
Comput. Methods Appl. Mech. Engrg. 200 (2011) 2710–2726
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
Adaptive finite element heterogeneous multiscale method for
homogenization problems

A. Abdulle ⇑, A. Nonnenmacher
Section of Mathematics, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 August 2009
Received in revised form 29 April 2010
Accepted 8 June 2010
Available online 18 June 2010

Keywords:
Adaptive mesh refinement
A posteriori error estimate
Finite element method
Multiscale method
Heterogenenous multiscale method
Homogenization
0045-7825/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.cma.2010.06.012

⇑ Corresponding author.
E-mail addresses: assyr.abdulle@epfl.ch (A. Abdu

epfl.ch (A. Nonnenmacher).
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by
the finite element heterogeneous multiscale method. Unlike standard finite element methods, our dis-
cretization scheme relies on macro- and microfinite elements. The desired macroscopic solution is
obtained by a suitable averaging procedure based on microscopic data. As the macroscopic data (such
as the macroscopic diffusion tensor) are not available beforehand, appropriate error indicators have to
be defined for designing adaptive methods. We show that such indicators based only on the available
macro- and microsolutions (used to compute the actual macrosolution) can be defined, allowing for a
macroscopic mesh refinement strategy which is both reliable and efficient. The corresponding a posteri-
ori estimates for the upper and lower bound are derived in the energy norm. In the case of a uniformly
oscillating tensor, we recover the standard residual-based a posteriori error estimate for the finite
element method applied to the homogenized problem. Numerical experiments confirm the efficiency
and reliability of the adaptive multiscale method.
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1. Introduction

The importance of adaptive numerical methods for the solution
of partial differential equations (PDEs) cannot be overemphasized.
As many problems exhibit local variations or singularities it is
essential to design mesh refinement strategies capable of equidis-
tributing the approximation error and in turn optimizing the com-
putational effort. Such strategies are based on a posteriori error
analysis allowing to define computable (local) error indicators for
mesh adaptation depending on the available numerical solution.
A large amount of literature concerned with a posteriori error anal-
ysis is nowadays available for the numerical solution of elliptic
PDEs solved by the finite element method (FEM) (see [42,11] and
the references therein). However for some classes of problems such
as problems with a rapidly oscillating tensor, the standard a poste-
riori error analysis does not usually apply, as standard FEM cannot
be used. Indeed, the standard FEM usually fails to converge to the
true solution, unless the smallest scale is discretized by the FE
mesh. Computations with such meshes involve a huge number of
degrees of freedom and are often too costly and sometimes even
impossible with today’s computer resources.

Considerable effort has been devoted in the past few years to
design multiscale methods capable of discretizing elliptic PDE with
ll rights reserved.
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multiple scales. In this paper we focus on homogenization prob-
lems. Multiscale FEMs for elliptic problems (based on multiscale
basis functions) have been pioneered by Babŭska and Osborn
[13,14]. Among the recent literature and strategies for such prob-
lems, without attempting to be exhaustive, we mention the multi-
scale finite element method (MsFEM) by Hou et al. [27], the two-
scale FEM developed by Matache and Schwab [31], the sparse
FEM proposed by Hoang and Schwab [26], the multigrid homoge-
nization method proposed by Neuss et al. [35] and the heteroge-
neous multiscale method (HMM) introduced by E and Engquist
[24] (see also the review [7] for additional references). We also no-
tice that there is a huge literature in the structural mechanics and
engineering communities concerned with micro–macro methods
for multiscale PDEs. Again without being exhaustive, we mention
Yu and Fish [44], Terada and Kikuchi [41], Kouznetsova et al. [29]
and Miehe et al. [32].

Despite this flourishing activity around the design and control
of multiscale solvers, rigorous analysis of adaptive methods for
FEMs applied to multiscale problems has only rarely been
addressed and is still an underdeveloped research area. It is fair
to say that success in application of many if not all the aforemen-
tioned multiscale methods will also depend on efficient and
reliable adaptive strategies. As we will see throughout this work,
the savings in computational cost achieved when using adaptive
methods are even more dramatic than in problems featuring a
single scale as costly microscale computations can be avoided or
re-used.
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1 A generalization of this notion, called H-convergence has been introduced by
Murat and Tartar [34].
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In this paper we present an a posteriori error analysis for the so-
called finite element heterogeneous multiscale method (FE-HMM).
A priori error analysis for this method for elliptic problems has
been obtained in [25,2] (semi-discrete analysis) and in [1,5,4] (fully
discrete analysis). Discontinuous Galerkin FEM has been studied in
[6,10] and problems in elasticity in [3]. We refer to [7] for an exten-
sive review. Concerning a posteriori error analysis, we note that
first results for the FE-HMM have been obtained in [39]. We briefly
put in perspective the results obtained in [39] with the results of
the present paper which are obtained in a completely different
manner by using techniques much closer to the standard tech-
niques for residual based a posteriori error analysis [11,42]. The
analysis performed in [39] relies on a reformulation of the FE-
HMM in a two-scale framework [36]. In this framework, one adds
the microscopic variable as a supplementary variable, doubling the
size of the limiting problem. The reformulation of the FE-HMM in
this framework is based on a tensor product FEM with quadrature
in the slow variable. As a consequence, the a posteriori estimates in
[39] are obtained in a two-scale norm over X � Y (here X is the
physical domain and Y the domain of the microscopic variable)
and not in a norm related to the physical domain. Deriving optimal
a priori or a posteriori error estimates in the energy norm for the
physical domain from the results obtained in [39] are not straight-
forward and such results have not yet been obtained. In our ap-
proach the a posteriori error estimates for the upper and lower
bounds are derived in the energy norm of the physical domain.
The analysis of [39] is also restricted to the class of homogenization
problems with tensor given in an explicit two-scale form, i.e.,
ae = a(x,x/e) and periodicity in the fast variables x/e (see [39, Sec-
tion 3]). We do not need an explicit decomposition and our analy-
sis applies to general (non-periodic) tensors (though it involves a
data approximation error which can only be explicitly estimated
with additional spatial assumptions for the fast variable such as
periodicity or random homogeneity). Finally, the analysis in [39]
relies on the knowledge (a priori) of the exact periodicity of the
problem as the sampling domains are assumed to span exactly
one period in each spatial direction (see [39, Remark 3.6]) while
our estimates are derived and hold for general sampling domains
of size d > e. We close this comparison by noting that in the special
case of a periodic tensor ae = a(x,x/e) and assuming exact micro-
problems we recover the classical a posteriori analysis results that
one would obtain by applying the available theory [42,11,18] to the
homogenized problem. Thus, our estimates seem to be consistent
with usual adaptive procedures for the macroproblem.

The outline of this paper is as follows. In Section 2 we describe
our model problem and recall briefly the classical adaptivity the-
ory. In Section 3 we recall the FE-HMM, the numerical method
for which we will provide the a posteriori error analysis. Our main
results consisting of upper and lower a posteriori bounds are stated
in Section 4 and the full analysis is performed in Section 5. We
illustrate in Section 6 the a posteriori analysis by a series of numer-
ical experiments quantifying the efficiency and reliability of our
bounds and conclude with some remarks on future work based
on the analysis presented here. The results presented in this paper
have been announced in [9] (without proofs). In this paper we give
the detailed proofs of our a posteriori error estimates for a more
general setting than considered in [9] and many additional numer-
ical experiments.

Notation. In what follows, C > 0 denotes a generic constant,
independent of e, whose value can change at any occurrence but
depends only on the quantities which are indicated explicitly. For
r ¼ ðr1; . . . ; rdÞ 2 Nd, we denote jrj ¼ r1 þ � � � þ rd; Dr ¼ @r1

1 � � � @
rd
d .

We will consider the usual Sobolev space H1(X) = {u 2 L2(X);
Dru 2 L2(X),jrj 6 1}, with norm kukH1ðXÞ ¼ ð

P
jrj61kD

ruk2
L2ðXÞÞ

1=2. We
will also consider H1

0ðXÞ the closure of C10 ðXÞ for the k � kH1ðXÞ norm
and the spaces Wl,1(X) = {u 2 L1(X); Dru 2 L1(X), jrj 6 l}. For the
unit cube Y = (0,1)d, we will consider W1

perðYÞ ¼ fv 2 H1
perðYÞ;R

Y v dx ¼ 0g, where H1
perðYÞ is defined as the closure of C1perðYÞ

(the subset of C1ðRdÞ of periodic functions in Y). Finally, we will

use the Frobenius matrix norm kakF :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
P

jjaijj2
q

.

2. Model problem and classical adaptivity theory

In this section we briefly discuss the class of multiscale
problems that we consider in this paper and review classical
coarse-graining techniques such as homogenization. We also dis-
cuss the standard adaptive strategy used for (single scale) elliptic
problems discretized by the FEM.

2.1. Model problem and homogenization

We consider the second-order elliptic problem in the domain
X � Rd

�r � ðaerueÞ ¼ f in X;

ue ¼ gD on @XD;

ðaerueÞ � n ¼ gN on @XN;

ð1Þ

where oX = oXD [ oXN, with Dirichlet boundary conditions
gD 2 H1/2(oX) imposed on XD (assumed to be of positive measure),
and Neumann boundary conditions gN 2 H�1/2(oX) imposed on
XN.

We assume that the family of tensors, indexed by e, are sym-
metric, satisfy ae(x) 2 (L1(X))d�d and are uniformly elliptic and
bounded, i.e.,

9k;K > 0 such that kjnj2 6 aeðxÞn � n 6 Kjnj2 8n 2 Rd and 8e:
ð2Þ

The multiscale nature of the tensor ae(x) is emphasized by the
superscript e. We will assume f 2 L2(X) (our results are also valid
for f 2 H�1(X)). By applying the Lax–Milgram theorem to the weak
form of (1), we obtain a family of solutions {ue}, bounded in H1

0ðXÞ.
Without making any further assumption on the spatial structure of
the tensor ae(x) (e.g., the form of the heterogeneities) using the
notions of G-convergence introduced by De Giorgi and Spagnolo
[23],1 one can show that there exists a symmetric tensor a0(x) and
a subsequence of {ue} which weakly converges to an element
u0 2 H1

0ðXÞ, where u0 is the solution of the so-called homogenized
or upscaled problem

�r � ða0ru0Þ ¼ f in X;

u0 ¼ gD on @XD;

ða0ru0Þ � n ¼ gN on @XN:

ð3Þ

The homogenized tensor a0(x) can be shown to be symmetric and to
satisfy kjnj2 6 a0ðxÞn � n 6 Kjnj2; 8n 2 Rd and thus, (3) has a unique
solution. If some additional spatial structure is assumed on ae(x),
(for example if ae(x) = a(x,x/e) and is periodic in its second argu-
ment), then classical results in homogenization theory (see
[28,22]) show that the whole sequence {ue} weakly converges to
an element u0 2 H1

0ðXÞ. In this case, we can characterize the homog-
enized tensor a0(x) at x 2X by an average (integral) involving d
boundary value problems (the cell problems). Notice that in this
case, one has in general infinitely many cell problems to solve in
order to compute the matrix-valued function a0(x) in X.
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2.2. Adaptive FEM for single scale problems

Essential ingredients for adaptivity are a posteriori estimators.
These are computable quantities depending on the actual FE solu-
tion and data that give information on the distribution of the error
over the FE mesh and allow to refine or coarsen the triangulation
where appropriate. As mentioned in the introduction, the ultimate
goal is to find a mesh which equidistributes the approximation er-
ror over all elements and to optimize the computational effort.
Among the various approaches for a posteriori error estimators
for single scale elliptic problems we mention estimators based on
local residuals, on local boundary value problems or on local super-
convergent properties (see [42,11] for an overview and references).
More recently, error estimators in quantities of interest have been
introduced (see [11, Chapter 8]), where the mesh is refined in
terms of a certain (physical) quantity Q(u) relevant for a specific
design decision. We also mention the recent effort concerning
model adaptivity for multiphysics problems (see [38] and the ref-
erences therein).

In this work we use a residual-based estimator as presented in
[42,11,33,37]. For such estimators, one defines on every element K
of a triangulation a computable local error indicator gH(K) consist-
ing of an error residual and a jump residual. The sum over all ele-
ments of gH(K)2 gives the global error indicator gH(X)2, which has
to be related to the error u � uH in a suitable manner. An upper
bound of the error in terms of gH(X) ensures the effectivity of
the estimate, while a lower bound ensures its efficiency. By using
the local error indicator, one can identify and refine those elements
which contribute the most to the global error. The marked ele-
ments are then refined in order to equidistribute the error among
the FE mesh.

The overall procedure can be described as follows. Starting with
a conforming mesh T H we iteratively apply the following proce-
dure in order to adapt the mesh

SOLVE! ESTIMATE!MARK! REFINE:

In the SOLVE procedure we solve the PDE to obtain the numerical
solution uH. Based on uH we estimate the error indicators gH(K)
for every element in the ESTIMATE procedure. We mark some ele-
ments gT H of the triangulation T H in the MARK procedure with
the aim of equi-distributing the global error among the elements.
Finally, in the REFINE procedure, we refine the marked elements to-
gether with some neighboring elements in order to preserve the
mesh conformity.

3. The FE-HMM

In this section we briefly recall the FE-HMM, the numerical
method considered in this paper for the numerical homogenization
of (1). In a finite element context, the FE-HMM was analyzed in
[1,25,2,5]. The method is based on a macroFEM defined upon quad-
rature points and microFEMs on sampling domains centered
around the macroquadrature points. As input data, the method
takes only the multiscale data (e.g., ae) and it does not rely on pre-
computed homogenized (upscaled) coefficents (e.g., a0(x)).

Macrofinite element space. We consider

VpðX; T HÞ ¼ vH 2 H1
0ðXÞ; vHjK 2 RpðKÞ; 8K 2 T H

n o
; ð4Þ

with macroelements K 2 T H , where T H (a macro partition of X) is
assumed to be shape regular. The diameter of an element K 2 T H

is denoted by HK and we define H ¼maxK2T H HK . Here Rp ¼ Pp is
the space of piecewise polynomials on the element K of total degree
p, if K is a simplicial element (triangle if d = 2, tetrahedron if d = 3). If
K is a quadrilateral element (quadrilateral if d = 2, hexahedron if
d = 3), then Rp ¼ Qp is the space of piecewise polynomials on the
element K of degree p in each variable.

We emphasize that H, the size of the macrotriangulation, is al-
lowed to be much larger than e.

Quadrature formulas. Within each macroelement K 2 T H we con-
sider a quadrature formula fxK‘ ;xK‘

gL‘¼1 where xK‘ are the macro-
quadrature points and xK‘ are the quadrature weights. We further
consider sampling domains Kd‘ ¼ xK‘ þ dI, where I = (�1/2,1/2)d

and d P e, which are centered at the macroquadrature points. To
have optimal convergence results, we need to choose the quadra-
ture formula fxK‘ ;xK‘

gL‘¼1 appropriately on K (we refer to [7] for
details).

Macrobilinear form. For vH; wH 2 VpðX; T HÞ we define

BðvH;wHÞ ¼
X

K2T H

XL
‘¼1

xK‘

jKd‘ j

Z
Kd‘

aeðxÞrvh
K‘
� rwh

K‘
dx; ð5Þ

where vh
K‘
; wh

K‘
are microfunctions defined in (6) on the sampling

domains Kd‘ . As the integrals in (5) are defined on Kd‘ instead of
K, we need to multiply the contribution of the sampling domains
by the appropriate weight, the factor 1=jKd‘ j.

Microsolver. To assemble the macrostiffness matrix, the computa-
tion of the microfunctions vh

K‘
(and wh

K‘
) is needed in the sampling

domains Kd‘ ; ‘ ¼ 1; . . . ;L of each macroelement K.
The microproblems are computed as follows: find vh

K‘
such that

ðvh
K‘
� vH

lin;K‘
Þ 2 SqðKd‘ ; T hÞ andZ

Kd‘

aeðxÞrvh
K‘
� rzh dx ¼ 0 8zh 2 SqðKd‘ ; T hÞ; ð6Þ

where

vH
lin;K‘
ðxÞ ¼ vðxK‘

ÞH þ ðx� xK‘
Þ � rvHðxK‘

Þ ð7Þ

is a linearization of the macrofunction vH at the integration point xK‘

(see [7,25] for details). Here, SqðKd‘ ; T hÞ is defined as

SqðKd‘ ; T hÞ ¼ fzh 2WðKd‘ Þ; zhjT 2 RqðTÞ; T 2 T hg; ð8Þ

where WðKd‘ Þ determines the boundary conditions for the coupling
condition used for computing the microfunctions vh

K‘
(or wh

K‘
). Here,

T H denotes a (micro) partition of the sampling domain Kd‘ . The
diameter of an element T 2 T h is denoted by hT and h ¼
maxT2T h

hT . Various choices are possible for the coupling conditions
and we will consider

WðKd‘ Þ ¼W1
perðKd‘ Þ ð9Þ

or

WðKd‘ Þ ¼ H1
0ðKd‘ Þ: ð10Þ

We will say that the boundary conditions for (6) are given by (9) if
SqðKd‘ ; T hÞ �W1

perðKd‘ Þ (periodic coupling), and that they are given
by (10) if SqðKd‘ ; T hÞ � H1

0ðKd‘ Þ (Dirichlet coupling).

Variational problem. To determine the macrosolution of the FE-
HMM we finally solve the following macrovariational problem: find
uH 2 VpðX; T HÞ such that

BðuH;vHÞ ¼
Z

X
f vH dxþ

Z
@XN

gNvH dx� BðgD; vHÞ 8vH 2 VpðX; T HÞ:

ð11Þ
3.1. Sources of error in the HMM

The first objective of this method is to numerically capture the
effective (homogenized) solution u0 of (3). As the numerical
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method depends on macro- and microFEMs, and in turn on macro-
and micromeshes, the convergence results will also depend on
these quantities [1]. In addition, it will also depend on a so-called
modeling error, quantifying the upscaling procedure itself and
depending on the coupling condition, the sampling domain size
and the spatial structure of the oscillating tensor ae.

In what follows we provide a list of all the sources of errors in
the numerical scheme which can be obtained from an a priori esti-
mate [1,7,25]. Following the framework of [7], we have the follow-
ing decomposition of the error

ku0 � uHk 6 ku0 � u0;Hk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
errmac

þku0;H � �uHk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
errmod

þk�uH � uHk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
errmic

;

where errmac, errmod and errmic are macro, modeling and microerror,
respectively. Here, u0 is the solution of (11), �uH is the FE-HMM solu-
tion of (11) using exact microsolution (i.e., we solve (6) in WðKd‘ Þ)
and u0,H is the FEM solution of the (usually unknown) problem (3)
in the space V1ðX; T HÞ.

We have the following estimates for the various components
(for simplicity, we describe them for piecewise linear macro- and
microFEs only).

� errmac is the error from a standard FE approximation (with
numerical quadrature) of (3) in V1ðX; T HÞ. We have errmac 6 CH
in the H1 norm and errmac 6 CH2 in the L2 norm.
� errmic is the error from the FE approximation of the microprob-

lems in S1
hðKd; T hÞ. The microerror contributes to the global error

through the macrobilinear form. We get (under appropriate
regularity of ae and appropriate boundary conditions)
errmic 6 C h

e

� �2
for both the H1 and L2 norm (see [10] for details).

� errmod is the error introduced by the upscaling procedure and
the coupling of macro- and microFEMs. This error depends on
the structure of the tensor ae, the boundary conditions of the
microproblem (i.e., the coupling of the micro- to the macroFE
spaces) and the sampling domain size d, but is independent of
H and h. In general this error reads errmod 6 CsupK2T H ;xj;K2K

ka0ðxj;KÞ � �a0
KkF where �a0

K is defined similarly as in (14), but rely-
ing on exact micro functions. In case of a periodic tensor
ae = a(x,x/e), periodic coupling, sampling domains covering an
integer number of periods and ‘‘collocation” in the slow variable
of the oscillating tensor, errmod = 0.

These various errors are further described in Section 5.5.2 and
in [7].

3.1.1. Fine scale error
In the L2 norm one can estimate kue � uHkL2ðXÞ by using the tri-

angle inequality and

kue � u0kL2ðXÞ 6 Ce:

For the H1 norm, uH does not converge to ue as already u0 does not
converge to ue. Indeed, u0 (or uH) does not capture the microoscilla-
tion of ue resulting in an Oð1Þmismatch when estimating their gra-
dients. One can nevertheless post-process the solution uH and the
microsolutions uh

K (available in the sampling domains Kd � K) using
ideas from the construction of correctors in homogenization theory
[15]. The post-processed FE-HMM solution uH,e satisfies [1,7]

kue � uH;ekH1ðXÞ 6 C H þ
ffiffiffi
e
p
þ h

e

� �
;

where H1ðXÞ is a broken norm defined by kukH1ðXÞ ¼P
K2T H
kruk2

L2ðKÞ

� 	1=2
as the reconstructed solution may have jumps

on the interfaces of two neighboring elements. Notice the additional
factor

ffiffiffi
e
p

coming from a boundary layer as the corrector does not
satisfy the right boundary conditions on oX.
4. Main results

The goal is to adapt the macromesh according to potential sin-
gularities which may be caused by reentrant corners or high con-
trast in macroscopic coefficients. Localized ‘‘macroscopic”
residuals determine how the macroscopic mesh has to be adapted.
We have to recover these residuals from suitably averaged micro-
scopic quantities as they are not readily available. We will see that
the overhead for deriving these macroscopic residuals is minimal
as they are based on microscopic solutions already required for
the computation of the macrostiffness matrix.

For simplicity, piecewise linear macroFE (simplicial elements)
will be used. As a consequence, we will use a quadrature formula
with L ¼ 1 and integration node xK‘ ¼ xK localized at the barycen-
ter of the macroelement K, and a weight xK‘

¼ xK ¼ jKj (see Sec-
tion 3). Moreover, we choose piecewise linear or bilinear
microFE, i.e., q = 1 in (8) and R1 ¼ P1 or Q1.

Furthermore, we consider in our analysis only homogeneous
Dirichlet boundary conditions uD = 0 and uN = ;, but emphasize that
the a posteriori estimates can be derived for more general bound-
ary conditions (such as Neumann or Robin) following the lines of
the results presented in this article. The a posteriori error analysis
could be generalized for higher order FEs or quadrilateral macroFEs
using the ideas in [10].

Let T H denote a conformal mesh and let EH be the set of inter-
faces. We label the two elements sharing an interface e 2 EH as K+

and K�. We consider the microfunctions uh
Kþ and uh

K� , solutions of
the microproblems (6), which correspond to the two sampling do-
mains Kþd and K�d of the elements K+ and K�, respectively. These
microfunctions are constrained by the macrosolution
uH 2 V1ðX; T HÞ of problem (11). We then introduce the following
jump of multiscale fluxes

saeðxÞruhte :¼
1

Kþdj j
R

Kþd
aeðxÞruh

Kþ dx� 1
K�dj j
R

K�d
aeðxÞruh

K� dx
� �

�ne for e R @X;

0 for e 2 @X;

8<:
ð12Þ

where the unit outward normal ne is chosen to be ne = n+. We omit
the index Kd for the microsolutions uh in saeðxÞruhte as the jump
over e involves two sampling domains in adjacent elements. The
multiscale fluxes are the building blocks in the derivation of our
estimates and were first introduced in the context of multiscale dis-
continuous Galerkin methods [6,10].

For each vector ei 2 Rd; i ¼ 1; . . . ; d we consider
wi;h

Kd
2 S1

h ðKd; T hÞ, the solution of the problemZ
Kd

aeðxÞrwi;h
Kd
� rzh dx ¼ �

Z
Kd

aeðxÞei � rzh dx 8zh 2 S1
hðKd; T hÞ:

ð13Þ

It will be convenient for our analysis to introduce a numerically
homogenized tensor (see [10]). We define this tensor a0

K , constant
on each macroelement K, by

a0
K ¼

1
jKdj

Z
Kd

aeðxÞ I þ JT
wh

Kd
ðxÞ

� �
dx; ð14Þ

where Jwh
Kd
ðxÞ is a d � d matrix whose entries are given by

Jwh
Kd
ðxÞ

� �
ij

¼ @wi;h
Kd

� 	
=ð@xjÞ. We emphasize that the above tensor is

only used as a tool in the derivation of the a posteriori error bounds
and is never used for the computation of our error indicators.

Definition 1. Let f H be a piecewise constant approximation of f.
Then the local error indicator gH(K) on an element K is defined
by
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gHðKÞ
2 :¼ H2

Kkf Hk2
L2ðKÞ þ

1
2

X
e�@K

He saeruhte




 


2

L2ðeÞ
:

We furthermore define the data approximation error nH(K) on an ele-
ment K by

nHðKÞ2 :¼ H2
Kkf H � fk2

L2ðKÞ þ a0
K � a0ðxÞ

� �
ruH



 

2

L2ðKÞ;

where a0(x) is the unknown homogenized tensor of problem (3).
We will sometimes consider the indicators and data approxi-

mation terms on a subset x ¼ Ki1

S
Ki2

S
� � �
S

Kin , Kij
2 T H of the

domain X. In this case, we denote the expression obtained by
summing the above quantities over all elements K 2x by gH(x)2

and nH(x)2.
Our first result establishes an a posteriori upper bound for the

error between the macroscopic FE-HMM solution uH and the
homogenized solution u0.

Theorem 2 (A posteriori upper bound). There exists a constant
C > 0 depending only on the shape regularity constant c, the coercivity
and continuity bound (2) , the dimension d and the domain X such
that

ku0 � uHk2
H1ðXÞ 6 C gHðXÞ

2 þ nHðXÞ2
� 	

:

The next result gives an a posteriori lower bound.

Theorem 3 (A posteriori lower bound). There exists a constant
C > 0 depending only on the shape regularity constant c, the coercivity
and continuity bound (2) and the dimension d such that

gHðKÞ
2
6 C ku0 � uHk2

H1ðxK Þ þ nHðxKÞ2
� 	

;

where the domain xK consists of all elements sharing at least one side
with K.

Micro–macro refinement. The above two theorems for the a pos-
teriori lower and upper bound do not require any structure
assumption on the oscillating tensor (such as periodicity) and only
minimal assumptions on regularity. As we assume singularities in
the macroscale, we do not consider explicit a posteriori estimates
for the microproblem (6). As the microsampling domains have sim-
ple geometries (typically squares or cubes), singularities could only
arise due to singularities in the microscale of the conductivity ten-
sor. In that case, standard a posteriori methods could be used to re-
fine the micromeshes in a non-uniform way.

We emphasize that the error indicator gH does depend on the
microsolutions and hence on the micromesh. Thus, a criterion is
needed to determine an appropriate size of the micromesh as we
refine the macromesh through our adaptive procedure. Such a cri-
terion can be deduced from the following theorem.

Theorem 4 (Micro–macrorefinement coupling). Assume that (31)
and (32) hold. Assume further that the cell problem (6) is solved with
periodic boundary conditions if ae is periodic and d=e 2 N� and solved
with Dirichlet boundary conditions otherwise. Then

sup
x2K

a0
K � a0ðxÞ



 


F 6 C HK þ

h
e

� �2
 !

þ errmod; ð15Þ

where C is independent of HK, h, e, and errmod is independent of HK, h.
Remark 5. From estimate (15) we deduce that in order to mini-
mize the error originating from the microFEM, we have to refine
the micromesh in each sampling domain Kd as h

e /
ffiffiffiffiffiffi
HK
p

. Here HK

is the size of the macroelement K of the mesh T H obtained by
the Algorithm 1 described below. Please note that the size h of
the micromesh may vary in different sampling domains. Thus,
h = h(K) is a function of K 2 T H . To simplify the notation, we will
remove the dependency of h on K.
Comparison with single scale results. Our upper and lower bounds
stated above are consistent with the usual (single scale) residual-
based a posteriori estimates. Indeed, suppose ae ¼ aðxeÞ, that exact
microfunctions are used in (6) and that d=e 2 N�. Then

a0
K � a0



 


F � 0 (see Section 5.5.2) and we recover the usual resid-

ual-based indicator and data estimator [42,18].

4.1. Algorithm

The adaptive algorithm for the FE-HMM follows the adaptive
algorithm for standard FEM. It consists of loops of the form

SOLVE! ESTIMATE!MARK! REFINE

in order to generate the new, refined computational grid. However,
due to the multiscale nature of the problem, we need to modify the
procedure accordingly as presented in the following algorithm.

Algorithm 1 (Adaptive FE-HMM).

Solve. For the macro- and micromeshes obtained by REFINE,
compute the microsolutions (only for the refined mac-
roelements) and the macrosolution uH of (11) and
compute and store the multiscale jumps saeðxÞruh

i;Kte

(based on the macroFE basis functions) for the refined
elements during the macroassembly process.

Estimate. Reconstruct the full multiscale jumps saeðxÞruhte

using the macrosolution uH of SOLVE and estimate
the error by computing the indicators gH(K) for all
K 2 T H .

Mark. Identify a subset eT H of T H based on the indicators
gH(K) following Dörfler’s bulk-chasing strategy (Mark-
ing Strategy E, see [42, Chapter 4.1]).

Refine. Refine the elements in the subset eT H and some neigh-
boring elements in order to preserve mesh conformity.
Update the micromesh in the sampling domains of the
refined macroelements according to h /

ffiffiffiffiffiffi
HK
p

e (see
Remark 5).

We discuss two important details for the above algorithm,
namely the carry-over of information and the computation of the
multiscale flux.

Carry-over of information. In contrast to standard (single
scale) adaptive FE methods, in the adaptive FE-HMM most of the
computation time is used for solving the microproblems to obtain
the entries of the macro stiffness matrix. A fundamental feature of
an efficient implementation of an adaptive FE-HMM should thus be
the carry-over of reusable micro data from one iteration to the
next.

In particular, this means that for every element we store the contri-

butions Aij ¼ B uH
i;K ;uH

j;K

� 	
(uH

i;K are the macrobasis functions) of the

microproblems to the macrostiffness matrix and the components of
the corresponding multiscale flux saeðxÞruh

i;Kte. This is done with a
small memory overhead in every iteration and we compute new
data Aij and saeðxÞruh

i;Kte only for those elements which are marked
for refinement and carry-over the existing data Aij and saeðxÞruh

i;Kte

for the remaining, unrefined macrotriangles to the next iteration
(see Fig. 1 for an illustration). In the numerical experiments in
Section 6 we illustrate the amount of work that can be saved follow-
ing this strategy.

Computation of the multiscale flux. Let uH
i;K

n o
be the basis

functions of V1ðX; T HÞ and let uh
i;K be the microsolution of (6)



Fig. 1. Adaptive mesh shown for two iterations. In Fig. (b), for all macroelements shown in white, the multiscale flux saeðxÞruh
i;Kte and the contributions Aij to the

macrostiffness matrix can be carried over from the previous iteration and re-used, whereas for all macroelements shown in red, new solutions of the microproblems and
corresponding multiscale fluxes must be computed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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constrained by uH
i;K , i.e., uh

i;K �uH
i;K

� 	
2 S1ðKd; T HÞ, where Kd � K. In

SOLVE, we compute for every element K

.h
i;K :¼ 1

jKdj

Z
Kd

aeðxÞruh
i;K dx

right after computing the solutions uh
i;K of the microproblem (6) and

store the three corresponding .h
i;K for later use (in the case of two

dimensions when using macrotriangles this represents a 2 � 3
matrix in each macroelement K corresponding to the two compo-
nents of .h

i;K for each macrobasis function uH
i;K ; i ¼ 1; . . . ;3). The

advantage of computing this quantity in the SOLVE instead of the
REFINE step is that we do not need to store the full microsolution
of each macroelement (if we are not interested in a reconstructed
full solution, this significantly reduces the memory requirement).

Denote by uH
K ðxÞ ¼

P3
i¼1aiuH

i;KðxÞ the representation of uH in the
element K with respect to the nodal basis. As the microsolution
uh

i;KðxÞ corresponding to uH
K is linear with respect to uH

K ðxÞ, we can
reconstruct uh

KðxÞ ¼
P3

i¼1aiuh
i;KðxÞ ¼

P3
i¼1uHðxiÞuh

i;KðxÞ where xi are
the nodes of the macrotriangle K. In the ESTIMATE step, where
the macrosolution uH is known from the previous SOLVE step, we
reconstruct

1
jKdj

Z
Kd

aeðxÞruh
K dx

� �
� ne ¼

X3

i¼1

uHðxiÞ.h
i;K � ne

and assemble saeðxÞruh
i;Kte using the previously stored information.

As can be seen from the aforementioned procedure, the computa-
tion of saeðxÞruh

i;Kte can be done with minimal memory overhead
and very small extra computational cost.

Remark 6 (Coarsening). We have not considered a coarsening
strategy for two reasons. First, for linear elliptic problems, a quasi-
optimal mesh can usually be obtained without the need of
coarsening strategies (see [40, Chapter 1.5.3]). Second, due to the
macro–micro coupling, new extra microproblems must be solved
when elements are coarsened, whereas information can be re-used
if we omit coarsening the macroelements.
5. Proof of the main results

5.1. Interpolation, trace and inverse estimates

Before proving the estimates for the upper and lower bound, we
recall some interpolation, trace and inverse estimates that we will
need for our analysis.
Clément interpolation operator (see [21]).
Let IH : H1ðXÞ ! V1ðX; T HÞ be the Clément interpolation opera-

tor. This is a linear operator with the property that for all v 2 H1(X)
and K 2 T H

kv � IHvkL2ðKÞ 6 CHKkrvkL2ðNðKÞÞ ð16Þ
and

krðv � IHvÞkL2ðKÞ 6 CkrvkL2ðNðKÞÞ; ð17Þ

where N(K) is a neighborhood of K that consists of all elements of
T H which have a non-empty intersection with K.

Trace inequality (see [12, Theorem 3.10]).
Consider an element Ke of the triangulation T H with side e 2 EH .

Then, for v 2 H1(Ke) we have

kvkL2ðeÞ 6 CH1=2
e krvkL2ðKeÞ þ CH�1=2

e kvkL2ðKeÞ: ð18Þ

Inverse inequality (see for example [20]).
For vH 2 VpðX; T HÞ we have

krvHkL2ðKÞ 6 CH�1
K kvHkL2ðKÞ: ð19Þ
Remark 7. The combination of the Clément interpolation estimates
and the trace inequality yields for an element Ke with side e 2 EH

kv � IHvkL2ðeÞ 6 CH1=2
e krðv � IHvÞkL2ðKeÞ þ CH�1=2

e kv � IHvkL2ðKeÞ

6 CH1=2
K krvkL2ðNðKeÞÞ: ð20Þ
5.2. Error representation formula

The representation formula (22) in Lemma 9 is the central tool
to derive our a posteriori bounds, as it allows to link the bilinear
form for the homogenized solution with the FE-HMM. We first
prove Lemma 8, needed to derive the representation formula.

Lemma 8. Let vh
K ;w

h
K be the solutions of (6) constrained by

vH;wH 2 V1ðX; T HÞ with boundary conditions given by (9) or (10) .
Then

1
jKdj

Z
Kd

aeðxÞrvh
K � rwh

K dx ¼ 1
jKj

Z
K

a0
KrvH � rwH dx:
Proof. The proof is similar to the proof of (A.1) in [2, Appendix A]
or formula (63) in [7] (for the convenience of the reader we will
recall it). While in the aforementioned results, a specific structure
of the tensor ae was used, we prove the result without any assump-
tion on ae (except for the positivity and ellipticity).
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First, we notice that the (unique) solution of (6) can be written as

vh
KðxÞ ¼ vHðxÞ þ

Xd

i¼1

wi;h
Kd
ðxÞ @v

HðxÞ
@xi

; ð21Þ

where wi;h
Kd
2 S1ðKd; T hÞ; i ¼ 1; . . . ;d are the solutions of (13).

From this we deduce

1
jKdj

Z
Kd

aeðxÞrvh
K � rwh

K dx

¼ 1
jKdj

Z
Kd

aeðxÞrvh
K � r wH þ

Xd

i¼1

wi;h
Kd
ðxÞ @wHðxÞ

@xi

 !
dx

¼ 1
jKdj

Z
Kd

aeðxÞr vH þ
Xd

i¼1

wi;h
Kd
ðxÞ @v

HðxÞ
@xi

 !
� rwH dx;

where we used that @wH ðxÞ
@xi

is constant, wi;h
Kd
2 S1ðKd; T hÞ and Eq. (6).

Recalling the definition (14) of a0
K we obtain

1
jKdj

Z
Kd

aeðxÞrvh
K � rwh

K dx

¼ 1
jKdj

Z
Kd

aeðxÞ I þ JT
whðxÞ

� 	
dxðrvH � rwHÞ

¼ a0
KrvH � rwH ¼ 1

jKj

Z
K

a0
KrvH � rwH dx;

where we used again that rvH and rwH are constant. h

We define the error as eH :¼ u0 � uH where u0 is the homoge-
nized solution of (3) and uH is the FE-HMM solution of problem
(11). We shall now obtain an error representation formula which
is crucial for the derivation of the a posteriori bounds.

Lemma 9. For all v 2 H1
0ðXÞ, we have

B0ðeH;vÞ ¼
Z

X
f v dx�

X
e2E

Z
e

saeðxÞruhtev ds

þ
X

K2T H

Z
K

a0
K � a0ðxÞ

� �
ruH � rv dx ð22Þ

where uH is the solution of (11) and uh
K are the corresponding microso-

lutions (6) and where the multiscale jump saeðxÞruhte is defined in (12).
Proof. We proceed in two steps. First, we need the following
formula

1
jKdj

Z
Kd

aeðxÞruh
K dx ¼ a0

KruH
K ; ð23Þ

which is obtained by using the expansion (21) and similar argu-
ments as used for the proof of Lemma 8. Second, we prove that
for all v 2 H1

0ðXÞ we haveX
K2T H

Z
K

a0
KruH � rv dx ¼

X
e2EH

Z
e

saeðxÞruhtev ds: ð24Þ

Integration by parts and the use of (23) givesX
K2T H

Z
K

a0
KruH �rv dx

¼
X

K2T H

Z
@K

a0
KruH

� �
�nv ds�

Z
K
r� a0

KruH
� �

v dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼
X

K2T H

Z
@K

1
jKdj

Z
Kd

aeðxÞruh
K dx

� �
�nv ds

¼
X
e2EH

Z
e

1
Kþd
�� �� Z

Kþ
d

aeðxÞruh
Kþ dx� 1

K�d
�� �� Z

K�d

aeðxÞruh
K� dx

 !
�ne

" #
v ds

¼
X
e2EH

Z
e
saeðxÞruhtev ds;
where we used the definition (12) of the multiscale flux. Finally, we
obtain the error representation formula

B0ðeH;vÞ ¼ B0ðu0;vÞ � B0ðuH;vÞ

¼
Z

X
fv dx�

X
K2T H

Z
K

a0ðxÞruH � rv dx

¼
Z

X
fv dx�

X
e2EH

Z
e

saeðxÞruhtev ds

þ
X

K2T H

Z
K

a0
K � a0ðxÞ

� �
ruH � rv dx: �
5.3. Upper bound (Proof of Theorem 2)

To proceed with the proof of Theorem 2, we consider the error
representation formula (22) and choose the test function v :¼ eH.
We recall that IH denotes the Clément interpolation operator (see
(16) and (17)) and f H denotes a piecewise constant approximation
of f over T H . By noting that

BðuH; IHeHÞ ¼
X

K2T H

Z
K

f ðIHeHÞdx;

we obtain

B0ðeH; eHÞ ¼
Z

X
feH dx�

X
e2EH

Z
e

saeðxÞruhteeH ds

þ
X

K2T H

Z
K

a0
K � a0ðxÞ

� �
ruH � reH dx

¼
Z

X
feH dx�

X
e2EH

Z
e

saeðxÞruhteeH ds

þ
X

K2T H

Z
K

a0
K � a0ðxÞ

� �
ruH � reH dxþ BðuH; IHeHÞ

�
X

K2T H

Z
K

f ðIHeHÞdx

¼
Z

X
f HðeH � IHeHÞdxþ

Z
X
ðf � f HÞðeH � IHeHÞdx

�
X
e2EH

Z
e

saeðxÞruhteðeH � IHeHÞds

þ
X

K2T H

Z
K

a0
K � a0ðxÞ

� �
ruH � reH dx:

We define /H :¼ eH � IHeH. Using the Cauchy–Schwarz inequality we
obtain the following estimate

B0ðeH; eHÞ 6 C
X

K2T H

kf HkL2ðKÞk/
HkL2ðKÞ þ

X
K2T H

kf � f HkL2ðKÞk/
HkL2ðKÞ

 
þ
X
e2EH

saeðxÞruhte




 



L2ðeÞ
k/HkL2ðeÞ

þ
X

K2T H

a0
K � a0ðxÞ

� �
ruH



 


L2ðKÞkreHkL2ðKÞ

!
:

With the help of the Clément interpolation estimates (16) and (20)
we deduce that

B0ðeH; eHÞ 6 C
X

K2T H

HKkf HkL2ðKÞkreHkL2ðNðKÞÞ

 
þ
X

K2T H

HKkf � f HkL2ðKÞkreHkL2ðNðKÞÞ

þ
X
e2EH

H1=2
e saeðxÞruhte




 



L2ðeÞ
kreHkL2ðNðKeÞÞ

þ
X

K2T H

a0
K � a0ðxÞ

� �
ruH



 


L2ðKÞkreHkL2ðKÞ

!
:
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The finite overlapping property of the neighborhoods N(K) allows us
to estimate

P
K2T H
kreHkL2ðNðKÞÞ 6 C

P
K2T H
kreHkL2ðKÞ, where C

depends only on the shape regularity of the triangulation and the
dimension d. Using the coercivity of B0(�, �) and the triangle inequal-
ity yields

kreHk2
L2ðXÞ 6 C

X
K2T H

H2
Kkf Hk2

L2ðKÞ þ
X
e2EH

He saeðxÞruhte




 


2

L2ðeÞ

 

þ
X

K2T H

H2
Kkf � f Hk2

L2ðKÞ þ
X

K2T H

a0
K � a0ðxÞ

� �
ruH



 

2

L2ðKÞ

!
:

Using Poincaré inequality leads to

ku0 � uHk2
H1ðXÞ 6 CðgHðXÞ

2 þ nHðXÞ2Þ

as stated in Theorem 2.

5.4. Lower bound (Proof of Theorem 3)

To derive the lower bound, we will use a construction involving
bubble functions in a space eV 1

H 	 V1
H which is defined over a refine-

ment eT H of T H . We assume that the refinement eV 1
H is chosen such

that every K 2 T H has an interior node ~xK 2 K n @K in eT H and every
edge e of T H not on the boundary oX has an interior node in eT H .
We emphasize once again that the use of the representation for-
mula (22) allows largely to follow the classical construction of
[42]. In what follows we estimate successively interior and jump
residuals.

5.4.1. Interior residual
For any K 2 T H consider an interior bubble function, i.e., a func-

tion wK 2 eV 1
H such that 0 6 wK 6 1; wKð~xKÞ ¼ 1 and wK � 0 on XnK.

We choose v :¼ wK f H 2 H1
0ðXÞ as a test function in the error rep-

resentation formula (22) and obtainZ
K

f HðwK f HÞdx ¼ B0ðeH;wK f HÞ �
Z

K
ðf � f HÞwK f H dx

�
Z

K
a0

K � a0ðxÞ
� �

ruH � r wK f H
� �

dx:

Using the equivalence of norms on a finite-dimensional space we
have (see [11, Theorem 2.2] for details)

Ckf Hk2
L2ðKÞ 6

Z
K

f H wK f H
� �

dx:

Furthermore, the continuity of B0(�, �), the Cauchy–Schwarz inequal-
ity and the inverse inequality (19) give

f H


 

2

L2ðKÞ 6 C reH


 



L2ðKÞ r wK f H
� �

 



L2ðKÞ þ f � f H


 



L2ðKÞ wK f H


 



L2ðKÞ

�
þ a0

K � a0ðxÞ
� �

ruH


 



L2ðKÞ rðwK f HÞ


 



L2ðKÞ

	
6 C H�1

K reH


 



L2ðKÞ þ f � f H


 



L2ðKÞ

�
þH�1

K a0
K � a0ðxÞ

� �
ruH



 


L2ðKÞ

	
wK f H


 



L2ðKÞ:

Finally, since 0 6 wK 6 1 we have wK f H


 



L2ðKÞ 6 kf
HkL2ðKÞ and we ob-

tain the interior residual

H2
Kkf Hk2

L2ðKÞ 6 C kreHk2
L2ðKÞ þ H2

Kkf � f Hk2
L2ðKÞ

�
þ a0

K � a0ðxÞ
� �

ruH


 

2

L2ðKÞ

	
: ð25Þ
5.4.2. Jump residual
Let e 2 EH be an interior interface and let K1 2 T H; xe 2 e be an

interior node and K2 2 T H such that K1 \ K2 = e. Let we 2 eV 1
H be a

bubble function such that we(xe) = 1, we � 0 on Xn(K1 [ K2). Using
again the equivalence of norms on a finite-dimensional space we
haveZ

e
we ds P CjejP CHd�1

e ;

where jej denotes the measure of e and where the constant C de-
pends only on the shape regularity and the dimension d. As the mul-
tiscale jump saeðxÞruhte is constant, we haveZ

e
saeðxÞruhteweds ¼ saeðxÞruhte

Z
e

we ds

P Cjej�1=2
saeðxÞruhte




 



L2ðeÞ

Hd�1
e

P CH
d�1

2
e saeðxÞruhte




 



L2ðeÞ

: ð26Þ

Next, we set v = we in the representation formula (22) (recall
that v � 0 on Xn(K1 [ K2)) and obtainZ

e
saeðxÞruhtewe ds

¼
X
K1;K2

Z
Ki

f we dx�
Z

Ki

a0ðxÞreHrwe dx

 

þ
Z

Ki

a0
Ki
� a0ðxÞ

� 	
ruHrwe dx

!

6 C
X
K1;K2

�
HKi
kf HkL2ðKiÞ þ kreHkL2ðKiÞ þ HKi

kf � f HkL2ðKiÞ

þ a0
Ki
� a0ðxÞ

� 	
ruH




 



L2ðKiÞ

�
H�1

Ki
kwekL2ðKiÞ;

where we used krwekL2ðKÞ 6 CH�1
K kwekL2ðKÞ 6 CðHKÞ

d�2
2 , which follows

form the inverse inequality (19). The inequality (26) and the above
estimate for kwekL2ðKÞ yield

He saeðxÞruhte




 


2

L2ðeÞ
6 C

X
K1;K2

�
H2

Ki
kf Hk2

L2ðKiÞ
þ kreHk2

L2ðKiÞ

þH2
Ki
kf � f Hk2

L2ðKiÞ
þ a0

Ki
� a0ðxÞ

� 	
ruH




 


2

L2ðKiÞ

�
:

ð27Þ
5.4.3. Combining interior and jump residuals
We use the interior residual (25) to eliminate kf HkL2ðKÞ from the

jump residual

He saeðxÞruhte




 


2

L2ðeÞ
6 C kreHk2

L2ðxeÞ þ H2
xe
kf � f Hk2

L2ðxeÞ

�
þ a0

K � a0ðxÞ
� �

ruH


 

2

L2ðxeÞ

	
; ð28Þ

where Hxe ¼maxi¼1;2Hi and xe = K1 [ K2. Adding the interior resid-
ual (25)–(28) leads to the desired upper bound

gHðKÞ
2
6 Cðku0 � uHk2

H1ðxK Þ þ nHðxKÞ2Þ

as stated in Theorem 3.

5.5. Data approximation

So far, to derive our a posteriori upper and lower bound, we did
not make any specific spatial assumption on the oscillating tensor
(e.g., periodicity, random stationarity in the fast variable). In addi-
tion, the sampling domain size as well as boundary conditions of
the micro solution for the HMM were quite general. We notice that
upper and lower bounds involve the data approximation term

nHðKÞ2 :¼ H2
Kkf H � fk2

L2ðKÞ þ a0
K � a0ðxÞ

� �
ruH



 

2

L2ðKÞ:
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The first term of the right-hand side of this equality involves
the usual data approximation term. The second term quantifies
the accuracy of the macro–micro algorithm and it depends on the
macro- and micromeshes of the macro- and microFEMs, on the
structure of the oscillating tensor ae and on the coupling condition
between micro and macrosolver. We first notice that

a0
K � a0ðxÞ

� �
ruH



 

2

L2ðKÞ 6 sup
x2K

a0
K � a0ðxÞ



 

2

FkruHk2
L2ðKÞ;

where we recall that for a given tensor k�kF denotes its Frobenius
norm. Let us then introduce the following tensor

�a0
K ¼

1
jKdj

Z
Kd

aeðxÞðI þ JT
wK ðxÞÞdx; ð29Þ

where Jw(x) is a d � d matrix with entries ðJwK ðxÞÞij ¼ @wi
K

� 	.
ð@xjÞ.

This tensor is computed similarly to the tensor a0
K in (14) but with

functions wi
KðxÞ solving (13) in the exact Sobolev space W(Kd)

instead of its FE approximation S1ðKd; T hÞ. We then consider the fol-
lowing decomposition

a0
K � a0



 


F
6 a0 � a0ðxKÞ


 



F|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
errmac

þ a0ðxKÞ � �a0
K



 


F|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

errmod

þ �a0
K � a0

K



 


F|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

errmic

; ð30Þ

where xK 2 K is the quadrature node located at its barycenter. In the
above equation, errmac and errmic stands for macroscopic and micro-
scopic error, respectively. The analysis of the macroscopic and
microscopic errors relies on regularity assumptions on the homog-
enized and fine scale tensors. This will be analyzed in Section 5.5.1.
The term denoted by errmod (the modeling error) needs additional
assumptions on the structure of ae in order to be quantified (e.g.,
periodicity and random stationarity). This part does not depend
on the discretization parameters. As it does not depend on the spe-
cific form of the numerical method, previously derived results can
be used to analyze this contribution to the error. We will examine
in Section 5.5.2 the case of a non-uniformly periodic tensor and
comment on the case of a random tensor.

Regularity assumptions. For the oscillating tensor ae we assume

aejK 2W1;1ðKÞ; 8K 2 T H and ae
ij

��� ���
W1;1ðKÞ

6 CKe�1 for i; j¼ 1; . . . ;d:

ð31Þ

In the analysis we will often use a constant C = maxKCK independent
of K. It is clear that if (31) is valid for an initial mesh, assumed to be
aligned with the possible discontinuities of ae, it is still valid (with
the same value of C) for every mesh obtained by refining the initial
one. In view of (31) we see that ae is allowed to be discontinuous in
different macroelements but we assume that the macromesh (i.e.,
the interface between two neighboring elements) is aligned with
these discontinuities. For the homogenized tensor we assume

a0
ij are Lipschitz continuous in K for any K 2 T H: ð32Þ
Remark 10. Without further knowledge about the structure of the
oscillating tensor ae, we will impose Dirichlet boundary conditions

for (6) (or (14)). Assuming (31) one can show wi
K

��� ���
H2ðKdÞ

6Ce�1
ffiffiffiffiffiffiffiffi
jKdj

p
,

with C independent of e, of the quadrature points xK and the
domain Kd (this follows from classical H2 regularity results, see for
example [30, Chapter 2.6]). If ae = a(x,x/e) = a(x,y) is Y-periodic in y,
then assuming (31), d=e 2 N and periodic boundary condition for

(6) (or (14)) one can show wi
K

��� ���
H2ðKdÞ

6 Ce�1
ffiffiffiffiffiffiffiffi
jKdj

p
(this follows from

classical regularity results for solutions of periodic boundary value
problems (see [17, Chapter 3]). Notice that in the periodic case, for
more regular tensors ae(x), one can obtain higher order estimates
wi

K

��� ���
Hqþ1ðKdÞ

6 Ce�q
ffiffiffiffiffiffiffiffi
jKdj

p
; q 2 N (see [5]).

5.5.1. Micro- and macrodata approximation (Proof of Theorem 4)
We start with the macroerror. Assuming (32) directly gives the

following estimate

sup
x2K

a0ðxÞ � a0ðxKÞ


 



F 6 CHK ; ð33Þ

where C only depends on the dimension d and the Lipschitz con-
stant. For the microerror, we follow the ideas of [1]. In the precise
form of (34), the microerror estimate has been proved in [10].
Assuming that (2) and (31) hold, we have,

�a0
K � a0

K



 


F
6 C

h
e

� �2

; ð34Þ

where C depends only on the constant in (31) and the bound (2).
Combining (2), (33) and (8) we obtain

sup
x2K

a0ðxÞ � a0
K



 


F 6 C HK þ

h
e

� �2

þ errmod

 !
; ð35Þ

where C only depends on the coercivity and continuity bound (2),
the dimension d, the Lipschitz constant (31) and where errmod is
independent of the discretization parameter of the micro- and
macroFE spaces.

Remark 11 (Micromesh refinement). From the estimates (33) and
(34), we obtain the criterion for the micromesh refinement used in
Algorithm 1 in Section 4.
5.5.2. Modeling error
In this section we discuss the error term a0ðxKÞ � �a0

K



 

 in (30).
Additional assumption on the spatial structure of the oscillating
tensor ae is required in order to give convergence rates for the
modeling error. We will consider the case of non-uniformly peri-
odic tensor and assume

ae ¼ aðx; x=eÞ ¼ aðx; yÞ Y � periodic in y; ð36Þ

where for simplicity we set Y = (0,1)d. We will sometimes refer to
the variables x and y as slow and fast variables, respectively. Other
tensors ae could be considered. For example, following the results in
[25] we could also consider an appropriate random field ae = a(x,y)
(with invariant statistics under integer shifts). The modeling error
estimates from [16] or [25, Theorem 2.1] or could be used directly
to estimate a0ðxKÞ � �a0

K



 


F . We thus see that our a posteriori error

analysis applies to a variety of tensors and is not restricted to the
periodic case.

In the periodic case, the homogenized tensor a0 can be com-
puted explicitly (see e.g., [15]). For xK 2 K it reads

a0
ijðxKÞ ¼

Z
Y

aijðxK ; yÞ þ
Xd

k¼1

aikðxK ; yÞ
@vjðxK ; yÞ

@y
dy; i; j ¼ 1; . . . ;d;

ð37Þ

where the functions vj(�,y) are solutions of the cell problemZ
Y

aðxK ; yÞrvjðxK ; yÞ � rzdy ¼ �
Z

Y
aðxK ; yÞej � rzdy 8z 2W1

perðYÞ;

ð38Þ

where ej is the jth basis vector of Rd. We will consider separately the
coupling conditions (periodic and Dirichlet) for the microFE space.
To analyze the modeling error, we can use results obtained for
the FE-HMM in [25,1,2,7].
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Periodic microboundary conditions. We assume that S1ðKd; T hÞ �
W1

perðKdÞ. In this case we assume that d=e 2 N�, i.e., the sampling do-
mains cover an integer number of the exact period of the tensor
a(�,x/e). We then can derive the following error estimates (see [10,
Theorem 5.8]). Assume that (36) and (31) hold. Then

a0ðxKÞ � �a0
K



 


F 6 Cd ð39Þ

for the modeling error, where C is independent of H, h, and e. If the
decomposition in fast and slow variable of the tensor a(x,x/e) is
explicitly known, we can slightly modify the FE-HMM macrobilin-
ear form (5) and microproblems (6) by replacing ae with a(xK,x/e).
In this case, performing a similar modification of the tensor ae of
(14) and (29), one can show that the modeling error vanishes (see
[10, Theorem 5.8] for details)

a0ðxKÞ � �a0
K



 


F ¼ 0: ð40Þ

Dirichlet microboundary conditions. In the case where the exact
period is not known but an estimation of the size of the periodicity
is available, the idea is to embed the periodic sampling domain Ke in
a larger cube Kd with d > e. Here we do not assume that d=e 2 N�.
Artificial boundary conditions are chosen for the microsolver. Vari-
ous conditions are possible and we assume S1ðKd; T hÞ � H1

0ðKdÞ , see
(8). Assume that (36) and (31) hold. Then

a0ðxKÞ � �a0
K



 


F
6 C dþ e

d

� 	
; ð41Þ

where C only depends on the domain X and the bound (2). This esti-
mate can be obtained following along the line of the proof of [25,
Theorem 17].
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Fig. 2. Errors and error estimate in the H1-norm for the highly oscillatory problem
described in Section 6.1.
6. Numerical experiments

We present in this section a series of numerical experiments
which verify the sharpness of the theoretical a posteriori estimates
and confirm that our adaptive scheme is efficient and effective.

We will present various elliptic problems with a two-scale, qua-
si 1d tensor on a square domain (Section 6.1), a crack problem with
a highly oscillating 2d tensor and a random tensor (Section 6.2),
and finally an L-shaped problem with a highly oscillating 2d tensor
(Section 6.3).

We emphasize that the oscillating tensor of the various prob-
lems (with the exception of the random one) is chosen such that
an analytical solution of the homogenized problem is available.
As various contributions to the error arise in our a posteriori esti-
mator (due to the multiscale nature of the numerical scheme),
avoiding to use a refined FEM reference solution allows to assess
accurately the quality of our estimator. Of course, in practice our
theory and method apply to general tensors for which there is no
need to derive an analytic tensor beforehand. This is further illus-
trated with the random tensor problem.

Notation. We will use the following notation for various quanti-
ties measured in our numerical experiments.

� #el, number of macroelements for the specific mesh. It reflects
the degrees of freedom.

� EOC(eH), experimental order of convergence. EOC :¼
d

log eH
k�1

=eH
kð Þ

logð#elðkÞ=#elðk�1ÞÞ, where eH
k refers to the error u0 � uH

k



 


H1ðXÞ in

the kth refinement step and d is the physical dimension of the
problem (the scaling with d allows to get a convergence rate
independent of the dimension).
� EOC(g), experimental order of convergence of the indicator

gH(X). EOCðgÞ :¼ d
log gk�1

H =gk
Hð Þ

logð#elðkÞ=#elðk�1ÞÞ, where gk
H refers to the indica-

tor in the kth refinement step and d is the physical dimension of
the problem.
� Ze, the reduction factor Ze :¼ eH

k
eH

k�1
of the error.

� Eff, the effectivity index Eff :¼ gk
H

eH
k

allows to estimate the upper
bound constant C of Theorem 2.

Furthermore we denote by ĥ :¼ ðNmicÞ�ð1=dÞ the scaled (i.e., inde-
pendent of e) micromeshsize, where Nmic denotes the degrees of
freedom of the microproblem on Kd and d is the spatial dimension.
Notice that h=e ¼ Cĥ, where C = d/e is usually of moderate size.

The numerical experiments were performed using the FE-HMM
code presented in [8] and the implementation of the mark and re-
fine steps are based in part on the AFEM@Matlab code (see [19]).

Remark 12. In most of the following experiments, as we refine the
mesh, we reach the point when HK < d for some elements K 2 T H ,
i.e., the macroelement K is smaller than the sampling domain.
Refining beyond this point is not computationally efficient and one
should switch to the fine scale solver for the whole (macro)
triangle K. A precise study and analysis for such a modified
algorithm will be presented elsewhere. We notice here that in the
case of periodic coefficients taking a sampling domain larger than
some macroelements still makes sense and allows us to check the
efficiency and reliability of our estimates.
6.1. Uniform refinement test

We consider the quasi-1d problem taken from [39],

�r � ðaeðxÞrueÞ ¼ �1 in X :¼ ð0;1Þ2;
ue ¼ 0 on CD :¼ f0g � ð0;1Þ [ f1g � ð0;1Þ;
aeðxÞrue ¼ 0 on CN :¼ @X n CD;

where aeðxÞ ¼ a x; x
e

� �
¼ 2

3 ð1þ x1Þ 1þ cos2 2p x1
e

� �� �
� I2 and I2 is the

unit matrix. The exact homogenized solution is given by

u0 xð Þ ¼ 3
2
ffiffi
2
p x1 � log x1þ1ð Þ

log 2ð Þ

� 	
. We choose e = d = 10�5.

As no singularity appears in the domain, we uniformly refine
the macro triangles in every iteration step and compare the error
to the indicator gH(X). Parallel to the macrorefinement, we refine
the micromesh according to Remark 5. The initial mesh for the
microFE spaces is chosen as ĥ ¼ 1

8.
We show in Fig. 2 that the error in the H1 norm and the indica-

tor gH(X) both converge to zero with rate OðHÞ and thus match the



Table 1
Grid size H, H1-error, error indicator, experimental order of convergence for the error,
and the indicator and the effectivity of the problem described in Section 6.1.

H ku0 � uHkH1ðXÞ gH(X) EOC (eH) EOC (gH) Eff :¼ gH
eH

2�2 3.44e�02 3.54e�01
2�3 1.31e�02 1.76e�01 1.40 1.00 13.51
2�4 6.33e�03 9.04e�02 1.04 0.97 14.29
2�5 3.11e�03 4.57e�02 1.03 0.98 14.71
2�6 1.54e�03 2.30e�02 1.01 0.99 14.93
2�7 7.65e�04 1.15e�02 1.01 1.00 15.15
2�8 3.82e�04 5.77e�03 1.00 1.00 15.15
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Fig. 4. Errors and error estimate in the H1-norm for the crack problem described in
Section 6.2.
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prediction obtained by the a priori and posteriori estimates,
respectively.

Finally, we indicate the effect of inappropriate macro–micro
coupling by plotting the errors obtained with the same adaptive
strategy, but computing the microsolutions on a micromesh of
fixed size ĥ ¼ 1

8. It can be seen that the correct asymptotic conver-
gence rate is not achieved. Thus an appropriate simultaneous mesh
refinement is crucial.

In Table 1, we list various quantities (explained in detail at the
beginning of this section) illustrating the quality of the refinement
procedure.

The experimental order of convergence for both the error as
well as the indicator confirms the theoretical linear convergence.
The ratio Eff between them remains nearly constant, which con-
firms that our (here uniform) refinement is both effective and effi-
cient; it furthermore gives an estimate for the effectivity index, the
constant in the upper bound of Theorem 2.

6.2. Crack problem

In our next experiment we consider a crack problem based on
[33, Example 5.2] that exhibits a singularity in the macro domain.
But unlike Example 5.2 of [33], we use here a two-dimensional,
highly oscillating conductivity tensor. We consider the following
problem

�r � ðae xð ÞrueÞ ¼ 1 in X;

ue ¼ gD on CD ¼ @X

on a domain X = {jx1j + jx2j < 1}n{0 6 x1 6 1, x2 = 0} with a crack
along the positive x-axis (see Fig. 3). We use the tensor

a
x
e

� 	
¼ 64

9
ffiffiffiffiffiffi
17
p sin 2p x1

e

� 	
þ 9

8

� �
cos 2p x2

e

� 	
þ 9

8

� �
� I2;

where we chose the coefficients of the tensor in such a way that the
homogenized tensor coincides with the unit tensor I2 (see [28,
Fig. 3. FE-HMM solution and mesh after 10 iteration
Chapter 1.2]). The Dirichlet boundary conditions gD = u0 match the
exact homogenized solution u0 of the problem which is given (in
polar coordinates) by

u0ðr; #Þ ¼ r
1
2 sin

#

2
� 1

4
r2;

where x1 = rcos(#), x2 = rsin(#). We emphasize that we use an ana-
lytically homogenizable tensor only to be able to compare our solu-
tion to the exact solution. Any other oscillating tensor could be used
(see Section 6.2.2 for an experiment using a random tensor).

A solution of the problem is shown in Fig. 3. We choose
e = d = 10�3 and periodic microboundary conditions. This time,
we use our adaptive strategy to refine the mesh and select a total
of 23 refinement steps (Dörfler’s bulk-chasing strategy is used for
marking, with a parameter of h = 0.3, see [42, Chapter 4.1]). We
again use the relation ĥK ¼

ffiffiffiffiffiffi
HK
p

for our microrefinement strategy
(see Algorithm 1) with an initial mesh of ĥK ¼ 1

8.
In Fig. 4 we show the errors in the H1 norm. The rate of conver-

gence of the error and the error indicator confirms the theoretical
rate ofOðN�1=d

mac Þ, where Nmac denotes the macro degrees of freedom.
We again plot the error obtained by using the same adaptive strat-
egy without refining the micromesh (fixed to ĥ ¼ 1

8). As expected,
the obtained asymptotic convergence rate is incorrect.

Finally, we provide a comparison with a uniformly refined FE-
HMM starting from the same initial mesh. Obviously, the order
of convergence is significantly lower than what can be obtained
using adaptive methods. In order to get an accuracy of e.g.,
s for the crack problem described in Section 6.2.



Table 2
Amount of microproblems with various ĥ (due to refinement) to be solved for the
specific iteration in which we reach the accuracy keHkH1 ðXÞ 6 0:07 in the crack
problem described in Section 6.2.

ĥ 1/8 1/16 1/24 1/32 1/40 1/48

Adaptive FE-HMM, 10th iteration 278 218 60 24 28 40
Uniform FE-HMM, 4th iteration – – – 16,384 – –

Table 3
Total amount of microproblems with various ĥ (due to refinement) to be solved to
achieve an accuracy of keHkH1ðXÞ 6 0:07 in the crack problem described in Section 6.2
(here we take into account all the iterations needed to reach the prescribed accuracy).

ĥ 1/8 1/16 1/24 1/32 1/40 1/48

Adaptive FE-HMM, total cost 436 360 108 48 48 40
Uniform FE-HMM, total cost 256 1024 4096 16,384 – –
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ku0 � uHkH1ðXÞ 
 0:07 we need 16,384 macroelements in the fourth
iteration of the uniformly refined FE-HMM, whereas only 796 mac-
roelements are used in the 10th iteration of the adaptive FE-HMM.
In order to reach an accuracy of Oð10�2Þ, approximatively Oð108Þ
DOF would be needed for the uniform scheme.

For uniform refinement, microsolutions in the sampling domain
of every triangle of the macromesh have to be refined and recom-
puted at each step. In contrast, for the adaptive FE-HMM this needs
only to be done for the macrotriangles marked for refinement. In
Table 2 we list the number of microproblems with a mesh size
(complexity) of ĥ that need to be solved in the specific iteration
when we reach an accuracy of keHkH1ðXÞ 6 0:07 for the adaptive
and uniform refinement, respectively. Looking at the first line of
Table 2, we see that with an adaptive scheme, the sampling do-
mains of most of the macroelements need a micromesh with a rel-
ative coarse resolution. This is in sharp contrast with a uniformly
refined mesh, where all the sampling domains need to be solved
with the same (fine) resolution.

As mentioned in Section 4.1, in an efficient implementation, one
should store the contributions of the microproblems and the corre-
sponding multiscale flux in every iteration and re-use these results
Table 4
Iteration number, number of macroelements, H1-error, error indicator, experimental order o
the crack problem described in Section 6.2.

Iteration #el ku0 � uHkH1ðXÞ gH(X)

1 256 1.92e�01 1.22e+00
2 260 1.73e�01 9.41e�01
3 268 1.52e�01 8.31e�01
4 284 1.24e�01 7.58e�01
5 298 1.16e�01 7.19e�01
6 329 1.02e�01 6.43e�01
7 370 9.09e�02 5.90e�01
8 432 8.12e�02 5.23e�01
9 522 7.15e�02 4.74e�01

10 648 6.41e�02 4.23e�01
11 830 5.58e�02 3.74e�01
12 1040 5.13e�02 3.36e�01
13 1326 4.50e�02 3.00e�01
14 1670 4.05e�02 2.68e�01
15 2138 3.52e�02 2.36e�01
16 2738 3.08e�02 2.08e�01
17 3614 2.69e�02 1.82e�01
18 4782 2.34e�02 1.59e�01
19 6268 2.03e�02 1.39e�01
20 8310 1.78e�02 1.21e�01
21 10,948 1.55e�02 1.06e�01
22 14,534 1.32e�02 9.11e�02
23 19,360 1.14e�02 7.89e�02
for those elements which are not marked to be refined. In this way,
the computational cost per iteration can be dramatically reduced,
as only a fraction of the elements is refined at each iteration. For
the crack problem and the adaptive FE-HMM, we start with 256
microproblems with a micromesh size chosen as ĥ ¼ 1

8 in the first
iteration. Four elements are refined into eight elements, which re-
quire the solution of eight new microproblems with a micromesh
size ĥ ¼ 1

8 (ĥ is rounded s.t. ĥ ¼ 1
n�8 ; n 2 N�). On the other hand,

the solutions of the 252 other microproblems will be re-used in
the next iteration. After the second iteration, those 8 elements
are yet again refined and we need to solve 16 new microproblems
with micromesh size ĥ ¼ 1

16 and re-use all of the 252 solutions of
the microproblems with micromesh size ĥ ¼ 1

8. Summing over the
10 iterations, we only need to compute 436 different microprob-
lems of micromesh size ĥ ¼ 1

8. In Table 3 we list the total amount
of different microproblems (with different micromesh) to be
solved. For the uniform refinement, every triangle is divided into
four new triangles, thus no information can be carried over from
one iteration to the other.

In Table 4 we list various quantities illustrating the quality of
the refinement procedure. It reveals that the error indicator con-
verges with the same rate as the error itself. This is confirmed by
the effectivity index which remains nearly constant over the itera-
tions, showing that our adaptive refinement strategy is both effec-
tive and efficient.

In Table 5 we show the error and the experimental order of con-
vergence when using a uniform refinement strategy. A comparison
between Tables 4 and 5 shows that a desired given accuracy of the
numerical solution can be obtained with a much lower computa-
tional cost using an adaptive method (compare e.g., the number
of elements needed to reach a certain accuracy).

6.2.1. Sampling domain size
We consider the crack problem in the situation when the size d

of the sampling domain is not an integer multiple of e. This situa-
tion might even arise for periodic problems when the exact size of
the period is not known. We select Dirichlet boundary conditions
in the microproblems and so estimates (41) apply.

We choose the same initial mesh size h for four different sam-
pling domain sizes d1 ¼ 4

3 e; d2 ¼ 5
3 e; d3 ¼ 11

3 e and d4 ¼ 17
3 e (i.e., ĥ
f convergence for the error and the indicator, reduction factor and effectivity index for

EOC(eH) EOC(gH) Ze Eff

6.33
13.696 33.123 0.899 5.43

8.715 8.255 0.876 5.49
6.844 3.167 0.820 6.10
2.960 2.170 0.931 6.21
2.584 2.255 0.880 6.33
1.934 1.485 0.893 6.49
1.459 1.543 0.893 6.45
1.340 1.036 0.881 6.62
1.010 1.055 0.897 6.58
1.125 1.005 0.870 6.71
0.746 0.940 0.919 6.54
1.082 0.948 0.877 6.67
0.896 0.964 0.902 6.62
1.136 1.019 0.869 6.71
1.085 1.022 0.874 6.76
0.988 0.965 0.872 6.76
0.989 0.970 0.871 6.80
1.057 1.010 0.867 6.85
0.940 0.961 0.876 6.80
1.009 0.998 0.870 6.85
1.114 1.036 0.854 6.90
1.031 1.010 0.863 6.94



Table 5
Iteration number, number of macroelements and experimental order of convergence
of the H1 error for the crack problem described in Section 6.2 when using uniform
refinement instead of an adaptive strategy.

iteration 1 2 3 4

#el 256 1024 4096 16,384
ku0 � uHkH1ðXÞ 1.92e�01 1.36e�01 9.67e�02 6.85e�02

EOC(eH) 0.496 0.495 0.497
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differs), where e = 10�5. According to (41) one should take d /
ffiffiffi
e
p

(of course the value of d is unknown if e is unknown. Furthermore,
taking d ¼

ffiffiffi
e
p

can be computationally too expensive). We verify
here that increasing the sampling domain size does improve the
convergence rates. This is illustrated in Fig. 5.

6.2.2. Random tensor
Many problems of interest are not periodic. As mentioned ear-

lier our adaptive algorithm does not rely on periodic problems
(although the relation between micro- and macromesh does). To
illustrate the versatility of the method, we test the behavior of
the adaptive FE-HMM on the crack problem in Section 6.2 with a
random tensor. This tensor is a log-normal stochastic field gener-
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Fig. 5. Errors and error estimate in the H1-norm for the

Fig. 6. Snapshot of the random conductivity tensor use
ated by the moving ellipse average method (see [43, Section
4.1]). The numerically generated values of the tensor are given at
90002 discrete points and we use bilinear interpolation to obtain
a smooth representation of ae(x).

We set the correlation lengths of the stochastic field to
ex1 ¼ 0:0045 and ex2 ¼ 0:0065 and choose the mean equal to be 1
and variance to be r = 0.25. A snapshot of this tensor is shown in
Fig. 6.

As no analytical solution exists, we use the error eH between a
finescale solution computed using a highly resolved standard adap-
tive FEM with 107 DOF, which acts as a reference solution, and the
FE-HMM solution. We denote by PHuH

FEM the L2-projection of the
resolved FEM solution uH

FEM onto the FE space V1ðX; T H;FE-HMMÞ, where
T H;FE-HMM denotes the mesh obtained in the adaptive algorithm for
the FE-HMM. We define the error as eH :¼ PHuH

FEM � uH
FE�HMM



 


H1ðXÞ.

We choose an initial micromesh size ĥ ¼ 1
8 and sampling

domains of size d1 = 0.005, d2 = 0.010, d3 = 0.020 and d4 = 0.040
(we keep h fixed when increasing the sampling domain size). In
Fig. 7 we see that the indicator and the error follow the expected
(optimal) convergence rate. Furthermore, increasing the sampling
domain size reduces the modeling error and thus leads to a more
accurate solution.
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d in the crack problem described in Section 6.2.2.
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Fig. 7. Error and error estimates in the H1-norm for the crack problem with a random tensor described in Section 6.2.2 (for plotting reasons the indicator is scaled by a factor
of 0.1). For the H1-error a continuous line is used in the case H > e and a dotted line is used when some K reach H < e, see Remark 13.

Fig. 8. FE-HMM solution and refined grid after 10 iterations using tensor ae
1 of L-shape problem described in Section 6.3.
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Remark 13. For H < e, there is less than a period of the fine scale
solution that is averaged (by the L2-projection) on each macroel-
ement of the mesh T H;FE-HMM and as H ? 0 the L2-projection
restores the behavior of the fine scale solution whose gradient has
a Oð1Þ discrepancy with the solution obtained by the FE-HMM (see
Section 3.1.1 and recall, e.g., Remark 12).
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Fig. 9. Errors and error estimate in the H1-norm for the L-shape problem described in Section 6.3. For the left plot we used tensor ae
1, for the right-hand side we used ae

2.

Table 6
Iteration number, number of macroelements, H1-error, error indicator, experimental order of convergence for the error and the indicator, reduction factor and effectivity of the
L-shape problem using tensor ae

1 described in Section 6.3.

Iteration #el ku0 � uHkH1ðXÞ gH(X) EOC(eH) EOC(gH) Ze Eff :¼ gH
eH

1 96 1.43e�01 1.061 0.135
2 100 1.30e�01 0.880 4.886 9.145 0.905 6.80
3 110 1.10e�01 0.763 3.423 2.995 0.850 6.94
4 130 1.01e�01 0.682 1.064 1.343 0.915 6.76
5 164 8.72e�02 0.604 1.235 1.048 0.866 6.94
6 206 8.85e�02 0.534 �0.133 1.082 1.015 6.02
7 265 8.10e�02 0.456 0.708 1.263 0.915 5.62
8 335 8.15e�02 0.408 �0.052 0.943 1.006 5.00
9 435 7.97e�02 0.372 0.166 0.707 0.979 4.67
10 542 6.34e�02 0.329 2.090 1.128 0.795 5.18
11 670 4.13e�02 0.285 4.043 1.347 0.651 6.90
12 866 3.18e�02 0.246 2.036 1.143 0.770 7.75
13 1156 2.79e�02 0.211 0.907 1.064 0.877 7.58
14 1545 2.45e�02 0.181 0.882 1.039 0.880 7.41
15 2123 2.19e�02 0.154 0.729 1.014 0.891 7.04
16 2787 2.05e�02 0.134 0.483 1.022 0.936 6.58
17 3876 1.73e�02 0.114 1.030 0.998 0.844 6.58
18 5238 1.25e�02 0.097 2.148 1.060 0.724 7.75
19 7312 1.05e�02 0.083 1.062 0.977 0.838 7.87
20 9934 9.30e�03 0.071 0.765 1.020 0.889 7.58
21 13,772 7.80e�03 0.060 1.074 0.998 0.839 7.69
22 19,010 6.70e�03 0.051 0.996 1.008 0.852 7.63
23 26,430 5.50e�03 0.043 1.129 1.011 0.830 7.81
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6.3. L-shape problem

In our final example we consider a non-convex L-shape domain
with two different conductivity tensors. We consider the following
problem

�r � ðaeðxÞrueÞ ¼ 1 in X;

ue ¼ gD on CD ¼ @X;

with X = (�1,1)2n[0,1] � [ � 1,0] (see Fig. 8). As a first test, we con-
sider the tensor

ae
1ðxÞ ¼ a1

x
e

� 	
¼ 64

9
ffiffiffiffiffiffi
17
p sin 2p x1

e

� 	
þ 9

8

� �
cos 2p x2

e

� 	
þ 9

8

� �
� I2;

introduced in Section 6.2, where I2 is the 2 � 2 unit matrix. The ten-
sor has coefficients chosen such that the homogenized tensor
matches the identity tensor. We will further investigate the same
tensor with different coefficients
ae
2ðxÞ ¼ a2

x
e

� 	
¼ 400

21
ffiffiffiffiffiffi
41
p sin 2p x1

e

� 	
þ 21

20

� �
cos 2p x2

e

� 	
þ 21

20

� �
� I2:

The homogenized problem corresponding to this latter tensor again
leads to a problem with a homogenized tensor equal to I2. As the
tensor ae

2 has a coercivity bound closer to zero, one expects a larger
error than with the tensor ae

1 (recall that our a posteriori error esti-
mates depend on the bound (2)). For both ae

1 and ae
2, an analytical

homogenized solution exists and is given by u0ðrÞ ¼ r
2
3 sin 2

3#
� �

where x1 = rcos(#) and x2 = rsin(#). We take the value of this exact
solution for the Dirichlet boundary condition gD = u0 (in the compu-
tation below we use Algorithm 1 with Dörfler’s bulk-chasing mark-
ing strategy with parameter h = 0.3).

In Fig. 9 we compare the error and the indicator gH(X) in the H1

norm for the tensors ae
1 and ae

2. We choose an initial meshsize of
ĥ ¼ 1

8 and d = e = 10�5 with periodic boundary conditions in the



Table 7
Amount of microproblems with various ĥ (due to refinement) to be solved for the specific iteration in which we reach an accuracy keHkH1 ðXÞ 6 0:025 in the L-shape problem
described in Section 6.3.

ĥ 1/8 1/16 1/24 1/32 1/40 1/48 1/56 1/64 1/80

Adaptive FE-HMM, 13th iteration 0 862 246 64 72 30 18 24 24
Uniform FE-HMM, 5th iteration – – – – – 24,576 – – –

Table 8
Total amount of microproblems with various ĥ (due to refinement) to be solved to reach an accuracy of keHkH1 ðXÞ 6 0:025 in the L-shape problem described in Section 6.3 (here we
take into account all the iterations needed to reach the prescribed accuracy).

ĥ 1/8 1/16 1/24 1/32 1/40 1/48 1/56 1/64 1/80

Adaptive FE-HMM, total cost 288 1556 388 112 96 48 36 36 24
Uniform FE-HMM, total cost 96 384 1536 6144 0 24,576 – – –
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microproblems. For both problems we find that the corresponding
indicator converges with the same (optimal) rate of OðN�1=d

mac Þ as the
errors between the FE-HMM solution and the exact homogenized
solution, thus confirming numerically our theoretical estimates.
As noted earlier we verify again that the asymptotic convergence
rate is incorrect when using a constant micromesh size ĥ ¼ 1

8. The
asymptotic limit of the macroscopic error in Fig. 9b (green2 contin-
uous line with disks) reflects the error introduced through the
microproblems and illustrates that the error stagnates even though
we keep refining our macrogrid. A comparison between Fig. 9a and
b shows that with constant micromesh size the error is signifi-
cantly larger when using ae

2 as compared to ae
1 (the tensor ae

2 is clo-
ser to being singular and thus needs a higher resolution of the
micromesh in order to avoid a singular stiffness matrix).

Various quantities illustrating the quality of the refinement pro-
cedure and confirming the correct experimental order of conver-
gence are reported in Table 6. In particular, we see that the
effectivity index is approximatively constant indicating that our
adaptive scheme is both effective and efficient. It is furthermore
robust with respect to the change of tensors in the problem. In Ta-
bles 7 and 8 we compare again the number of sampling domains
and the resolution of the mesh needed to solve the microproblems
with adaptive and non-adaptive strategies. The results illustrate
once more the importance of adaptive methods for multiscale
problems.

7. Conclusion

In this paper we have given an a posteriori error analysis for a
multiscale FE method, the FE-HMM, and derived explicit localized
error indicators for robust and reliable adaptive mesh refinement.
These are the first rigorous a posteriori results for the FE-HMM
derived in the energy norm of the physical variables. Our numeri-
cal results confirm that the adaptive strategy is both reliable and
efficient. Up to a data approximation term, upper and lower
bounds are obtained without specific structure assumptions (as
periodicity, random stationarity) on the oscillating tensor of the
elliptic problem. A (non-uniform) refinement of the macromesh
should be coupled to a refinement of the micromesh covering
the sampling domain. A strategy for such a micro refinement
has been proposed and justified in the case of non-uniform peri-
odic coefficients. The adaptive algorithm does not rely on a fixed
size of the sampling domain. Estimates of the error introduced by
artificial (Dirichlet) boundary conditions and domain size larger
than a typical length of the small scale have been derived for
2 For interpretation of color in Fig. 9, the reader is referred to the web version o
this article.
f

the case of non-uniformly periodic oscillating coefficients. The
framework that we used to derive our results allowed us to use
the strategy developed for single scale problem. Furthermore,
the derived a posteriori estimates are consistent with classical ex-
plicit residual-based a posteriori error estimators applied to the
homogenized problems in the case of periodic tensors and re-
solved microcalculations.

We did not address in this paper some important topics. We
mention the estimation of the error in quantities of interests which
might be needed for a specific design purpose [11, Chapter 8]. For
such estimates, it is known that the error measured in the energy
norm can be used to obtain error estimates for other quantities of
interests. We also mention that for macro-to-micro multiscale
methods as considered in this paper, it is desirable to change the
physical model in those regions of the computational domain
where the size of the macroelements becomes smaller than the cor-
responding sampling domain. Combining model adaptivity [38]
with the adaptive strategy proposed in this paper is of high interest.
Extensions of our adaptive algorithm to model adaptivity and
refinements related to quantities of interests are currently under
investigation and detailed discussion will be reported elsewhere.
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