

Output the value of $R^{(1)}W^{red}_{\gamma_0,p_0}(F)$.

Multiple minima (white) of $R^{(1)}W^{red}_{\gamma_0,p_0}(z)$ projected on the plane

 $\alpha-\beta.$ Left: $\lambda=0.1\,\rho=0.6.$ Right: $\lambda=0.1\,\rho=2.1.$

Numerical Example

Minimize
$$\int_\Omega R^{(k)} W(Du)\,dx$$
 over ${\mathcal A}$

 \Rightarrow Orientation not sensitive to FE mesh \Rightarrow Volume fractions not sensitive to FE mesh

 $T: F \in I\!\!R^{3\times 3} \to T(F) = (F, \mathrm{cof} F, \mathrm{det} F) \in I\!\!R^{3\times 3} \times I\!\!R^{3\times 3} \times I\!\!R^{3\times 3}$

 $g: I\!\!R^{3\times 3} \times I\!\!R^{3\times 3} \times I\!\!R \to I\!\!R \text{ convex}$

W polyconvex if W(F)=g(T(F)) for each $F\in I\!\!R^{3\times 3}$

Numerical Example: Ericksen-James energy density

$$W = k_1 (\text{Tr}C - \alpha - \beta)^2 + k_2 C_{12} + k_3 (C_{11} - \alpha)^2 (C_{22} - \alpha)^2$$

W no rank-1 convex $\Rightarrow W$ no quasiconvex

Minimize
$$\int_{\Omega} W^{pc}_{\delta,r}(Du) \, dx + \int_{\Gamma_N} fu \, dx$$
 over \mathcal{A}

Steepest descent method Input $u_h^{(0)}$; ε ; δ ; set j = 0. (a) Evaluate $\langle g_h^{(j)}, v_h \rangle = \int_{\Omega} \sigma_h^{(j)} \cdot Dv_h \, dx + \mathcal{L}(v_h)$ (b) If $||g_h^{(j)}|| \le \varepsilon$ stop else set $r_h^{(j)} = g_h^{(j)}$. (d) Compute t_j : $E_{\delta}^{pc}(u_h^{(j)} + t_j r_h^{(j)}) < E_{\delta}^{pc}(u_h^{(j)})$ (e) Set $u_h^{(j+1)} = u_h^{(j)} + t_j r_h^{(j)}$; j = j + 1 and goto (a).

Numerical relaxation for the single-slip elastoplasticity

Computational microstructures in phase-transition solids & finite-strain elastoplasticity

Computational Microstructures in 2D

Scientific computing in

vector nonconvex variational problem

Concluding Remarks

Open Tasks:

- \bullet Numerical Quasiconvexification. A computational challenge: Compute W^{qc}
- Computational microstructure: Efficient algorithms for efficient numerical relaxation
- Error analysis for vector nonconvex minimisation problems still in their infancy

(C & Dolzmann '04) establish a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads

• How to model surface energy in crystal plasticity?

(Ortiz & Repetto '99, Conti & Ortiz '04) introduce a dislocation line energy and for latent hardening show competition between different contributions with different energy scaling

• How to analyse evolution of microstructures in finite strain elastoplasticity?