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Notation

The reader is supposed to be familiar with the classical notions and notation
of functional analysis. As a matter of fact, we will make frequent use the
following classical notions. As usual, Ω denotes a regular open set of Rd.

• Lebesgue spaces:
We will use the classical Lebesgue spaces for 1 ≤ p < +∞

Lp(Ω) =

{
f measurable on Ω such that

∫
Ω

|f(x)|p dx < +∞
}
.

When endowed with the norm

‖f‖Lp =

(∫
Ω

|f(x)|p dx
) 1

p

,

Lp(Ω) is a Banach space. For p = 2, L2(Ω) is a Hilbert space with the
scalar product

(f, g)L2 =

∫
Ω

f(x)g(x) dx .

We will also use

L∞(Ω) = {f measurable on Ω such that |f(x)| ≤ C a.e.}

which is a Banach space when equipped with the norm

‖f‖L∞ = inf{C such that ‖f(x)| ≤ C a.e. in Ω} .

• Distributions:
The standard language of distributions will sometimes be used. In par-
ticular we use the notation D(Ω) for the space of infinitely differentiable
functions with compact support in Ω and D′(Ω) for its dual, i.e. the
space of distributions. Convergence in the sense of distributions (i.e.
weak convergence) is also supposed to be known.
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• Sobolev spaces:
Throughout these notes, we frequently use, Ω being a bounded regular
domain of Rd, the notation Hk (Ω) for the Sobolev space of degree
k ∈ N defined by

Hk (Ω) =
{
u ∈ L2 (Ω) such that

∂|α|u

∂α1x1 · · · ∂αdxd
∈ L2 (Ω) ,

∀α = (α1, · · · , αd) s.t. |α| ≤ k
}
.

It is well known that Hk (Ω) is a Hilbert space when endowed with the
norm (and the associated scalar product)

‖u‖Hk(Ω) =

∑
|α|≤k

∥∥∥∥ ∂|α|u

∂α1x1 · · · ∂αdxd

∥∥∥∥2

L2(Ω)

1/2

.

We also use the notation

|u|Hk(Ω) =

∑
|α|=k

∥∥∥∥ ∂|α|u

∂α1x1 · · · ∂αdxd

∥∥∥∥2

L2(Ω)

1/2

for the semi-norm in Hk (Ω).

We also use, especially for boundary value problems, H1
0 (Ω) as the

closure of D(Ω) under the H1-norm.

• Hilbert spaces:
Classical Hilbert theory, especially for L2(Ω), H1(Ω) and H1

0 (Ω) (but
not only) will be frequently used. In particular, the reader should be
familiar with the classical theory for Hilbert spaces, in particular Riesz’s
Theorem and Lax-Milgram Theorem. All Hilbert spaces in these notes
are separable and bounded sets are weakly compact (compact for the
weak convergence).

• Spaces of periodic functions:
The classical notation for a space of periodic functions consists in using
a ] subscript. In particular, for Y = (0, 1)d, C0

] (Y ) (resp. Ck] (Y )) is the

set of continuous (resp. Ck) and Y -periodic functions on Rd. Similarly,
H1
] (Y ) designates the space of H1

loc(Rd) functions that are Y periodic,
etc.

• We will also make use of the notations ., & to indicate an inequality
up to a constant. For instance ‖uε‖ . ‖vε‖ means ‖uε‖ ≤ C‖vε‖ where
the constant C is independent of ε.



Chapter 1

Formal asymptotic
homogenization

1.1 Introduction

Homogenization is a technical word that aims at giving a proper description
of materials that are composed of several constituents, intimately mixed to-
gether. Indeed, when one considers a mixture of materials, e.g. a composite,
it is expected that the new material will benefit from properties that each
of its constituent only partly possess. The applications of such materials are
numerous. Foam and wools are very classically used for thermic and acoustic
insulation. Composed of fibers in the air or bubbles of air inside a rubber
matrix, they only partly reproduce the behavior of their constituents. Other
examples are given by the so-called “spring magnets” which are composed
of hard and soft magnets mixed together, porous media which are a solid
matrix with microchannels in which a fluid may flow or multilayer materials.

In these notes, we only consider the case of periodic homogenization for
which the microstructure is periodic. Although quite restrictive at first sight,
this already applies to layered materials (periodic in 1D) or tissues (2D).
Moreover, the mathematical theory is very instructive. Physically, the prob-
lems may be of very different types. Elasticity for deformable bodies, fluid for
porous media, or magnetic properties might be sought. The common feature
among these models is that they are all described in terms of partial differ-
ential equations (PDE), the coefficients of which vary from one constituent
to another, in a periodic way.

Homogenization theory is a way of seeking the averaged properties of the
material from the ones of its constituents and the periodic structure as the
period tends to 0. This is a limiting process, which has very common features

9
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with weak convergence, or averaging procedures. The goal is to obtain, at
the limit, a homogeneous model with homogenized coefficients that depend
on the coefficients of the constituents. As we shall see, though, the procedure
may not be that easy, since in some cases, the model equation may change
type.

1.2 The classical setting

To start with we consider the simplest problem of temperature diffusion
inside a body Ω ⊂ Rd. The equation reads{

−div(A(x)∇u)(x) = f(x) in Ω ,
u = 0 on ∂Ω .

Here, f is the source of heat inside the material while the tensor A ∈
Md×d(R) (the space of d×d real matrices) stands for the diffusion coefficients.
Calling ε the length of the periodic structure and Y = (0, 1)d the unit cell that
is assumed to be periodically reproduced, the presence of different materials
inside Y is modeled by a matrix A(y) that depends on y ∈ Y . By periodicity,
it is easy to extend A to Rd, and furthermore A

(
x
ε

)
will represent the diffusion

coefficients inside the ε periodic material. Taking this into account and
denoting by uε the solution on the periodically microstructured material, we
transform the preceding problem into{

−div(A
(
x
ε

)
∇uε)(x) = f(x) in Ω ,

uε = 0 on ∂Ω .
(1.1)

The main question for the homogenization procedure consists in finding
possible limit(s) u0 to the sequence (uε)ε>0 and identifying the problem(s)
that u0 solves.

Notice that under classical assumptions on the tensor A, namely the
existence of 0 < c < C such that

∀ξ ∈ Rd, c|ξ|2 ≤ (Aξ, ξ) ≤ C|ξ|2 , (1.2)

and the fact that f ∈ L2(Ω), the problem (1.1) possesses a unique solution
uε ∈ H1

0 (Ω) that furthermore satisfies

∫
Ω

(
A
(x
ε

)
∇uε,∇uε

)
dx =

∫
Ω

f(x)uε(x) dx

≤ ‖f‖L2‖uε‖L2

≤ CP‖f‖L2‖∇uε‖L2
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where CP stands for the Poincaré constant of Ω. Using the coerciveness
assumption (1.2), one easily deduces

‖∇uε‖L2 ≤ CP
c
‖f‖L2

. ‖f‖L2

and therefore the sequence (uε)ε>0 is uniformly bounded in H1
0 (Ω).

As an example we consider the problem in 1D{
−(A

(
x
ε

)
u′ε)
′(x) = 1 on (0, 1) ,

uε(0) = uε(1) = 0 .
(1.3)

where A(y) = 1 + 0.8 sin(2πy). The solution uε, computed with a finite
element code is plotted in Fig. 1.1 for three values of ε.

1.3 Multiscale expansion

The multiscale expansion method is a heuristic that finds the correct behavior
of the sequence (uε)ε>0. It consists of assuming the multiscale expansion

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · , (1.4)

where ui(x, y) are assumed to be periodic in the y ∈ Y variable, plugging
this ansatz into the equation, and equating all terms of the same orders in
powers of ε. Notice that each term of the expansion depends on both the slow
variable x and the fast variable y = x/ε. Notice also that when computing
gradients on ui(x, x/ε) one obtains

∇ [ui(x, x/ε)] = (∇xui)(x, x/ε) +
1

ε
(∇yui)(x, x/ε) .

Therefore the expansion (1.4) leads to the following equations

• Order ε−2:
−divy (A(y)∇yu0(x, y)) = 0 , (1.5)

• Order ε−1:

−divy (A(y)(∇xu0 +∇yu1)) (x, y)− divx (A(y)∇yu0) (x, y) = 0 , (1.6)

• Order ε0:

−divx (A(y)(∇xu0 +∇yu1))− divy (A(y)(∇xu1 +∇yu2)) = f(x) ,
(1.7)



12 CHAPTER 1. FORMAL ASYMPTOTIC HOMOGENIZATION

Figure 1.1: The solution to the boundary value problem (1.3) computed
for f = 1 and three values ε = 0.01 (left), ε = 0.005 (middle) and ε =
0.00025 (right). It shows an oscillation that decays with ε at a frequency
that increases with ε. The graph of A is shown in red.

Remark 1.1 Notice that in deriving the preceding equations we have as-
sumed that they were valid for any y ∈ Y and not only for y = x/ε.

We now proceed step by step to solve the preceding system of equations.

• Order ε−2: Multiplying the equation (1.5) by u0 and integrating by
parts over Y leads to∫

Y

(A(y)∇yu0,∇yu0)(x, y) dy = 0

which, in view of the uniform coerciveness ofA (1.2), leads to∇yu0(x, y) =
0 and the fact that

u0(x, y) = u0(x)

does not depend on the y variable.
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• Order ε−1: Since u0 does not depend on y, the equation (1.6) simplifies
to

−divy (A(y)(∇xu0 +∇yu1)) (x, y) = 0 . (1.8)

We take the x variable as a parameter, and notice that ∇xu0(x) =∑d
i=1

∂u0
∂xi

(x)ei where ei is the i−th basis vector of Rd. We also call

ωi(y) ∈ H1
] (Y ) the (unique up to an additive constant) solution to

−divy (A(y)∇yωi)) (y) = divy (A(y)ei) (1.9)

and deduce by linearity that

u1(x, y) =
d∑
i=1

∂u0

∂xi
(x)ωi(y) . (1.10)

• Order ε0: We remark that, up to now, we have not been able to solve
the problem, but we have rather found a constraint that u0 needs to
solve and expressed u1 in terms of u0. It seems hopeless that this new
equation will close the system since a new variable, namely u2 has been
introduced. We will see that actually we will cancel the unknown u2

and that only a closed system remains. Namely, integrating1 equation
(1.7) over y ∈ Y and making use of the periodicity of u1 and u2 leads
to

−divx

∫
Y

(A(y)(∇xu0 +∇yu1)) (x, y) dy =

∫
Y

f(x) dy = f(x) . (1.11)

The unknown u2 has disappeared, and we are left with another equation
coupling u0 and u1, that we can solve. Indeed, using (1.10), we infer

∇yu1(x, y) =
d∑
i=1

∂u0

∂xi
(x)∇yωi(y) ,

and (1.11) becomes

−divx

∫
Y

(
A(y)(∇xu0 +

d∑
i=1

∂u0

∂xi
(x)∇yωi(y))

)
(x, y) dy = f(x) .

(1.12)

1Actually, for this equation to have a solution in u2, the right-hand side needs to be
null averaged. Therefore, we not only made u2 disappear, but we write a necessary and
sufficient condition for this equation to have a solution u2. This is sometimes called in
this context the “Fredholm’s alternative” although actually this is only a particular case
of this much more general concept. See Exercise 1.3 for more details about this.
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This latter equation may be rewritten as

−divx(Aeff∇xu0) = f(x) . (1.13)

where the effective diffusion tensor Aeff is explicitly given by

Aeff,jk =

∫
Y

(
Ajk(y) +

d∑
l=1

Ajl
∂ωk
∂yl

(y)

)
dy (1.14)

It remains to find the boundary conditions that u0 needs to fulfill. Here,
since we simply deal with a Dirichlet boundary condition uε = 0 on ∂Ω,
the multiscale expansion gives at order ε0:

u0(x, y) = u0(x) = 0 on ∂Ω .

Therefore, the limit u0 satisfies the boundary value problem{
−divx(Aeff∇xu0) = f(x) in Ω ,
u0 = 0 on ∂Ω .

(1.15)

Remark 1.2 Equation (1.9) permits us to solve u1 in terms of u0. It is
usually called the cell problem as it holds on the unit cell Y . Similarly,
equation (1.11) gives the equation solved by u0 (the limiting solution in the
multiscale expansion) and is called the homogenized problem. The functions
ωi that appear in the cell problem (1.9) are usually called the correctors. It
is also noteworthy to remark that the problem (1.9) is of the form{

−div (A(y)∇yω) = f
ω is Y − periodic.

This latter problem possesses a unique solution up to an additive constant if
and only if the compatibility condition∫

Y

f(y) dy = 0

holds (see Exercise 1.3). This property, sometimes called Fredholm’s alter-
native was also used to hope for a solution u2 of (1.7), although we are not
interested in this solution.

Remark 1.3 In the homogenized problem, the diffusion tensor Aeff does not
depend on x. It only depends on the unit cell distribution of the diffusion
tensor A (or equivalently the materials involved) and the resolution of the
cell problems.
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1.4 The cell and the homogenized problems

Although not rigorous, the multiscale expansion problem enabled us to give
the limit u0 of uε as ε tends to 0. It is expressed as the solution of a boundary
value problem that involves the cell problem. However, a few questions
remain to be examined:

• Is the homogenized problem well-posed? Can we say something about
the coerciveness of Aeff?

• Is the cell problem well-posed? In particular, the fact that the cor-
rectors ωi are assumed to be Y−periodic may create an artificial con-
straint.

• What do these correctors in the initial problem mean?

We will look at those questions one after the other, and actually in the reverse
order. To start with, we use the formula (1.10) that expresses u1 in terms of
u0 and the correctors

u1(x, y) =
d∑
i=1

∂u0

∂xi
(x)ωi(y) ,

and use it in the multiscale expression for uε. We obtain

uε(x) ∼ u0(x) + εu1

(
x,
x

ε

)
∼ u0(x) + ε

d∑
i=1

∂u0

∂xi
(x)ωi

(x
ε

)
.

We thus see that the solution uε oscillates with an amplitude ε and with a
profile ωi scaled by ∂u0

∂xi
(x). This in particular explains why in Fig. 1.1 the

solution oscillates less and less where u0 has its maximum.
Let us now turn to the cell problem (1.9), that we recall hereafter:

−divy (A(y)∇yωi) (y) = divy (A(y)ei) . (1.16)

The associated variational formulation of the problem is obtained by multi-
plying the equation by φ ∈ H1

] (Y ) and integrating by parts. We obtain∫
Y

(A(y)∇yωi(y),∇yφ(y)) dy = −
∫
Y

(A(y)ei,∇yφ(y)) dy ,



16 CHAPTER 1. FORMAL ASYMPTOTIC HOMOGENIZATION

whose existence and uniqueness of the solution follows from the Lax-Milgram
Theorem in the Hilbert space

V =

{
ψ ∈ H1

] (Y ), s.t.

∫
Y

ψ(y) dy = 0

}
using the coerciveness assumption (1.2). (See Exercises 1.2 and 1.3.) Notice
that testing with φ = ωk leads to∫

Y

(A(y)(ei +∇yωi(y)),∇yωk(y)) dy = 0 , (1.17)

from which we deduce that the homogenized effective tensor Aeff, defined by
(1.14), satisfies

Aeff,jk =

∫
Y

(
Ajk(y) +

d∑
l=1

Ajl(y)
∂ωk
∂yl

(y)

)
dy

=

∫
Y

(A(y)ek + A(y)∇yωk(y), ej) dy

=

∫
Y

(A(y) (ek +∇yωk(y)) , ej) dy

=

∫
Y

(A(y) (ek +∇yωk(y)) , ej +∇yωj) dy

because of (1.17). Therefore, if ξ ∈ Rd, then

(
Aeffξ, ξ

)
=

d∑
j,k=1

Aeff,jkξjξk

=

∫
Y

(
A(y)

(
ξ +

d∑
k=1

ξk∇yωk(y)

)
, ξ +

d∑
j=1

ξj∇yωj

)
dy

& ‖ξ +
d∑

k=1

ξk∇yωk(y)‖2
L2(Y )

which shows that Aeff is a positive definite matrix. Considering the homog-
enized problem {

−divx(Aeff∇xu0) = f(x) in Ω ,
u0 = 0 on ∂Ω ,

(1.18)

where the homogenized tensor Aeff is given by (1.14), we obtain that the
classical theory of elliptic problems applies and that it possesses a unique
solution, again thanks to the Lax-Milgram Theorem.
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1.5 Exercises

Exercise 1.1 Homogenized problem in 1D.
We here consider the model problem (1.1) in 1D{

−(A
(
x
ε

)
u′ε)
′(x) = f(x) on (0, 1) ,

uε(0) = uε(1) = 0 ,
(1.19)

where f ∈ L2(0, 1) and A is a 1-periodic function that satisfies

∃C > c > 0, ∀y ∈ (0, 1) , c ≤ A(y) ≤ C .

Show that the homogenized equation associated to the problem is given by{
−(Aeffu

′
0)′(x) = f(x) on (0, 1) ,

u0(0) = u0(1) = 0 ,
(1.20)

where

Aeff =

(∫ 1

0

dy

A(y)

)−1

.

Exercise 1.2 The cell problem.
Let V =

{
ψ ∈ H1

] (Y ) s.t.
∫
Y
ψ(y) dy = 0

}
the Hilbert space endowed with

the norm (and associated scalar product)

‖ψ‖V =

(∫
Y

|∇yψ(y)|2 dy
) 1

2

.

Show, using the Lax-Milgram Theorem, that the variational formulation of
the cell problem

Find ωi ∈ V such that ∀φ ∈ V,∫
Y

(A(y)∇yωi(y),∇yφ(y)) dy = −
∫
Y

(A(y)ei,∇yφ(y)) dy ,

where A satisfies the coerciveness assumption (1.2) possesses a unique solu-
tion.

Exercise 1.3 Fredholm alternative.
Let V =

{
ψ ∈ H1

] (Y ), s.t.
∫
Y
ψ(y) dy = 0

}
the Hilbert space endowed with

the norm (and associated scalar product)

‖ψ‖V =

(∫
Y

|∇yψ(y)|2 dy
) 1

2

,

and f ∈ L2(Y ).
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1. Show, using the Lax-Milgram Theorem, that the variational formula-
tion of the cell problem

Find ω ∈ V, ∀φ ∈ V,
∫
Y

(A(y)∇yω(y),∇yφ(y)) dy =

∫
Y

f(y)φ(y) dy ,

where A satisfies the coerciveness assumption (1.2) possesses a unique
solution.

2. Show that it is also a solution to

−div (A(y)∇yω) = f

under the necessary and sufficient condition that∫
Y

f(y) dy = 0 .

Exercise 1.4 Extend all the preceding multiscale analysis to the case where
the diffusion tensor A depends also on the slow variable x, namely A :=
A(x, y).



Chapter 2

Two-scale convergence

2.1 Introduction

As we have seen in the preceding chapter, the multiscale expansion method
answers questions concerning the behavior and the limit solution of the ho-
mogenization problem. However, the method that we have developed is un-
satisfactory for two reasons:

• First, it is heuristic. We have only postulated an ansatz and some-
how shown that the limit solution u0 should satisfy the homogenized
problem (1.11). At this stage, we have no clue about the fact that this
ansatz is true, and no proof about any convergence of the sequence
(uε)ε as ε tends to 0.

• The approach that we have used works in two steps. We have postu-
lated the ansatz, and obtained the set of equations that the limit should
satisfy (the cell and homogenized problems). Then, we have proven the
existence and uniqueness of the solution to these problems. It would
be more convenient to get, as a whole, the problems and the limit.

The 2-scale convergence method is exactly intended to overcome both of
these issues. As we shall see, it provides the user with a rigorous theoretical
framework that enables him or her to work out directly the problems (both
the cell and homogenized problems) and prove the convergence of the family
(uε)ε in a suitable sense.

The following discussion is based on the theory proposed by Nguetseng
[16] and further developed by Allaire [1].
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2.2 Two-scale convergence

The basic notion that one needs to introduce is the following.

Definition 2.1 A sequence (uε)ε>0 in L2(Ω) is said to two-scale converge to
a limit u0(x, y) ∈ L2(Ω× Y ) if, for any ψ(x, y) ∈ D(Ω; C∞] (Y )) we have

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω×Y

u0(x, y)ψ(x, y) dx dy . (2.1)

In this case we denote the two-scale convergence by

uε � u0 two-scale as ε→ 0 .

The main reason for introducing the two-scale convergence is the following
compactness theorem (we refer the reader to [1, 16] for the proof).

Theorem 2.1 Let (uε)ε>0 be a sequence bounded in L2(Ω). There exists a
subsequence (uεn)n∈N and u0 ∈ L2(Ω× Y ) such that

lim
n→∞

εn = 0, and uεn � u0 two-scale as n→ +∞ .

As we shall see, the preceding compactness theorem generalizes the well
known compactness theorem in L2(Ω) (from a bounded sequence in L2(Ω)
one can extract a subsequence that weakly converges in L2(Ω)). This is not
surprising since the definition of two-scale convergence is written under a
weak form. It is a convergence for any test function and not convergence in
norm.

2.3 Admissible functions

We will make frequent use of the fact that for ψ ∈ D(Ω, C](Y )) one has

lim
ε→0

∫
Ω

ψ
(
x,
x

ε

)2

dx =

∫
Ω×Y

ψ(x, y)2 dx dy . (2.2)

(See Exercise 2.2.) It is however unclear whether the regularity of ψ may be
weakened. We therefore introduce the following definition.

Definition 2.2 A function ψ that satisfies (2.2) is called admissible.
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It turns out that this is a subtle notion. Indeed, for a given function ψ ∈
L2(Ω× Y ) there is no reason for the function

x 7→ ψ
(
x,
x

ε

)
to be even measurable. The complete space of admissible functions is not
known much more precisely, it is however known that any Caratheory func-
tion (continuous in one variable and measurable in the other) is admissible.
Therefore, functions in Lp(Ω, C](Y )) as well as Lp] (Y, C(Ω)) are admissible.
We also refer to [1] for an explicit construction of a non admissible function
which belongs to C(Ω, L1

] (Y )).

2.4 Properties

The main property of two-scale convergence is the convergence of norms.

Proposition 2.1 Let (uε)ε>0 be a sequence in L2(Ω) that two-scale converges
to u0 ∈ L2(Ω× Y ). Then

uε ⇀ u(x) =

∫
Y

u0(x, y) dy weakly in L2(Ω) , (2.3)

lim inf
ε→0

‖uε‖L2 ≥ ‖u0‖L2(Ω×Y ) ≥ ‖u‖L2(Ω) . (2.4)

Proof We first remark that taking a test function ψ(x, y) = ψ(x) that does
not depend on the y variable in the definition of the two-scale convergence im-
mediately gives (2.3). In order to prove (2.4), we consider ψ ∈ L2(Ω, C](Y )),
and expand∫

Ω

(
uε(x)− ψ

(
x,
x

ε

))2

dx =

∫
Ω

(uε(x))2 dx− 2

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx

+

∫
Ω

(ψ
(
x,
x

ε

)
)2 dx

≥ 0 .

Passing to the liminf, using the definition of two-scale convergence, we obtain

lim inf
ε→0

∫
Ω

(uε(x))2 dx ≥ 2

∫
Ω×Y

u0(x, y)ψ(x, y) dx dy −
∫

Ω×Y
ψ(x, y)2 dx dy

since ψ is admissible.
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Using this inequality for a sequence of smooth functions (ψn)n∈N that
converges to u0 in L2(Ω× Y ) leads to

lim inf
ε→0

∫
Ω

(uε(x))2 dx ≥
∫

Ω×Y
u0(x, y)2 dx dy .

Using Cauchy-Schwarz inequality immediately leads to the second inequality
in (2.4). �

As for L2 convergence, we also have the strong version of the preceding
proposition.

Proposition 2.2 Let (uε)ε>0 be a sequence in L2(Ω) that two-scale converges
to u0 ∈ L2(Ω× Y ) and is such that

lim
ε→0
‖uε‖L2 = ‖u0‖L2(Ω×Y ) . (2.5)

Then, for any sequence (vε)ε>0 in L2(Ω) that two-scale converges to v0 ∈
L2(Ω× Y ), one has

uεvε ⇀

∫
Y

u0(x, y)v0(x, y) dy in D′(Ω) (2.6)

and if u0 ∈ L2(Ω, C](Y ))

lim
ε→0

∥∥∥uε(x)− u0

(
x,
x

ε

)∥∥∥
L2

= 0 . (2.7)

Proof The proof follows readily the same lines as before. We take a sequence
of smooth function ψn ∈ L2(Ω, C](Y )) that converges to u0(x, y) in L2(Ω×Y ).
We have with the definition of two-scale convergence and the fact that ψn is
smooth

lim
ε→0

∫
Ω

(
uε(x)− ψn

(
x,
x

ε

))2

dx =

∫
Ω×Y

(u0(x, y)− ψn(x, y))2 dx dy

and therefore

lim
n→+∞

lim
ε→0

∫
Ω

(
uε(x)− ψn

(
x,
x

ε

))2

dx = 0 .

Now, for any φ ∈ D(Ω), one has∫
Ω

uε(x)vε(x)φ(x) dx =

∫
Ω

ψn

(
x,
x

ε

)
vε(x)φ(x) dx

+

∫
Ω

(
uε(x)− ψn

(
x,
x

ε

))
vε(x)φ(x) dx
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We now use the fact that (vε)ε is bounded and the preceding result to
deduce, passing to the limit ε→ 0

lim sup
ε→0

∣∣∣∣∫
Ω

uε(x)vε(x)φ(x) dx−
∫

Ω×Y
φ(x)ψn(x, y)v0(x, y) dx dy

∣∣∣∣
≤ C ‖u0 − ψn‖L2(Ω×Y ) .

Passing now to the limit n→ +∞ gives the result

lim
ε→0

∫
Ω

uε(x)vε(x)φ(x) dx =

∫
Ω×Y

φ(x)u0(x, y)v0(x, y) dx dy ,

which is nothing but (2.6). If u0 is smooth enough (this would be the case for
instance if u0 ∈ L2(Ω, C](Y ))), then one can take ψn = u0 in the beginning
of the proof to obtain (2.7). �

Up to now, we have given the main results about L2 bounded sequences.
For sequences bounded in H1(Ω), the results can be made more precise.

Theorem 2.2 Let (uε)ε>0 be a sequence bounded in H1(Ω). Then there exist
u0 ∈ H1(Ω) and u1 ∈ L2(Ω, H1

] (Y )/R) such that, up to the extraction of a
subsequence, one has

uε ⇀ u0 weakly in H1(Ω) , (2.8)

uε → u0 strongly in L2(Ω) , (2.9)

uε � u0 two-scale , (2.10)

∇uε � ∇xu0(x) +∇yu1(x, y) two-scale . (2.11)

Proof The first two statements are well-known properties of convergence
in H1(Ω) and the Rellich Theorem. We also infer, from the boundedness of
(uε)ε>0 and (∇uε)ε>0, the existence of U(x, y) ∈ L2(Ω × Y ) and ξ(x, y) ∈
L2(Ω× Y )d such that (up to a subsequence)

uε � U two-scale ,

∇uε � ξ(x, y) two-scale .

This means that for any test functions ψ ∈ D(Ω, C](Y )) and Ψ ∈ D(Ω, C](Y ))d∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx→

∫
Ω×Y

U(x, y)ψ(x, y) dx dy ,∫
Ω

∇uε(x) ·Ψ
(
x,
x

ε

)
dx→

∫
Ω×Y

ξ(x, y) ·Ψ(x, y) dx dy .
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But, an integration by parts shows that

ε

∫
Ω

∇uε(x) ·Ψ
(
x,
x

ε

)
dx = −

∫
Ω

uε(x)
(

divyΨ
(
x,
x

ε

)
+ εdivxΨ

(
x,
x

ε

))
dx ,

which gives, passing to the limit ε→ 0

0 = −
∫

Ω×Y
U(x, y)divyΨ(x, y) dx dy ,

or equivalently that U(x, y) does not depend on y. Therefore U(x, y) = U(x)
and u0(x) =

∫
Y
U(x, y) dy = U(x) . This shows (2.10). In order to show

(2.11), we take a test function Ψ such that divyΨ(x, y) = 0. We get∫
Ω

∇uε(x) ·Ψ
(
x,
x

ε

)
dx = −

∫
Ω

uε(x)divxΨ
(
x,
x

ε

)
dx

which, passing to the limit, leads to∫
Ω×Y

ξ(x, y) ·Ψ(x, y) dx dy = −
∫

Ω×Y
u0(x)divxΨ(x, y) dx dy

=

∫
Ω

∇xu0(x) ·
(∫

Y

Ψ(x, y) dy

)
dx .

Thus, for any Ψ ∈ D(Ω, C∞] (Y ))d such that divyΨ = 0, one has∫
Ω×Y

(ξ(x, y)−∇xu0(x)) ·Ψ(x, y) dx dy = 0 .

This is sufficient to deduce that there exists u1 ∈ L2(Ω, H1
] (Y )/R) such that

ξ(x, y) = ∇xu0(x) +∇yu1(x, y)

(see Exercise 2.5).
�

2.5 Exercises

Exercise 2.1 Admissible functions.

1. Show that a continuous function f ∈ C(Ω, C](Y )) is admissible in the
sense of Definition 2.2.
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Hint: Since f in continuous, one has ∀δ > 0, ∃ε0 > 0 such that ∀ε <
ε0,

|x− x′| ≤ ε⇒ ‖f(x, ·)− f(x′, ·)‖L∞(Y ) ≤ δ .

Therefore, to within an arbitrarily small error δ, one can approximate
f
(
x, x

ε

)
by f

(
xi,

x
ε

)
on the cube ε(i + Y ) where i ∈ Zd and with

xi ∈ ε(i+ Y ).

2. Show that a function ψ(x, y) = θ(x)η(y) where θ ∈ L2(Ω) and η ∈
L2
] (Y ) is admissible in the sense of Definition 2.2.

3. Let f and g be two admissible functions. Show that

lim
ε→0

∫
Ω

f
(
x,
x

ε

)
g
(
x,
x

ε

)
dx =

∫
Ω×Y

f(x, y)g(x, y) dx dy .

4. Let f be an admissible function and g ∈ C(Ω × Y ). Show that fg is
admissible.

Exercise 2.2 Let (uε)ε be a sequence of functions in L2(Ω) that L2 strongly
converges to u0 ∈ L2(Ω). Show that

uε � u0 two scale.

Exercise 2.3 Let u0(x, y) be an admissible function.

1. Show that uε(x) = u0

(
x, x

ε

)
two-scale converges to u0.

2. Let vε = u0

(
x, x

ε2

)
. Show that (vε)ε two-scale converges to v0(x) =∫

Y
u0(x, y) dy.

3. More generaly, show that any multiscale expansion

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ · · ·+ εnun

(
x,
x

ε

)
where the ui are supposed to be admissible, two-scale converges to
u0(x, y).

Exercise 2.4 Let (uε)ε a sequence that two-scale converges to u0. Show
(using Proposition 2.2) that

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω

u0(x, y)ψ(x, y) dx dy

for all test functions ψ that are admissible (and not only smooth).
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Exercise 2.5 Orthogonal of divergence free functions.
Let

V] = {u ∈ L2(Y,Rd) such that div u = 0 in the sense of D′(Y )} .

Using the decomposition in Fourier series of a function u ∈ V , show that

V ⊥ = {ψ ∈ L2(Y ) such that ∃φ ∈ H1
] (Y ), ψ = ∇φ} .

Exercise 2.6 Show the following proposition.

Proposition 2.3 Let (uε)ε>0 be a sequence bounded in L2(Ω) such that (ε∇uε)ε>0

is bounded in L2(Ω). Show that there exists u0(x, y) ∈ L2(Ω× Y ) such that,
up to the extraction of a subsequence, one has

uε � u0 two-scale , (2.12)

ε∇uε � ∇yu0(x, y) two-scale. (2.13)



Chapter 3

Application to linear 2nd order
elliptic equations

We now turn to the homogenization of the model problem and generalize the
method to classical second order elliptic PDEs. As we shall see, the main
strategy consists in the following methodology:

• find a bound in H1 for the sequence (uε)ε;

• extract a subsequence and apply Theorem 2.2;

• identify the problems solved by u0 and u1;

• show that the whole sequence converges;

• give sufficient conditions to get the strong convergence and prove the
multiscale expansion.

3.1 Homogenization of 2nd order elliptic prob-

lems

We thus consider again the problem (1.1), namely{
−div

(
A
(
x
ε

)
∇uε(x)

)
= f(x) in Ω ,

uε = 0 on ∂Ω ,
(3.1)

where Ω is bounded and A satisfies the uniform coerciveness assumption
(1.2). Let us write the variational formulation associated to this problem.

27
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We take a test function φ ∈ H1
0 (Ω), multiply the equation by φ and integrate

by parts to get∫
Ω

(
A
(x
ε

)
∇xuε(x),∇xφ(x)

)
dx =

∫
Ω

f(x)φ(x) dx . (3.2)

As we have already pointed out, the sequence (uε)ε is uniformly bounded
and one has the bound (obtained by taking φ = uε in the preceding varia-
tional formulation)

‖uε‖H1 . ‖f‖L2 .

Therefore, Theorem 2.2 applies and, up to the extraction of a subsequence
(that we still denote by (uε)ε for simplicity) one can assume that

uε ⇀ u0 weakly in H1(Ω) ,

uε → u0 strongly in L2(Ω) ,

uε � u0 two-scale,

∇uε � ∇xu0(x) +∇yu1(x, y) two-scale,

where u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω, H1

] (Y )/R).
The idea consists in taking a suitable test function in (3.2) and use the

convergences above to pass to the limit. Namely, we consider φ0 ∈ D(Ω) and
φ1 ∈ D(Ω, C∞] (Y )/R) and use the test function

φ(x) = φ0(x) + εφ1

(
x,
x

ε

)
in (3.2).

We obtain, since ∇xφ(x) = ∇xφ0(x) + ε(∇xφ1)
(
x, x

ε

)
+ (∇yφ1)

(
x, x

ε

)
,∫

Ω

(
A
(x
ε

)
∇xuε(x),∇xφ0(x) + ε(∇xφ1)

(
x,
x

ε

)
+ (∇yφ1)

(
x,
x

ε

))
dx =∫

Ω

f(x)
(
φ0(x) + εφ1

(
x,
x

ε

))
dx .

We now pass to the limit in each term. Let us begin with the right-hand
side. Since φ1 ∈ L∞(Ω× Y ) we easily have

lim
ε→0

∫
Ω

f(x)
(
φ0(x) + εφ1

(
x,
x

ε

))
dx =

∫
Ω

f(x)φ0(x) dx . (3.3)

Similarly, since A ∈ L∞(Y ), and (uε)ε is uniformly bounded in H1(Ω),
we have

lim
ε→0

∫
Ω

(
A
(x
ε

)
∇xuε(x), ε(∇xφ1)

(
x,
x

ε

))
dx = 0 . (3.4)
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For the first term, we write∫
Ω

(
A
(x
ε

)
∇xuε(x),∇xφ0(x)

)
dx =

∫
Ω

(
∇xuε(x), At

(x
ε

)
∇xφ0(x)

)
dx ,

and, since the function (x, y) 7→ At(y)∇xφ0(x) is admissible (see Exercise 2.1
of chapter 2), we obtain

lim
ε→0

∫
Ω

(
A
(x
ε

)
∇xuε(x),∇xφ0(x)

)
dx

=

∫
Ω×Y

(
∇xu0(x) +∇yu1(x, y), At(y)∇xφ0(x)

)
dx dy

=

∫
Ω×Y

(A(y)(∇xu0(x) +∇yu1(x, y)),∇xφ0(x)) dx dy .

The last term is handled in the same manner. Indeed∫
Ω

(
A
(x
ε

)
∇xuε(x), (∇yφ1)

(
x,
x

ε

))
dx

=

∫
Ω

(
∇xuε(x), At

(x
ε

)
(∇yφ1)

(
x,
x

ε

))
dx ,

and

lim
ε→0

∫
Ω

(
A
(x
ε

)
∇xuε(x), (∇yφ1)

(
x,
x

ε

))
dx

=

∫
Ω×Y

(
∇xu0(x) +∇yu1(x, y), At(y)∇yφ1(x, y)

)
dx dy

=

∫
Ω×Y

(A(y)(∇xu0(x) +∇yu1(x, y)),∇yφ1(x, y)) dx dy

where we have made use of the fact that the function (x, y) 7→ At(y)∇yφ1(x, y)
is admissible (it is, in fact, in L2

] (Y, C(Ω))).

Collecting together the preceding results we obtain the limiting varia-
tional formulation∫

Ω×Y
(A(y)(∇xu0(x) +∇yu1(x, y)),∇xφ0(x) +∇yφ1(x, y)) dx dy

=

∫
Ω

f(x)φ0(x) dx .

(3.5)
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3.2 Existence and uniqueness

The nice thing with the method shown above is that it gives the homoge-
nized variational formulation directly. It is also very natural and knowing
Theorem 2.2 makes very clear and intuitive what should be the expected re-
sult. However, some work still needs to be done, namely, recovering the cell
and homogenized problem, after having proved that the preceding formula
provides us with a variational formulation that possesses a unique solution.

We first start by using a density argument to symmetrize the problem
(between the unknown and the test functions). Namely, by density, we easily
see that (3.5) also holds for all φ0 ∈ H1

0 (Ω) and all φ1 ∈ L2(Ω, H1
] (Y )/R). We

now turn to the existence and uniqueness of the solution to the variational
formulation

Find (u0, u1) ∈ H1
0 (Ω)× L2(Ω, H1

] (Y )/R) such that

∀(φ0, φ1) ∈ H1
0 (Ω)× L2(Ω, H1

] (Y )/R)∫
Ω×Y

(A(y)(∇xu0(x) +∇yu1(x, y)),∇xφ0(x) +∇yφ1(x, y)) dx dy

=

∫
Ω

f(x)φ0(x) dx .

Existence and uniqueness of the solution to this (homogenized) variational
formulation follow now from the Lax-Milgram Theorem. Indeed, the linear
form

l
(
(φ0, φ1)

)
=

∫
Ω

f(x)φ0(x) dx

satisfies

|l
(
(φ0, φ1)

)
| ≤ ‖f‖L2‖φ0‖L2

. ‖f‖L2‖∇φ0‖L2

. ‖f‖L2‖(φ0, φ1)‖H1
0 (Ω)×L2(Ω,H1

] (Y )/R) .

Next, the bilinear form

a
(
(u0, u1), (v0, v1)

)
=

∫
Ω×Y

(A(y)(∇xu0 +∇yu1),∇xv0 +∇yv1) dx dy

satisfies

|a
(
(u0, u1), (v0, v1)

)
|

≤ ‖A‖L∞(‖∇xu0‖L2 + ‖∇yu1‖L2(Ω×Y ))(‖∇xv0‖L2 + ‖∇yv1‖L2(Ω×Y ))

≤ ‖A‖L∞‖(u0, u1)‖H1
0 (Ω)×L2(Ω,H1

] (Y )/R)‖(v0, v1)‖H1
0 (Ω)×L2(Ω,H1

] (Y )/R)
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and is therefore continuous in (H1
0 (Ω)×L2(Ω, H1

] (Y )/R))2. It is coercive due
to the coerciveness assumption (1.2) made on A since

a((u0, u1), (u0, u1))

=

∫
Ω×Y

(A(y)(∇xu0(x) +∇yu1(x, y)),∇xu0(x) +∇yu1(x, y)) dx dy

≥ c‖∇xu0 +∇yu1‖2
L2(Ω×Y ) .

But

‖∇xu0 +∇yu1‖2
L2(Ω×Y ) =

∫
Ω×Y
‖∇xu0(x) +∇yu1(x, y)‖2 dx dy

=

∫
Ω

‖∇xu0(x)‖2 dx+

∫
Ω×Y
‖∇yu1(x, y)‖2 dx dy

+2

∫
Ω×Y
∇xu0(x) · ∇yu1(x, y) dx dy

= ‖(u0, u1)‖2
H1

0 (Ω)×L2(Ω,H1
] (Y )/R)

since

2

∫
Ω×Y
∇xu0(x)·∇yu1(x, y) dx dy = 2

∫
Ω

∇xu0(x)·
(∫

Y

∇yu1(x, y) dy

)
dx = 0 .

Eventually, we conclude, since (u0, u1) are characterized by the homoge-
nized variational formulation above, that the whole sequence (uε)ε satisfies
the convergences of Theorem 2.2, and not only a subsequence.

3.3 The cell and the homogenized problems

It remains to find the solution to the cell and homogenized problem that
were stated in the Chapter 1 of these notes. To this aim, we simply consider
the two problems obtained by taking φ0 = 0 or φ1 = 0 respectively.

• φ0 = 0.
The variational formulation leads in this case to∫

Ω×Y
(A(y)(∇xu0(x) +∇yu1(x, y)),∇yφ1(x, y)) dx dy = 0 .

Taking φ1 under the form φ1(x, y) = θ(x)ψ(y) leads to∫
Ω×Y

θ(x) (A(y)(∇xu0(x) +∇yu1(x, y)),∇yψ(y)) dx dy = 0
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which is the weak form of the problem{
−divy (A(y)(∇xu0(x) +∇yu1(x, y))) = 0 ,
u1(x, y) is Y − periodic.

This is nothing but the cell problem (1.9).

• φ1 = 0.
We have now∫

Ω×Y
(A(y)(∇xu0(x) +∇yu1(x, y)),∇xφ0(x)) dx dy =

∫
Ω

f(x)φ0(x) dx

which is the weak form of the problem −divx

(∫
Y

(A(y)(∇xu0(x) +∇yu1(x, y))) dy

)
= f in Ω ,

u0 = 0 on ∂Ω .

And we recognize the homogenized problem.

Solving u1 in terms of u0 through the correctors ωi is eventually done as
before.

3.4 Exercises

Exercise 3.1 Assume that u1 is smooth. Show that

uε − u0(x)− εu1

(
x,
x

ε

)
strongly converges to 0 in H1(Ω).
Hint: Show that∫

Ω

(
A
(x
ε

)
(∇xuε −∇xu0 −∇yu1) ,∇xuε −∇xu0 −∇yu1

)
dx ,

tends to 0 as ε → 0 by expanding the expression and pass to the limit in
each term. Conclude.

Exercise 3.2 Extend all the preceding results to the case whereA := A(x, y)
is an admissible function which satisfies the bounds (1.2).
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Exercise 3.3 Linear elasticity. We now consider the model of linear elastic-
ity

−div(σε(uε)) = f in Ω

which, for simplicity is supplemented with the homogeneous Dirichlet bound-
ary conditions uε = 0 on ∂Ω. Here uε : Ω → Rd is the deformation vector
and the Cauchy stress tensor is given by

σε(u) = µ
(x
ε

) (
∇u+∇tu

)
+ λ

(x
ε

)
div(u)Id .

We also assume that both λ and µ satisfy (1.2). Make the homogenization
process as ε tends to 0. Express in particular the cell problem and the
homogenized equation.
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Chapter 4

Convergence of the energy

4.1 Γ−convergence

This chapter is meant to give another point of view on the problem in the
important case where A is assumed furthermore to be symmetric. Indeed,
the problem that we have worked on up to now can also be written as a
minimization problem, using the Dirichlet principle

(Pε) min
u∈H1

0 (Ω)

1

2

∫
Ω

A
(x
ε

)
∇xu(x) · ∇xu(x) dx−

∫
Ω

f(x)u(x) dx , (4.1)

for which uε is the solution. It would be convenient to have a notion of
convergence of minimization problems that would be compatible with the
convergence of minimizers (here, the two-scale convergence). This is indeed
the framework given by De Giorgi Γ−convergence. The theory is certainly
much more involved than what we present here for the need of these lecture
notes. We refer the reader to [4, 8, 9] for more information about the topic
and its application to homogenization problems, as well as the introductory
text [5].

Definition 4.1 Let (X, d) be a metric space. Consider for ε > 0 a family of
functionals

Jε : X → R

a limiting functional

J0 : X → R

and the corresponding minimization problems

(Pε) min
u∈X
Jε(u) , (P0) min

u∈X
J0(u) . (4.2)

35
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We say the the family of problems (Pε) Γ(d)−converges to P0 if for any
u0 ∈ X one has

• Γ−lim inf . For every sequence (uε)ε that converges to u0 (for the metric
d), one has

lim inf
ε→0

Jε(uε) ≥ J0(u0) ; (4.3)

• Γ− lim sup . There exists a sequence (uε)ε that converges to u0 (for the
metric d), such that

lim sup
ε→0

Jε(uε) ≤ J0(u0) . (4.4)

The main motivation for the introduction of this definition is the following
theorem.

Theorem 4.1 Let (X, d) be a metric space and a sequence of minimization
problems (Pε)ε>0 that Γ(d)−converges to the minimization problem P0 as in
(4.2). Let (uε)ε a sequence of solutions of the problems (Pε) that converges
to u0 for the metric d. Then u0 is a solution of the minimization problem P0

and
lim
ε→0
Jε(uε) = J0(u0) .

Proof Since (uε)ε converges to u0 for the metric d, the first assertion of
Γ−convergence entails

J0(u0) ≤ lim inf
ε→0

Jε(uε) .

Now let v0 ∈ X, and a sequence (vε)ε which converges to v0 such that

J0(v0) ≥ lim sup
ε→0

Jε(vε) .

Such a sequence exists due to the second assertion of Γ−convergence. Since
uε is a minimizer of Jε, one has

Jε(uε) ≤ Jε(vε) .

We therefore deduce

J0(u0) ≤ lim inf
ε→0

Jε(uε)

≤ lim sup
ε→0

Jε(uε)

≤ lim sup
ε→0

Jε(vε)

≤ J0(v0)
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which shows that u0 is a solution to P0. Taking v0 = u0 in the preceding
inequalities shows the last assertion of the theorem. �

Remark 4.1 The Γ−convergence is a framework which is very well suited
for the convergence of minimization problems. Quite remarkably, the defini-
tion itself does not use any minimization property of the sequence (uε)ε or
the limit u0. Minimization and convergence of minimizers are thus obtained
as consequences of the general properties given in the definition.

In the definition of Γ−convergence, (4.4) may be replaced by an equivalent
or weaker statement for which Theorem 4.1 still holds true. We refer the
interested reader to [5] for a detailed list of possible statements, but we will
make use of the following one in the sequel

For all η > 0, there exists a sequence (uε)ε that converges to u0 (for the
metric d), such that

lim sup
ε→0

Jε(uε) ≤ J0(u0) + η . (4.5)

That under (4.3) and (4.5), Theorem 4.1 still holds true is left as an exercise
(see Exercise 4.1).

4.2 Application to homogenization

From what we have already seen, we set, for u ∈ X = H1
0 (Ω)

Jε(u) =
1

2

∫
Ω

A
(x
ε

)
∇xu(x) · ∇xu(x) dx−

∫
Ω

f(x)u(x) dx . (4.6)

while the limiting problem involves the homogenized tensor Aeff defined by
(1.14)

J0(u) =
1

2

∫
Ω

Aeff∇xu(x) · ∇xu(x) dx−
∫

Ω

f(x)u(x) dx . (4.7)

It remains to choose a metric on X. Clearly, the convergence that we proved
in the preceding sections is only weak in H1(Ω) which is not metrizable. We
therefore endow X with the (strong) L2 distance (see Remark 4.3 below).

The main goal of this Section is to show the following Theorem.

Theorem 4.2 Let Jε (resp. J0) be defined by (4.6) (resp. (4.7)), and con-
sider the associated minimization problems Pε and P0 given by (4.2). The
sequence of minimization problems (Pε)ε Γ(L2)-converges to P0 in H1

0 (Ω).
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Proof The proof consists in proving both properties of Γ−convergence. As
we shall see, this sheds a new light on the problem. We therefore decompose
the proof into two steps.

Γ− lim inf.
Let (uε)ε be a sequence in H1

0 (Ω) that converges to u0 ∈ H1
0 (Ω) for the L2

topology. Let A = lim infε→0 Jε(uε). If A = +∞, there is nothing to prove.
Otherwise up to the extraction of a subsequence, we may assume furthermore
that

lim
ε→0
Jε(uε) = A .

In view of (1.2) we deduce that the sequence (uε)ε is bounded in H1, and
applying Theorem 2.2, there exists u1 ∈ L2(Ω, H1

] ) such that

∇uε � ∇xu0(x) +∇yu1(x, y) two-scale.

We take now ψ(x, y) ∈ D(Ω, C∞] ) an admissible function and expand the
non-negative expression

∫
Ω

A
(x
ε

)(
∇xuε −∇xu0 −∇yψ

(
x,
x

ε

))
·
(
∇xuε −∇xu0 −∇yψ

(
x,
x

ε

))
dx =∫

Ω

A
(x
ε

)
∇xuε · ∇xuε

−2

∫
Ω

A
(x
ε

)
∇xuε ·

(
∇xu0 +∇yψ

(
x,
x

ε

))
dx

+

∫
Ω

A
(x
ε

)(
∇xu0 +∇yψ

(
x,
x

ε

))
·
(
∇xu0 +∇yψ

(
x,
x

ε

))
dx

Due to the preceding results and hypotheses, we infer

lim
ε→0

∫
Ω

A
(x
ε

)(
∇xu0 +∇yψ

(
x,
x

ε

))
·
(
∇xu0 +∇yψ

(
x,
x

ε

))
dx =∫

Ω×Y
A(y) (∇xu0(x) +∇yψ(x, y)) · (∇xu0(x) +∇yψ(x, y)) dx dy
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and

lim
ε→0

∫
Ω

A
(x
ε

)
∇xuε ·

(
∇xu0 +∇yψ

(
x,
x

ε

))
dx

= lim
ε→0

∫
Ω

∇xuε · At
(x
ε

)(
∇xu0 +∇yψ

(
x,
x

ε

))
dx

=

∫
Ω×Y

(∇xu0 +∇yu1(x, y)) · At(y) (∇xu0(x) +∇yψ(x, y)) dx dy

=

∫
Ω×Y

A(y) (∇xu0 +∇yu1(x, y)) · (∇xu0(x) +∇yψ(x, y)) dx dy .

Since moreover

lim
ε→0

∫
Ω

f(x)uε(x) dx =

∫
Ω

f(x)u0(x) dx ,

we therefore deduce

lim inf
ε→0

Jε(uε)

≥
∫

Ω×Y
A(y) (∇xu0(x) +∇yu1(x, y)) · (∇xu0(x) +∇yψ(x, y)) dx dy

−1

2

∫
Ω×Y

A(y) (∇xu0(x) +∇yψ(x, y)) · (∇xu0(x) +∇yψ(x, y)) dx dy

−
∫

Ω

f(x)u0(x) dx

Taking for ψ a sequence of functions that converges to u1 in L2(Ω, H1
] (Y )),

we obtain

lim inf
ε→0

Jε(uε) ≥
1

2

∫
Ω×Y

A(y) (∇xu0 +∇yu1) · (∇xu0 +∇yu1) dx dy

−
∫

Ω

f(x)u0(x) dx .

The last part of the proof consists in remarking that the right-hand side
may be bounded from below since

1

2

∫
Ω×Y

A(y) (∇xu0 +∇yu1) · (∇xu0 +∇yu1) dx dy

≥ min
u1∈L2(Ω,H1

] )

1

2

∫
Ω×Y

A(y) (∇xu0 +∇yu1) · (∇xu0 +∇yu1) dx dy

=
1

2

∫
Ω

Aeff∇xu0 · ∇xu0 dx .
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We thus obtain

lim inf
ε→0

Jε(uε) ≥
1

2

∫
Ω

Aeff∇xu0 · ∇xu0 dx−
∫

Ω

f(x)u0(x) dx = J0(u0) .

Γ− lim sup.
The proof for this part of Γ− convergence is sometimes called the construction
of a recovery sequence. Indeed, it consists for a given u0 ∈ H1

0 (Ω), in finding
a suitable sequence (uε)ε in H1

0 (Ω) that converges to u0 in L2 and such that

lim sup
ε→0

Jε(uε) ≤ J0(u0) .

In view of the preceding results, we build from the corrector equation (1.9)
the microscopic structure u1, and a natural recovery sequence would be

uε = u0(x) + εu1

(
x,
x

ε

)
.

However, since u1 may not be an admissible function, we need to complexify
a little bit the argument. We take ψ1 an admissible function in D(Ω, C∞] (Y ))
and consider

uε = u0(x) + εψ1

(
x,
x

ε

)
.

It is easy to check that
lim
ε→0
‖uε − u0‖L2 = 0 .

Moreover, since ∇xuε = ∇xu0(x) + (∇yψ1)
(
x, x

ε

)
+ ε(∇xψ1)

(
x, x

ε

)
we get by

using the two-scale convergence results that

lim
ε→0
Jε(uε) =

1

2

∫
Ω×Y

A(y) (∇xu0 +∇yψ1) · (∇xu0 +∇yψ1) dx dy

−
∫

Ω

f(x)u0(x) dx .

Taking now ψ1 that converges to u1 in L2(Ω, H1
] (Y )) and remarking that

J0(u0) =
1

2

∫
Ω×Y

A(y) (∇xu0 +∇yu1) · (∇xu0 +∇yu1) dx dy −
∫

Ω

f(x)u0(x) dx ,

leads to

∀η > 0, ∃(uε)ε in H1
0 (Ω) s.t. lim

ε→0
Jε(uε) ≤ J0(u0) + η

which is exactly (4.5) and therefore enough to get the Γ−convergence prop-
erty. �
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Remark 4.2 The proof made above used very clearly the fact that the cell
problem (1.9) can be also seen as a minimization problem. Namely for a
given macroscopic u0, the microscopic structure, represented by u1 is the one
that minimizes∫

Ω×Y
A(y)(∇xu0 +∇yu1) · (∇xu0 +∇yu1) dx dy .

It is indeed easily seen that (1.9) is the variational formulation associated to
this minimization problem.

Remark 4.3 As we have already pointed out, the convergence only holds
in the strong L2 or weak H1 senses. Although the weak H1 topology is not
metrizable, we remark that the definition of Γ−convergence does not need
the topology to be metrizable, but only a notion of convergence of sequences.
We therefore could (and some authors do) use the weak H1 topology instead
in order to prove all the statements before.

4.3 Exercises

Exercise 4.1 Show that under assumptions (4.3) and (4.5), Theorem 4.1
still holds true.

Exercise 4.2 Show that in the case where A is symmetric, the solution
u1(x, ·) to the cell problem (1.9) is indeed the solution to the minimization
problem

min
ψ∈H1

] (Y ))

∫
Y

A(y)(∇xu0(x) +∇yψ(y)) · (∇xu0(x) +∇yψ(y)) dy .

Deduce that (u0, u1) solve the minimization problem

min
(φ0,φ1)∈H1

0 (Ω)×L2(Ω,H1
] (Y ))
E
(
(φ0, φ1)

)
where

E
(
(φ0, φ1)

)
=

1

2

∫
Ω×Y

A(y)(∇xφ0(x) +∇yφ1(x, y)) · (∇xφ0(x) +∇yφ1(x, y)) dx dy

−
∫

Ω

f(x)φ0(x) dx .
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Exercise 4.3 Let Aeff be the effective diffusion tensor given by (1.14) in the
case where A is symmetric. Show that ∀ξ ∈ Rd(∫

Y

A−1(y) dy

)−1

ξ · ξ ≤ Aeffξ · ξ ≤
(∫

Y

A(y) dy

)
ξ · ξ .

Hint: Use the minimization properties of the cell problem.

Exercise 4.4 As usual, we consider Ω an open bounded regular set of Rd

and f ∈ L2(Ω). Let
W : Rd × Rd → R

be an energy density function and assume

y 7→ W (y, λ) is Y − periodic ;

λ 7→ W (y, λ) is C1 and strictly convex in Rd2 ;

|λ|2 . W (y, λ) . 1 + |λ|2 uniformly in y;∣∣∣∣∂W∂λ (y, λ)

∣∣∣∣ . 1 + |λ| uniformly in y .

We also set for all u ∈ H1
0 (Ω)

Iε(u) =

∫
Ω

W
(x
ε
,∇xu(x)

)
dx−

∫
Ω

f(x)u(x) dx .

1. Show that under the preceding hypotheses on W , the minimization
problem

min
u∈H1

0 (Ω)
Iε(u)

has a unique solution that we call uε.

2. Show that (uε)ε is bounded in H1
0 (Ω) and deduce that there exists

u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω, H1

] (Y )) such that, up to a subsequence

uε ⇀ u0 weakly in H1 ;

uε → u0 strongly in L2 ;

uε � u0 two-scale ;

∇xuε � ∇xu0(x) +∇yu1(x, y) two-scale .

The last part of this exercise consists in proving that Iε Γ(L2)−converges in
H1

0 (Ω) to

I0(u) = inf
ψ1∈L2(Ω,H1

] (Y )

∫
Ω×Y

W (y,∇xu+∇yψ(x, y)) dx dy −
∫

Ω

f(x)u(x) dx .
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3. Using

W (·, λ) ≥ W (·, µ) +

〈
∂W

∂λ
(·, µ), λ− µ

〉
Prove that if (vε)ε is a sequence in H1

0 (Ω) that converges in L2 to
v0 ∈ H1

0 (Ω)

lim inf
ε→0

Iε(vε) ≥
∫

Ω×Y
W (y,∇xv0 +∇yψ) dx dy −

∫
Ω

f(x)v0(x) dx .

for some ψ ∈ L2(Ω, H1
] (Y )). Deduce that

lim inf
ε→0

Iε(vε) ≥ I0(v0) .

Hint: Use a sequence µ of smooth test functions that converges to
∇xu0(x) +∇yu1(x, y) in L2(Ω× Y ).

4. Let v0 in H1
0 (Ω), show that for all η > 0 there exists (vε)ε in H1

0 (Ω)
such that

vε → v0 in L2 ;

lim
ε→0
Iε(vε) ≤ I0(v0) + η .

5. Conclude.
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Chapter 5

Perforated domains - Porous
media

5.1 Setting of the problem

A porous medium is a domain composed of a solid part in which a fluid
(e.g. water) is able to flow inside tiny capillaries. Porous media are usually
modelled using Darcy’s law, which is usually obtained by some averaging of
Stokes flow at the microscopic scale. Indeed, the mathematical modelization
of such a phenomenon typically involves a fluid structure interaction, the fluid
flowing inside the solid matrix. Due to the very small velocities of the fluid, it
is very reasonable to consider a low Reynolds number approximation, i.e. that
the fluid is modelled by Stokes equations. We also consider that on the solid
part of the domain, a no-slip boundary condition is assumed for the fluid.
We explain here how the two-scale convergence process is able to recover
Darcy’s law from a microscopic Stokes equation. The pioneering works, that
formally derived Darcy’s law from the microscopic Stokes equations may be
found in e.g. [11, 17] while the first rigorous proof is probably in [18]. Further
extensions may be found in [2, 13].

In what follows, we denote by Ωε the fluid part of Ω. We consider that
the fluid obeys Stokes equations

−ε2µ∆uε +∇pε = f in Ωε ,
div uε = 0 in Ωε ,
uε = 0 on ∂Ωε .

(5.1)

In the preceding equations, we have rescaled the viscosity µ of the fluid by
a factor of ε2. As will be seen later on, this simply comes from the fact that
otherwise the velocity uε tends to 0. In other words, the velocity of the fluid

45
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is of order ε2 and needs to be rescaled in order to observe a non vanishing
limit.

Existence and uniqueness of a solution (uε, pε) ∈ H1
0 (Ωε,Rd)× L2(Ωε)/R

to (5.1) is a well known result as long as f ∈ L2(Ωε,Rd) for instance. We can
therefore proceed to the homogenization, that is seeking the limits of uε and
pε as ε → 0. Quite strangely, here there is no oscillating coefficients like for
the diffusion problem before. Instead, here, the domain will be considered
as periodic and quickly oscillating. In particular, the domain changes with ε
and is not fixed in the convergence process.

Indeed, as before, we consider a periodic structure in Ω. In that aim, we
assume that the unit cell Y can be decomposed as

Y = Ys ∪ Yf , Ys ∩ Yf = ∅ ,

where Ys corresponds to the solid part in the unit cell and Yf to the fluid
part (see Fig. 5.1).

Figure 5.1: The unit cell of the porous medium is composed of a solid part
Ys and a fluid one in which the fluid flows Yf .

Scaling down this structure by a factor of ε and repeating it inside the
domain, leads to a periodicly structured domain, as depicted in Fig. 5.2,
alternating solid and fluid parts. Namely, viewed from the macroscopic do-
main, we define the fluid domain as

Ωε = Ω \
N(ε)⋃
i=1

Y ε
s,i = Ω ∩

N(ε)⋃
i=1

Y ε
f,i (5.2)

where each Y ε
f,i (resp. Y ε

s,i) is a copy of εYf (resp. εYs) . The total number

of periodic cells N(ε) satisfies N(ε) = |Ω|ε−d(1 + o(1)).
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Figure 5.2: The domain Ω tiled by repetitions of Y scaled by a factor ε.

Figure 5.3: In 3d, it is possible to have a fluid and a solid domains that are
both connected. An example is given by the periodic structure shown on the
left and made by repetitions of the unit structure to the right (from [15]).

5.2 Homogenization

Compared to what we have seen before, we have here an additional difficulty
that prevents us from passing to the limit directly on the solution (uε, pε).
Indeed, the functions are not defined on the same domain since the fluid
domain Ωε changes with the value ε. It is, therefore, necessary to extend
the solution uε and the pressure pε suitably before attempting to pass to the
limit.

Since uε = 0 on ∂Ωε, we may extend uε by 0 inside the solid part, by
setting

ũε(x) =

{
uε(x) if x ∈ Ωε ,
0 otherwise.

For pε this is slightly more involved. Classically, the pressure is defined
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up to an additive constant, and we must extend pε in such a way that when
pε is locally constant, it is also constant (with the same constant) inside the
solid part. We therefore define for i ∈ {1, · · · , N(ε)}

p̃ε(x) =


pε(x) if x ∈ Y ε

f,i ,
1

|Y ε
f,i|

∫
Y ε
f,i

pε dx in Y ε
s,i .

5.3 Convergence Theorem

This section deals with the two-scale limit of the Stokes equations that we
have introduced before. However, the complete proof of the result is rather
technical and certainly beyond the scope of these notes. We refer the inter-
ested reader to [2, 13, 18] where it can be found and will give only the key
ingredients and arguments. It will be therefore possible to follow the strategy
although all of the rigorous details will not be given.

Lemma 5.1 We have the estimates

‖ũε‖L2 + ε‖∇ũε‖L2 ≤ C , (5.3)

‖p̃ε‖L2/R ≤ C . (5.4)

Proof We first notice that on any Y ε
f,i one has due to Poincaré inequality

‖uε‖L2(Y ε
f,i)
. ε‖∇uε‖L2(Y ε

f,i)

from which we deduce

‖ũε‖L2(Y ε
i ) . ε‖∇ũε‖L2(Y ε

i )

which by summing over all cells gives

‖ũε‖L2(Ω) . ε‖∇ũε‖L2(Ω) . (5.5)

Now, multiplying the original Stokes equation by uε and integrating by
parts over Ωε, we obtain

ε2µ

∫
Ωε

|∇uε|2 dx−
∫

Ωε

pε div uε dx+

∫
∂Ωε

pεuε · n dσ =

∫
Ωε

f · uε dx .
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Since div uε = 0 and uε|∂Ωε = 0, we get, using the extension

µ‖ε∇uε‖2
L2(Ωε) = µ‖ε∇ũε‖2

L2(Ω)

≤ ‖f‖L2‖uε‖L2(Ωε)

= ‖f‖L2‖ũε‖L2(Ω)

. ε‖f‖L2‖∇ũε‖L2(Ω)

due to (5.5), from which we deduce (5.3).
The estimate for the pressure is trickier. We refer the interested reader

to the original proof by Tartar [18] that was further developed in [2, 13]. �

We are now in a position to prove the following Theorem.

Theorem 5.1 The sequence (ũε, p̃ε) two-scale converges to the unique solu-
tion (u0(x, y), p(x)) of

−µ∆yu0 +∇yp1 = f −∇xp in Ω× Yf ,
divy u0(x, y) = 0 in Ω× Yf ,

divx

(∫
Y

u0(x, y) dy

)
= 0 in Ω ,

u0(x, y) = 0 in Ω× Ys ,(∫
Y

u0(x, y) dy

)
· n = 0 on ∂Ω ,

y 7→ u0(x, y), p1(x, y) is Y − periodic .

(5.6)

Remark 5.1 The two-scale homogenized Stokes problem is sometimes called
the two-pressure Stokes system as it involves the macroscopic pressure p and
a microscopic pressure p1 which takes into account the microscopic structure.
Eliminating the y variable will lead to Darcy’s law as we shall see below.

Proof [of Theorem 5.1]
The bounds obtained in Lemma 5.1 allow us to extract a subsquence from
(ũε)ε (that we still denote by (ũε)ε) such that

ũε � u0(x, y) two-scale ,

ε∇xũε � ∇yu0(x, y) two-scale .

(Notice that we have used the result of Exercise 2.6). Now, taking a smooth
function ψ(x, y) ∈ D(Ω, C∞] (Y )) which is supported in Ω× Ys, we have

0 =

∫
Ω

ũε(x)ψ
(
x,
x

ε

)
dx→

∫
Ω×Y

u0(x, y)ψ(x, y) dx dy ,



50 CHAPTER 5. PERFORATED DOMAINS - POROUS MEDIA

from which we deduce that

u0(x, y) = 0 in Ω× Ys . (5.7)

Moreover since div ũε = 0, we have

0 =

∫
Ω

div ũεψ
(
x,
x

ε

)
dx

= −
∫

Ω

ũε · (∇xψ +
1

ε
∇yψ)

(
x,
x

ε

)
dx

Multiplying by ε and passing to the limit ε→ 0 leads to

0 =

∫
Ω×Y

u0(x, y) · ∇yψ(x, y) dx dy

which means divyu0 = 0 . Taking now a test function ψ ∈ H1(Ω) which
does not depend on the y variable (thus such that divyψ = 0), and does not
vanish on the boundary ∂Ω; we also have after integrating by parts and using
ũε|∂Ω = 0

0 =

∫
Ω

ũε · ∇xψ
(
x,
x

ε

)
dx

which, passing to the limit leads to

divx

(∫
Y

u0(x, y) dy

)
= 0

and (∫
Y

u0(x, y) dy

)
· n = 0 on ∂Ω .

As far as the pressure is concerned, the compactness theorem leads to the
existence of p0 ∈ L2(Ω× Y )/R such that

p̃ε � p0 two-scale.

We take the momentum equation and multiply it by εψ
(
x, x

ε

)
where ψ(x, y)

is a smooth vector valued Y -periodic function. Integrating by parts, we get

ε3µ

∫
Ω

∇ũε · ∇xψ
(
x,
x

ε

)
dx+ ε2µ

∫
Ω

∇ũε · ∇yψ
(
x,
x

ε

)
dx

−ε
∫

Ω

p̃εdivxψ
(
x,
x

ε

)
dx−

∫
Ω

p̃εdivyψ
(
x,
x

ε

)
dx

= ε

∫
Ω

f(x) · ψ
(
x,
x

ε

)
dx .
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Passing to the limit ε→ 0 gives∫
Ω×Y

p0(x, y)divyψ(x, y) dx dy = 0 ,

which shows that p0 does not depend on the y variable. There exists p(x) ∈
L2(Ω)/R such that

p0(x, y) = p(x) .

Eventually, we need to recover the homogenized problem. The strategy con-
sists in multiplying the momentum equation by a test function which shares
the same characteristics as u0. Therefore we now take ψ(x, y) a vector valued
test function that satisfies

divyψ(x, y) = 0 on Ω× Y ,

divx

(∫
Y

ψ(x, y) dy

)
= 0 ,(∫

Y

ψ(x, y) dy

)
· n = 0 on ∂Ω ,

ψ(x, y) = 0 in Ω× Ys .

Multiplying the original Stokes equation by ψ
(
x, x

ε

)
we get after integrating

by parts:

ε2µ

∫
Ω

∇ũε · ∇xψ
(
x,
x

ε

)
dx+ εµ

∫
Ω

∇ũε · ∇yψ
(
x,
x

ε

)
dx

−
∫

Ω

p̃εdivxψ
(
x,
x

ε

)
dx− 1

ε

∫
Ω

p̃εdivyψ
(
x,
x

ε

)
dx

=

∫
Ω

f(x) · ψ
(
x,
x

ε

)
dx .

Using the assumptions above, we infer

ε2µ

∫
Ω

∇ũε · ∇xψ
(
x,
x

ε

)
dx+ εµ

∫
Ω

∇ũε · ∇yψ
(
x,
x

ε

)
dx

−
∫

Ω

p̃εdivxψ
(
x,
x

ε

)
dx =

∫
Ω

f(x) · ψ
(
x,
x

ε

)
dx ,

and we may pass to the (two-scale) limit as ε→ 0 to get

µ

∫
Ω×Y
∇yu0 · ∇yψ(x, y) dx dy −

∫
Ω×Y

p(x)divxψ(x, y) dx dy

=

∫
Ω×Y

f(x) · ψ(x, y) dx dy ,
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which further simplifies into

µ

∫
Ω×Y
∇yu0(x, y) · ∇yψ(x, y) dx dy =

∫
Ω×Y

f(x) · ψ(x, y) dx dy . (5.8)

By density, the preceding variational formulation holds for any test func-
tion ψ in the Hilbert space

V =
{
ψ(x, y) ∈ L2(Ω, H1

] (Y )) s.t. ψ(x, y) = 0 on Ω× Ys , divyψ(x, y) = 0 ,

divx

(∫
Y

ψ(x, y) dy

)
= 0 ,

(∫
Y

ψ(x, y) dy

)
· n = 0 on ∂Ω

}
.

(5.9)

The Lax-Milgram Theorem applies to prove that the variational formula-
tion (5.8) has a unique solution in u0 ∈ V . This characterizes the limit and
therefore the whole sequence (ũε)ε two-scale converges to u0.

Eventually, in order to recover the pressure term, we need to characterize
the orthogonal (with respect to the L2(Ω × Y ) scalar product of V ). This
was done in [2], where it is shown that

V ⊥L2 =
{
∇xq0(x) +∇yq1(x, y) where q0 ∈ L2(Ω)/R, q1 ∈ L2(Ω, L2

] (Yf )/R
}
.

(Notice that this is a subspace of L2(Ω, H−1(Y )).) This gives the existence
of p and p1 in Theorem 5.1. It remains only to prove that q0 is indeed the
two-scale limit of (pε)ε. In order to do so, we take a test function ψ(x, y)
which satisfies only divyψ = 0 into the momentum equation. We deduce
from the calculation before that

µ

∫
Ω×Y
∇yu0 · ∇yψ(x, y) dx dy −

∫
Ω×Y

p(x)divxψ(x, y) dx dy

=

∫
Ω×Y

f(x) · ψ(x, y) dx dy .

This permits us to deduce that∫
Ω×Y

q0(x)divxψ(x, y) dx dy =

∫
Ω×Y

p(x)divxψ(x, y) dx dy

or, in other words, that q0 = p. �
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5.4 The cell and the homogenized problem

It is also possible to proceed exactly in the same spirit as in the preceding
chapters of this book, namely to identify the cell and the homogenized prob-
lems.

Cell problem: We first remark that if we take x as a fixed parameter,
(u0, p1) satifies a Stokes equation on the unit cell

−µ∆yu0 +∇yp1 = f −∇xp for y ∈ Yf ,
divyu0 = 0 for y ∈ Yf ,
u0 = 0 on ∂Yf ,
y 7→ u0(x, y) periodic,
y 7→ p1(x, y) periodic.

(5.10)

Therefore, introducing the correctors (ωj(y), qj(y))1≤j≤d solutions to
−µ∆yωj +∇yqj = ej for y ∈ Yf ,
divyωj = 0 for y ∈ Yf .
ωj = 0 on ∂Yf ,
y 7→ ωj(y) periodic,
y 7→ qj(y) periodic,

(5.11)

(we leave to the reader the existence and uniqueness of (ωj, qj) ∈ H1
] (Yf ) ×

L2
] (Yf )) we deduce that

u0(x, y) =
d∑
j=1

(
fj(x)− ∂p

∂xj
(x)

)
ωj(y) ,

p1(x, y) =
d∑
j=1

(
fj(x)− ∂p

∂xj
(x)

)
qj(y) .

Homogenized equation: We plug the preceding expression into the last
equations of our problem

divx

(∫
Y

u0(x, y) dy

)
= 0 in Ω ,(∫

Y

u0(x, y) dy

)
· n = 0 on ∂Ω

(5.12)
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to get the homogenized problem, namely
divx

(
d∑
j=1

(
fj(x)− ∂p

∂xj
(x)

)∫
Y

ωj(y) dy

)
= 0 in Ω ,(

d∑
j=1

(
fj(x)− ∂p

∂xj
(x)

)∫
Y

ωj(y) dy

)
· n = 0 on ∂Ω .

(5.13)

Setting A the matrix defined by

Aij =

∫
Y

ωj(y) · ei dy , (5.14)

and the velocity

u(x) =
1

µ
A(f −∇xp) , (5.15)

we get that u solves {
divx u(x) = 0 in Ω ,
u(x) · n = 0 on ∂Ω ,

(5.16)

which in view of (5.15) is nothing but the Darcy’s equation where the per-
meability tensor is given by 1

µ
A.

5.5 Exercises

Exercise 5.1 We consider the Stokes problem in the domain Ωε described
in 5.2 

−µ∆uε +∇pε = f in Ωε ,
div uε = 0 in Ωε ,
uε = 0 on ∂Ωε .

(5.17)

where we have not scaled the viscosity by the factor ε2. Make the multiscale
expansion

uε = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ · · · ,

and

pε = p0

(
x,
x

ε

)
+ εp1

(
x,
x

ε

)
+ · · · ,

and show that u0 = u1 = 0. Therefore the first non vanishing term in the
equation is of order ε2. This justifies rescaling the viscosity as in (5.1).
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Exercise 5.2 Show that the matrix A defined by (5.14) where the ωi are
given by (5.11) satisfies

Aij =

∫
Y

ωi(y) · ωj(y) dy ,

and is therefore symmetric.
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Chapter 6

Numerical methods in
homogenization

The aim of this section is to describe a few numerical methods that can be
used to solve problems with highly oscillating coefficients. In order to do so,
we consider again the model problem − div

(
A
(
x
ε

)
∇uε

)
= f in Ω,

uε = 0 on ∂Ω
(6.1)

where the conductivity tensor A(y) is Y periodic and satisfies the uniform
coercivity assumption

∃α, β > 0 such that∀ξ ∈ Rd, α|ξ|2 ≤ (A(y)ξ, ξ) ≤ β|ξ|2,

uniformly for all y ∈ Y = (0, 1)d and f ∈ L2(Ω). As usual, existence and
uniqueness of the solution uε to (6.1) is classical.

At first sight, one can use the usual finite difference or finite element
method to solve the problem. However, it is clear that the method needs to
catch the oscillations of the coefficients A

(
x
ε

)
and of the solution, that is to

say that we need to provide a mesh (cartesian for FD, or simplicial for FE)
whose space step h satisfies

h� ε.

For very small values of ε it is not realistic to mesh the domain and assemble
the discretized version of (6.1).

The classical approach to solve this difficulty consists in using the ho-
mogenization theory and to solve the associated homogenized problem. Nev-
ertheless, what is the error that we obtain for such a numerical solution?
Moreover, are there other alternatives? We try to give answers to these

57
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questions in the following. We start by recalling the classical error estimates
that are obtained when one applies the finite element method to classical
elliptic problems, and apply the results to get an estimation of the error ob-
tained for the numerical solution of the homogenized problem. We afterwards
explain the method of multiscale finite elements of Hou et al. [10].

6.1 Classical error estimates

The classical method to find error estimates for the finite element method is
based on 2 ingredients:

• An abstract lemma (Céa’s lemma or Strang’s lemma) which links the
approximation error to the interpolation error ;

• A general result which typically depends on the considered finite ele-
ment which expresses the behavior of the interpolation error depending
on the mesh step h and the regularity of the exact solution.

We detail these two aspects hereafter on a model problem.

6.1.1 The model problem

We consider in what follows the homogeneous Dirichlet problem on a bounded
regular domain Ω. In order to simplify the exposition, we further assume that
Ω ⊂ R2, although most (if not all) of what we present here extends naturally
to dimension 3 or higher.

The Dirichlet problem with non constant coefficients we have in mind
consists in solving 

− div(ω(x)∇u) = f in Ω,

u = 0 on ∂Ω.
(6.2)

It is well known that it has a variational formulation that reads

Findu ∈ H1
0 (Ω) such that∀v ∈ H1

0 (Ω),

∫
Ω

ω(x)∇u(x)·∇v(x) dx =

∫
Ω

f(x)v(x)dx.

(6.3)
We also assume that there exist α > β > 0 such that the rigidity matrix ω
satisfies

∀x ∈ Ω, α Id ≥ ω(x) ≥ β Id .

Furthermore, we assume that the coefficients of ω are regular enough. For
the sake of simplicity, we make the assumption that ω ∈ C∞(Ω). Usually,
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the proof of the existence of a solution to (6.3) relies on the Lax-Milgram
Theorem. To be more specific, let us consider an abstract framework for the
problem. Calling V = H1

0 (Ω), the variational formulation can be written as

Findu ∈ V such that ∀v ∈ V, a(u, v) = l(v) (6.4)

where a is a bilinear form on a Hilbert space V , and l a linear form defined
also on V , namely

a(u, v) =

∫
Ω

ω(x)∇u(x) · ∇v(x) dx,

l(v) =

∫
Ω

f(x)v(x)dx.

If l is continuous and a is continuous and V -coercive, it is well known that
the Lax-Milgram theorem applies and there exists a unique solution u of the
problem (6.4).

A finite element approximation of (6.3) consists in building a finite dimen-
sional subspace Vh of V and to look for a solution of the discrete variational
formulation

Finduh ∈ Vh such that ∀vh ∈ Vh, a(uh, vh) = l(vh). (6.5)

Of course, since Vh is also a Hilbert space, the Lax-Milgram Theorem still
applies on Vh and (6.5) also possesses a unique solution uh usually called the
approximate solution.

6.1.2 Céa’s and Strang’s lemmas

The error between u and uh is evaluated thanks to Céa’s lemma.

Lemma 6.1 (Céa’s lemma) With the above hypotheses, one has

∃C > 0 such that ‖u− uh‖V ≤ C inf
wh∈Vh

‖u− wh‖V . (6.6)

Proof Since a is coercive on V , there exists α > 0, such that

α‖u− uh‖2
V ≤ a(u− uh, u− uh). (6.7)

Now, since u solves (6.4) and uh solves (6.5), using v = vh = uh − wh as a
test function leads to

a(u, uh − wh) = l(uh − wh) = a(uh, uh − wh),
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which gives
a(u− uh, uh − wh) = 0.

Using this in (6.7) allows us to write

α‖u− uh‖2
V ≤ a(u− uh, u− uh)

= a(u− uh, u− uh + uh − wh)
= a(u− uh, u− wh)
≤ M‖u− uh‖V ‖u− wh‖V .

from the continuity of a. Dividing both terms by ‖u− uh‖V gives

‖u− uh‖V ≤
M

α
‖u− wh‖V ,

which leads to (6.6) since wh is arbitrary in Vh. �

Céa’s lemma plays a prominent role in the error estimation between the
exact and approximate solutions of elliptic problems since it links the ap-
proximation error ‖u − uh‖V made by solving the problem on a subspace
Vh ⊂ V to the interpolation error infwh∈Vh ‖u−wh‖V . Notice that this latter
does not depend on the problem, but only on the way the exact solution u
is close to Vh, or in other words, on how well u can be interpolated on Vh.

As we shall see, for the error estimation on the homogenized problem,
one has to face the problem that the exact and approximate problems are no
longer the same. The approximate variational formulation becomes

Finduh ∈ Vh such that ∀vh ∈ Vh, ah(uh, vh) = lh(vh). (6.8)

In that case, there exists a natural extension of Céa’s lemma which is known
as Strang’s lemma.

Lemma 6.2 (Strang’s lemma) Assume that lh is uniformly continuous on
V and ah is uniformly continuous and coercive on V then one has

‖u− uh‖V .
(

inf
wh∈Vh

‖u− wh‖V + sup
vh∈Vh

|ah(u, vh)− lh(vh)|
‖vh‖V

)
. (6.9)

Proof Since ah is uniformly coercive on V , there exists α > 0, such that

α‖uh − wh‖2
V ≤ ah(uh − wh, uh − wh). (6.10)

Now, since uh solves (6.8), using vh = uh − wh as a test function leads to

ah(uh − wh, uh − wh) = ah(u− wh, uh − wh)
−(ah(u, uh − wh)− ah(uh, uh − wh))

≤ M‖u− wh‖V ‖uh − wh‖V
+|ah(u, uh − wh)− lh(uh − wh)|
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where we have used that ah is uniformly continuous on V . This gives, using
(6.10), and dividing by ‖uh − wh‖V

‖uh − wh‖V ≤ M

α
‖u− wh‖V +

1

α

|ah(u, uh − wh)− lh(uh − wh)|
‖uh − wh‖V

,

which leads to

‖uh − wh‖V ≤ M

α
‖u− wh‖V +

1

α
inf
vh∈Vh

|ah(u, vh)− lh(vh)|
‖vh‖V

.

Eventually, the triangle inequality ‖u − uh‖V ≤ ‖u − wh‖V + ‖uh − wh‖V
leads to (6.9) by taking C = max

{
M
α

+ 1, 1
α

}
.

�

Compared to Céa’s lemma, Strang’s lemma measures not only the in-
terpolation error, but also how well the discretized problem approaches the
exact one. Indeed, this latter term would vanish if one replaces ah and lh by
a and l respectively.

6.1.3 Regularity

The regularity of the solution of (6.2) is a topic outside the scope of these
notes. Without entering into details, let us just mention that, up to now, the
solution that has been built has only a H1 regularity (all derivatives of u are
square integrable on Ω). This regularity can be enhanced depending on the
regularity of the right hand side f . We just mention the following classical
regularity result.

Theorem 6.1 Assume that Ω is convex or smooth1. Then if f ∈ Hk(Ω),
the solution u of (6.2) belongs to Hk+2(Ω) and, moreover,

∃C(ω,Ω) > 0 such that ‖u‖Hk+2 ≤ C(ω,Ω)‖f‖Hk .

We refer the interested reader to [7] where a proof is given. Notice that
we have given the general regularity result (for all k) although we mainly use
in practive this result for k = 0, namely

f ∈ L2(Ω)⇒ u ∈ H2(Ω).

As we shall see in the next section, this regularity property plays a very
important role in the error estimation for the finite element method.

1By this we mean C∞. This can be improved by lowering the regularity to Ck+2.
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6.1.4 Interpolation error with Lagrange’s finite elements

Eventually to complete this section, we recall without proof the classical esti-
mation of the interpolation error when one uses the conformal finite element
P k method with polynomials of degree k ≥ 1 on triangular conformal meshes.

Proposition 6.1 Assume Ω is a bounded polyhedral domain of R2 meshed
with a regular family of triangulations Th. Take u ∈ Hk+1(Ω), and Vh =
P k(Th). Then one has the estimation

∀h > 0, ‖u− Ih(u)‖Hl(Ω) ≤ Chk+1−l|u|Hk+1(Ω)

for all l ≤ k + 1.

In the preceding lemma, we have called Ih : H2(Ω) → P k(Th) the inter-
polation operator. For the proof of this result, we refer the reader to classical
textbooks on finite elements like [3] or [6]. We nevertheless give a few hints.
The main idea is to prove the same kind of estimation on a reference simplex
K̂

∃C > 0,∀û ∈ Hk+1(K̂), ‖û− Ih(û)‖Hk+1(K̂) ≤ C |û|Hk+1(K̂).

(This is usually done by showing that the two norms ‖ · ‖Hk+1(K̂), and | ·
|Hk+1(K̂) + ‖Ih(·)‖Hk+1(K̂) are actually equivalent on Hk+1(K̂). Applying this
to û − Ih(û) leads to the desired inequality.) It then follows that for all
l ≤ k + 1,

∃C > 0,∀û ∈ Hk+1(K̂), ‖û− Ih(û)‖Hl(K̂) ≤ C |û|Hk+1(K̂),

where the first norm is now the H l norm. Eventually, one has to see that
both terms do not scale identically. More precisely, calling u the map defined
by u(x) = û(hx), ∀x ∈ K̂, one has

|û− Ih(û)|Hl(hK̂) = h1−l|û− Ih(û)|Hl(K̂)

≤ Ch1−l|û|Hk+1(K̂)

= Chk+1−l|u|Hk+1(hK̂).

Summing the obtained inequality (after having squared it) on all the simplices
of the triangulation and on all 0 ≤ l ≤ k leads to the desired result.

Remark 6.1 Notice that the preceding interpolation inequality leads to an
estimation of the L2 norm

∃C > 0,∀u ∈ Hk+1(Ω), ‖u− Ih(u)‖L2 ≤ Chk+1|u|Hk+1 .
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From this interpolation theory together with Céa’s (or Strang’s) lemma,
one can estimate the error between the exact and approximate solutions.

Theorem 6.2 Let f ∈ Hk−1(Ω). Then the finite element solution uh satis-
fies the error estimate

‖u− uh‖H1 . hk‖f‖Hk−1 .

In particular taking k = 1 and P 1 finite elements leads to the estimate

‖u− uh‖H1 . h‖f‖L2 .

Proof From the regularity result, we know that u ∈ Hk+1(Ω). Then, using
Céa’s lemma, we get

‖u− uh‖H1 . inf
wh∈Vh

‖u− wh‖H1

. hk|u|Hk+1

. hk‖f‖Hk−1 .

�

Remark 6.2 Notice that the degree of the Lagrange finite element used is
intimately linked to the regularity of the exact solution u to the problem.
Indeed, the estimation given before is useless if f /∈ Hk−1. In that case,
this means that using P k finite element is useless. For instance, if f ∈ L2

but f /∈ H1, then the optimal error is obtained using the P 1 finite element
method.

Notice that so far we have only estimated the H1 distance between the
exact and approximate solutions. Although a better estimate exists for the
L2 norm for interpolation, Céa’s lemma is a priori wrong when dealing with
L2 norms. We end this section with the so-called Aubin-Nitsche’s lemma
which permits us to estimate the L2 norm error between the solution to the
exact problem u and the approximate solution uh.

Lemma 6.3 (Aubin-Nitsche) Assume that u ∈ Hk+1(Ω). Then,

∃C > 0, ‖u− uh‖L2 ≤ Chk+1|u|Hk+1 .

Proof We start by noticing that

‖u− uh‖L2 = sup
g∈L2

∫
Ω

(u− uh)gdx
‖g‖L2

.
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Now, we introduce the (unique) solution vg to the problem

Find v ∈ V, such that a(w, vg) =

∫
Ω

gwdx.

Notice that this is not the same problem as before since the unknown is in
the right hand side of a. More precisely, it is easily seen that vg solves

− div(ωT (x)∇vg) = g in Ω,

u = 0 on ∂Ω.
(6.11)

In particular, the regularity Theorem 6.1 applies and g ∈ L2(Ω) ⇒ vg ∈
H2(Ω) and more precisely,

‖vg‖H2 ≤ C‖g‖L2 . (6.12)

Inserting w = u− uh leads to∫
Ω

(u− uh)gdx = a(u− uh, vg)

= a(u− uh,vg − wh)
for all wh ∈ Vh, since we know that a(u− uh, wh) = 0. But, since vg ∈ V , we
have (taking for instance wh = Ih(vg)),

|a(u− uh, vg − Ih(vg))| . ‖u− uh‖V ‖vg − Ih(vg)‖V
. hk+1|u|Hk+1|vg|H2

. hk+1|u|Hk+1‖g‖L2 .

in view of (6.12). Therefore we get∫
Ω

(u− uh)gdx . hk+1|u|Hk+1‖g‖L2 ,

and

‖u− uh‖L2 = sup
g∈L2

∫
Ω

(u− uh)gdx
‖g‖L2

. hk+1|u|Hk+1

which proves the lemma. �

Remark 6.3 For the Aubin-Nitsche’s lemma, the hypotheses are those of
Céa’s lemma. In other words, the discrete and continuous problems should be
the same. In that case, we indeed get an improvement for the approximation
of the L2 norm compared to the H1 norm. When instead we are under the
hypotheses of Strang’s lemma (that is to say the discrete and continuous
problems are no longer the same), we can not rely on Aubin-Nitsche’s lemma
and have no better estimate for the L2 norm.
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6.2 Application to homogenization problems

We now turn to the application of the preceding results to the homogenized
model problem (6.1). We recall that homogenization theory provides an
expansion of the solution u to (6.1) as

u(x) = u0(x) + εu1

(
x,
x

ε

)
+ · · ·

in H1(Ω), where u0 solves the homogenized problem2
− div(Ā∇u0) = f in Ω,

u0 = 0 on ∂Ω,
(6.13)

and

∀(x, y) ∈ Ω× Y, u1(x, y) =
2∑
i=1

∂u0

∂xi
(x)wi(y)

and wi are the correctors, solutions to
− divy(A(y)(∇wi(y) + ei)) = 0 inY,

wi is Y -periodic,
∫
Y
wi(y)dy = 0.

(6.14)

The homogenized tensor Ā is also given in terms of A and wi by the formula

Āi,j =

∫
Y

A(y)(ei +∇wi) · ejdy

=

∫
Y

A(y)(ei +∇wi) · (ej +∇wj)dy.

At this level, we have two sources of error:

• The error that one makes when approximating the exact solution u by
a multiscale expansion u(x) ∼ u0(x) or u(x) ∼ u0(x) + εu1

(
x, x

ε

)
or

similar expansions. This error is quantified in L2 or H1 norms and is
evaluated in terms of ε ;

• The error that one makes when approximating the above terms (u0,
u1, etc.) by their corresponding finite element approximations. These
errors are estimated again in L2 or H1 typically and depend on the
mesh size h. For this part we need to use the preceding results.

2For the sake of simplicity of notation, we here have denoted by Ā what was called Aeff
in the preceding chapters. This will prove more efficient when we will have to compute
the entries of the tensor, or more precisely of its discretized version.
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In what follows, we start with the second estimation, and turn to the first
afterwards.

6.2.1 Error estimation of the finite element approxi-
mations of u0 and u1

When solving the homogenized problem for u0, one usually computes an
approximate homogenized tensor Āh by solving the variational problem cor-
responding to (6.13), that is to say

Findwi ∈ H1
#(Y ),∀v ∈ H1

#(Y ),

∫
Y

A(y)∇wi · ∇vdy = −
∫
Y

A(y)ei · ∇vdy

(6.15)
and more precisely, its discretized version.

The theory of approximation, just stated in the previous section shows
that there is an error estimation, when one solves (6.15) on a regular family
of triangulations (Th)h>0 and using the P k finite elements. Namely, one has

‖wi − wh,i‖H1(Ω) ≤ Chk|wi|Hk+1(Ω)

provided that wi ∈ Hk+1(Y ). Since the coefficients of the tensor A are
assumed to be smooth, it is easily seen that the correctors wi are regular, in
the sense that wi ∈ C∞(Y ). Using a P k finite element method thus leads to

‖wi − wh,i‖H1(Ω) ≤ Chk.

Moreover, while computing the homogenized tensor Ā, one therefore makes
an error which can be estimated on each coefficient

|Āi,j − Āh;i,j| =

∣∣∣∣∫
Y

(A(y)(ei +∇wi) · ej − A(y)(ei +∇wh,i) · ej)dy
∣∣∣∣

.
∫
Y

|A(y)(∇(wi − wh,i)) · ejdy|

. ‖wi − wh,i‖H1

. hk. (6.16)

Of course, for less regular coefficients A(y), one gets lower order errors in the
computation of A.

Remark 6.4 We stress the fact that since Y is a unit cube, it is easy to
have a regular family of triangulations of Y . It suffices to divide Y into small
squares of edgelength h, and to further subdivide those small squares into
triangles.
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We now turn to the problem of the approximation of u0. In our finite
element setting, we have to estimate the error between the solution to (6.13)
and the corresponding approximate problem. With this aim, we write the
variational formulation of (6.13), namely, setting V = H1

0 (Ω)

Findu0 ∈ V, ∀v ∈ V,
∫

Ω

Ā∇u0(y) · ∇v(y)dy =

∫
Ω

f(y)v(y)dy, (6.17)

the discrete variational formulation becomes

Findu0,h ∈ Vh,∀vh ∈ Vh,
∫

Ω

Ah∇u0,h(y) · ∇vh(y)dy =

∫
Ω

f(y)vh(y)dy.

(6.18)
and the error estimation reads as follows.

Lemma 6.4 Let (Th)h be a regular family of triangulations of Ω. Assume
that there exists k ≥ 1 such that f ∈ Hk−1(Ω) and that we use the P k La-
grange finite element method to compute numerically u0. Then

‖u0 − u0,h‖H1 . hk‖f‖Hk−1 .

Proof We are exactly in a position to apply Strang’s lemma. Indeed, we
set

∀u, v ∈ V, a(u, v) =

∫
Ω

Ā∇u(y) · ∇v(y)dy,

∀uh, vh ∈ Vh, ah(uh, vh) =

∫
Ω

Āh∇uh(y) · ∇vh(y)dy,

∀v ∈ V, l(v) = lh(v) =

∫
Ω

f(y)v(y)dy

Then, applying Strang’s lemma, we get the estimate

‖u0 − u0,h‖V ≤ C

(
inf

wh∈Vh
‖u0 − wh‖V + sup

vh∈Vh

|ah(u0, vh)− lh(vh)|
‖vh‖V

)
. (6.19)

The first term of the right hand side follows classical interpolation estimation
while for the second, we have

ah(u0, vh)− lh(vh) =

∫
Ω

Āh∇u0(y) · ∇vh(y)dy −
∫

Ω

f(y)vh(y)dy

=

∫
Ω

(Āh − Ā)∇u0(y) · ∇vh(y)dy,
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and therefore

|ah(u0, vh)− lh(vh)| ≤ ‖Āh − Ā‖∞‖u0‖V ‖vh‖V .

Putting this in (6.19), we get

‖u0 − u0,h‖V ≤ C( inf
wh∈Vh

‖u0 − wh‖V + ‖Āh − Ā‖∞‖u0‖V )

≤ Chk‖u0‖Hk+1

using (6.16) and the classical P k finite element estimation. �

Remark 6.5 We stress the fact that we get a classical error estimation al-
though we need to solve an auxiliary problem. It is important to realize that
the preceding estimate contains two terms. The first one which behaves clas-
sically as for the usual elliptic problems and the second one which contains
the estimation of the auxiliary problem. In particular, in order to get the
estimate, we have assumed that the mesh on Y that was used to solve the
cell problem has a space step h comparable to the one that is used to solve
the homogenized problem. Moreover, the degree of the finite element used
is also important. It is easily seen and understandable that in order to get a
higher order convergence, one needs to use higher order finite elements not
only for the homogenized problem, but also for the cell problem, in order to
get a better approximation of the homogenized tensor Ā.

Remark 6.6 It is also interesting to notice that, having no equivalent of
Aubin-Nitsche’s trick (because Ā 6= Āh), we do not have a better estimate
for the L2 norm.

It remains now to estimate the error between the solution uε to the orig-
inal problem and the one built before.

6.2.2 Error analysis of the multiscale expansion

In this section we detail the results that were obtained by different authors.
Most of the material exposed here can be found in [12]. We remark that
u0 can only be a good approximation of uε in L2 but certainly not in H1.
Indeed, we know from the classical theory, that uε → u0 weakly in H1 and
strongly in L2. Moreover, the 2 scale homogenization gives more information,
((uε)ε and (∇uε)ε being uniformly bounded in L2) namely, we know that

uε � u0,

∇uε � ∇xu0 +∇yu1.
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Therefore, although ‖uε − u0‖L2 tends to 0, we do not have that ‖∇uε −
∇u0‖L2 tends to 0 (since ∇uε − ∇u0 2-scale converges to ∇yu1). As far as
the H1 norm is concerned we know that

uε(x)− u0(x)− εu1

(
x,
x

ε

)
→ 0

strongly in H1. This gives another way to understand the preceding remarks,
since we get

εu1

(
x,
x

ε

)
→ 0 inL2

∇
(
εu1

(
x,
x

ε

))
= ε∇xu1

(
x,
x

ε

)
+∇yu1

(
x,
x

ε

)
⇀

∫
Y

∇yu1(x, y)dyweakly inL2.

Again, although
∫
Y
∇yu1(x, y)dy = 0 (since u1 is a y−periodic function) the

convergence is only weak, and it is easily seen that∥∥∥∇(εu1

(
x,
x

ε

))∥∥∥
L2
→ ‖∇yu1(x, y)‖L2(Ω×Y ) 6= 0 as ε→ 0.

Moreover, the preceding remarks are not quantitative. In particular, we do
not know the behavior (say in terms of powers of ε) of these convergences.
The theorems of this section give this behavior.

Theorem 6.3 We have∥∥∥uε(x)− u0(x)− εu1

(
x,
x

ε

)∥∥∥
H1
.
√
ε. (6.20)

Corollary 6.1 We have

‖uε(x)− u0(x)‖L2 . ε.

Theorem 6.3 as well as Corollary 6.1 are consequences of a much more
difficult and precise theorem given below. In order to explain it, let us re-
mark that the approximation u0(x)−εu1

(
x, x

ε

)
does not satisfy the Dirichlet

boundary conditions on ∂Ω. Indeed, there is no reason that u1 should van-
ish on the boundary. The idea is therefore to introduce a corrector to the
boundary condition. Namely, we introduce θε solution to

− div
(
A
(
x
ε

)
∇θε

)
= 0 in Ω,

θε = u1

(
x, x

ε

)
on ∂Ω.

(6.21)

It is now clear that

uε(x)− u0(x)− ε
(
u1

(
x,
x

ε

)
− θε(x)

)
= 0 on ∂Ω.

We are now in a position to state the theorem.
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Theorem 6.4 Suppose that u0 ∈ H2. Then∥∥∥uε(x)− u0(x)− ε
(
u1

(
x,
x

ε

)
− θε(x)

)∥∥∥
H1
. ε‖u0‖H2 .

Proof As we shall see, the proof is rather complicated and follows several
steps. We first rewrite the problem as

vε = A
(x
ε

)
∇uε,

− div(vε) = f.

Making a (formal) multiscale expansion of the preceding equations, we get

uε = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ · · ·

vε = v0

(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
+ · · ·

Putting these expansions in the preceding equations, and equating the terms
with the same power in ε, we get

A(y)∇yu0 = 0, (6.22)

− divy v0 = 0, (6.23)

A(y)(∇yu1 +∇xu0) = v0, (6.24)

− divy v1 − divx v0 = f. (6.25)

Equation (6.22) gives as usual the fact that u0 does not depend on y, while
(6.23) and (6.24) together give the cell problem. The homogenized problem
is usually obtained by integrating (6.25) over the cell Y .

Guided by this computation, we thus define

v0(x, y) = A(y)(∇xu0(x) +∇yu1(x, y)).

Since u0 and u1 are linked by the cell problem, we know that divy v0 = 0.
On the other hand, we also know (since everything depends only on the slow
variable x) that divy Ā∇u0 = 0. Therefore, divy(v0 − Ā∇u0) = 0, and since
we are in dimension 2, there exists q(x, y) such that

v0 − Ā∇u0 = ∇⊥y q(x, y).

Here, we have denoted by∇⊥y =
(
− ∂
∂y2
, ∂
∂y1

)
the 2D curl. It is easily seen that

q is Y -periodic and depends linearly on ∇xu0, so that one has the estimate

sup
y∈Y
|∇xq(x, y)| .

∑
i,j

∣∣∣∣ ∂2u0

∂xi∂xj
(x)

∣∣∣∣ , a.e. in Ω. (6.26)
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We now set v1(x, y) = ∇⊥x q(x, y), and notice that

divy v1 = divy∇⊥x q

= − ∂2q

∂y1∂x2

+
∂2q

∂y2∂x1

= − divx∇⊥y q
= − divx(v0 − Ā∇u0)

= − divx v0 − f (6.27)

so that we recover (6.25).
We also have (due to (6.26)) that

sup
y∈Y
|v1(x, y)| .

∑
i,j

∣∣∣∣ ∂2u0

∂xi∂xj
(x)

∣∣∣∣ , a.e.x ∈ Ω (6.28)

and from the definition of v1, divx v1(x, y) = 0 in Ω× Y .
Now, we set

zε(x) = uε(x)− u0(x)− εu1

(
x,
x

ε

)
,

ηε(x) = A
(x
ε

)
∇uε(x)− v0

(
x,
x

ε

)
− εv1

(
x,
x

ε

)
,

and we compute

A
(x
ε

)
∇zε(x)− ηε(x) = −A

(x
ε

)(
∇u0(x) +∇yu1

(
x,
x

ε

))
−εA

(x
ε

)
∇xu1

(
x,
x

ε

)
+ v0

(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
= ε

(
v1

(
x,
x

ε

)
− A

(x
ε

)
∇u1

(
x,
x

ε

))
.

Using (6.28), we therefore get∥∥∥A(x
ε

)
∇zε(x)− ηε(x)

∥∥∥
L2
. ε‖u0‖H2 ,

while

div ηε(x) = div
(
A
(x
ε

)
∇uε(x)− v0

(
x,
x

ε

)
− εv1

(
x,
x

ε

))
= −f(x)− divx v0

(
x,
x

ε

)
− ε−1 divy v0

(
x,
x

ε

)
−ε divx v1

(
x,
x

ε

)
− divy v1

(
x,
x

ε

)
= −f(x)− divx v0

(
x,
x

ε

)
+ 0 + 0− divy v1

(
x,
x

ε

)
= 0 (6.29)
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from (6.27).
Eventually, since wε = zε + εθε ∈ H1

0 (Ω), one has∫
Ω

A
(x
ε

)
∇wε · ∇wεdx =

∫
Ω

A
(x
ε

)
∇(zε + εθε) · ∇wεdx

=

∫
Ω

A
(x
ε

)
∇zε · ∇wεdx

=

∫
Ω

(
A
(x
ε

)
∇zε − ηε

)
· ∇wεdx+

∫
Ω

ηε · ∇wεdx

=

∫
Ω

(
A
(x
ε

)
∇zε − ηε

)
· ∇wεdx

in view of (6.29), and the fact that wε ∈ H1
0 (Ω). We deduce from this that

‖∇wε‖L2 .
∥∥∥A(x

ε

)
∇zε − ηε

∥∥∥
L2
. ε‖u0‖H2

which is the desired result. �

Proof (of Corollary 6.1) We start with∥∥∥uε(x)− u0(x)− ε
(
u1

(
x,
x

ε

)
− θε(x)

)∥∥∥
H1
. ε‖u0‖H2 ,

from which we deduce, by the Poincaré inequality, that∥∥∥uε(x)− u0(x)− ε
(
u1

(
x,
x

ε

)
− θε(x)

)∥∥∥
L2
. ε‖u0‖H2 .

But we have ∥∥∥u1

(
x,
x

ε

)∥∥∥
L2
. ‖u0‖H1 ,

and (this is somehow tricky)

‖θε(x)‖L2 .
∥∥∥u1

(
x,
x

ε

)∥∥∥
L2(∂Ω)

. ‖∇u0‖L2(∂Ω) . ‖u0‖H2(Ω).

We deduce from this that

‖uε(x)− u0(x)‖L2 . ε‖u0‖H2

as required. �

Proof (of Theorem 6.3). We show that

ε‖∇θε(x)‖L2 .
√
ε
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from which (6.20) follows immediately. But

ε‖∇θε(x)‖L2 . ε
∥∥∥u1

(
x,
x

ε

)∥∥∥
H1/2(∂Ω)

. ε
∥∥∥u1

(
x,
x

ε

)∥∥∥1/2

L2(∂Ω)

∥∥∥∇u1

(
x,
x

ε

)∥∥∥1/2

L2(∂Ω)

. ε×
(

1

ε

)1/2

where we have used interpolation for the second line and the fact that∥∥∥∇u1

(
x,
x

ε

)∥∥∥
L2(∂Ω)

.
1

ε
.

�

6.2.3 Global error

We combine here the results of both of the last sections. Namely, putting to-
gether the finite element approximation error and the homogenization error,
one proves the following theorem.

Theorem 6.5 With the preceding notation, we have

‖uε − u0,h‖L2 . (ε+ h)‖u0‖H2 .

Proof The proof is quite obvious and simply relies on the fact that by the
triangle inequality, one has

‖uε − u0,h‖L2 ≤ ‖uε − u0‖L2 + ‖u0 − u0,h‖L2

≤ (C1ε+ C2h)‖u0‖H2 .

The first estimation is a consequence of homogenization theory while the
second one follows from Lemma 6.4. �

It is important to notice that there is no better estimation of ‖u0−u0,h‖L2

in contrast to the situation of Aubin-Nitsche’s lemma. This is due to the fact
that u0,h solves a problem which is only a hk approximation of the problem
solved by u0.

Turning now to the H1 norm, we have

Theorem 6.6 With the preceding notation, we have∥∥∥uε − u0,h − εu1,h

(
x,
x

ε

)∥∥∥
H1
.
(√

ε+ hk
)
‖u0‖H2 .
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Proof The proof is also a simple use of the preceding estimates. Indeed∥∥∥uε − u0,h − εu1,h

(
x,
x

ε

)∥∥∥
H1
≤

∥∥∥uε − u0 − εu1

(
x,
x

ε

)∥∥∥
H1

+ ‖u0 − u0,h‖H1

+ε
∥∥∥u1

(
x,
x

ε

)
− u1,h

(
x,
x

ε

)∥∥∥
H1
.

We already know that∥∥∥uε − u0 − εu1

(
x,
x

ε

)∥∥∥
H1
.
√
ε‖u0‖H2

and

‖u0 − u0,h‖H1 . hk‖u0‖H2 .

Therefore it remains to estimate the last term. But since the correctors ωi
are uniformly bounded, it is easily seen that

ε
∥∥∥u1

(
x,
x

ε

)
− u1,h

(
x,
x

ε

)∥∥∥
L2
. ε‖u0 − u0,h‖H1 . εhk‖u0‖H2 .

Eventually,

ε
∥∥∥u1

(
x,
x

ε

)
− u1,h

(
x,
x

ε

)∥∥∥
H1
. ‖u0 − u0,h‖H1 . hk‖u0‖H2 ,

which leads to the result. �

A better approximation is obtained with the use of the boundary layer θε.
However, these correctors are not obvious to compute since they involve the
operator with the oscillating coefficients which probably make them seldom
used in practice. These details are outside the scope of the present notes and
we refer the interested reader to [12] for more details on this subject.

6.3 The multiscale finite element method

(MFEM)

The multiscale finite element method has a wider range of application than
the preceding method. In particular, it easily applies to the case where the
diffusion tensor A not only depends on the fast variable y = x

ε
but also on

the slow variable x. The goal is still to try to catch the highly oscillating
solutions (at scale ε) with a mesh of size h� ε, but, as we shall see, there is
no need to solve analytically the homogenized problem.
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6.3.1 Description of the method

The idea behind the multiscale finite element method is to precompute base
functions that are oscillating. In the sequel we work for simplicity with finite
elementsz of low order k = 1 but there is no intrinsic difficulty to extend the
method to higher degrees. We therefore consider a triangulation Th and the
P 1 base functions (φi)1≤i≤N which are globally continuous on Th, affine on
each triangle K ⊂ Th functions and satisfy

φi(xj) = δij,

where (xj)1≤j≤N are the vertices of the mesh and δij is the Kronecker sym-
bol. As we have already seen, solving the discrete variational formulation
with functions in the discrete space Vh = vect{φi} does not lead to a good
error estimate because roughly speaking the base functions φi do not see the
scale of the oscillations. The idea of the multiscale finite element method is
therefore to solve the classical variational formulation but with a different
set of base functions (ψi)1≤i≤N which take into account the oscillations of
the coefficients. More precisely we compute ψi such that for any triangle
K ⊂ Th,  − div

(
A
(
x
ε

)
∇ψi

)
= 0 inK,

ψi = φi on ∂K.
(6.30)

Of course it is easily seen that ψi|K = 0 if xi is not a vertex of K. Using the
base functions (ψi)1≤i≤N , we then solve the discrete variational formulation
as usual, namely, we set Wh = vect{ψi} and solve

Finduh ∈ Wh such that ∀vh ∈ Wh,

∫
Ω

A
(x
ε

)
∇uh · ∇vhdx =

∫
Ω

fvhdx.

(6.31)

Before turning to the error analysis, let us emphasize the numerical dif-
ficulties posed by the method from a practical viewpoint. It should be re-
marked that the method is rather direct and straightforward beside two chal-
lenging tasks:

• The computation of the base functions ψi on each triangle needs a
finer mesh which is capable of catching the oscillations and, therefore,
whose mesh size is of order ε. Although this seems difficult, these tasks
are completely independent from one triangle to another and thus the
problem could be solved in parallel.
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Figure 6.1: The multiscale Finite Element Method. On the mesh, one com-
putes the base functions as oscillating solutions on a thinner mesh.

• At the end, the problem that needs to be solved has a size which is equal
to N(the number of vertices in the mesh). It is therefore reasonable.

• We also notice that, although the multiscale finite element method does
not need A to be periodic in Y , the error analysis given in the following
section assumes this for simplicity.

6.3.2 Error analysis of the MFEM

The main theorem that we want to show in this section is the following.

Theorem 6.7 Let uε be the solution of the continuous problem (6.1), and
uh the multiscale finite element solution (6.31). Then one has the estimation

‖uε − uh‖H1 . h‖f‖L2 +
( ε
h

)1/2

.

Before proceeding to the proof, let us remark that the first term is the
classical error obtained for a finite element method applied to a regular prob-
lem and is independent of ε. However, the second term is not classical and
clearly shows that h must not be too small and in other words, non compa-
rable to ε. This is the so-called resonance phenomenon (between h and ε) in
the literature.
Proof The proof follows several steps. We first remark that it is a conse-
quence of Céa’s lemma and the interpolation error estimation given below.

�
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Lemma 6.5 (interpolation error) Let uε be the solution of the continuous
problem (6.1), and uI the multiscale interpolant of the homogenized solution
u0 with the base functions ψi

uI(x) =
N∑
i=1

u0(xi)ψi(x). (6.32)

Then one has the estimate

‖uε − uI‖H1 . h‖f‖L2 +
( ε
h

)1/2

.

Proof Since ψi solve (6.30), we can make the multiscale expansion of ψi on
any triangle K of the triangulation. This gives

ψi ∼ ψ0
i + εψ1

i − εθ1
i

where ψ0
i , ψ

1
i , and θ1

i are solution to

− div(Ā∇ψ0
i ) = 0 on K (6.33)

ψ0
i = φi on ∂K (6.34)

ψ1
i = −

2∑
j=1

ωj
∂ψ0

i

∂xj

− div
(
A
(x
ε

)
∇θ1

i

)
= 0 on K

θ1
i = ψ1

i on ∂K

(ωj are the corrector functions defined on the unit cell Y ). Notice that (6.33)
and (6.34) imply that actually ψ0

i = φi. By linearity of (6.32), we get a
similar expression for uI

uI ∼ u0
I + εu1

I − εθ1
I

with

− div(Ā∇u0
I) = 0 on K (6.35)

u1
I = −

2∑
j=1

ωj
∂u0

I

∂xj

− div
(
A
(x
ε

)
∇θ1

I

)
= 0 on K

θ1
I = u1

I on ∂K.

Now, we remark that u0
I is the classical affine interpolant of u0 (indeed

u0
I(x) =

∑N
i=1 u0(xi)ψ

0
i (x) =

∑N
i=1 u0(xi)φi(x)).

We now make use of the following lemma.
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Lemma 6.6 With the above notations, we have

‖uI − u0
I − εu1

I + εθ1
I‖H1 . ε‖f‖L2 .

Proof (Lemma 6.6.) We know from the previous theory, and more precisely
Theorem 6.4 that on each triangle K of the triangulation one has

‖uI − u0
I − εu1

I + εθ1
I‖H1(K) . ε‖u0

I‖H2(K) = ε‖u0
I‖H1

since u0
I solves (6.35). Squaring this inequality and summing over all the

triangles K of the triangulation gives

‖uI − u0
I − εu1

I + εθ1
I‖H1 . ε‖u0

I‖H1 . ε‖f‖L2

�

Now, we make the multiscale expansion of uε

uε ∼ u0 + εu1 − εθ1

where we know (still from Theorem 6.4)

‖uε − u0 − εu1 + εθ1‖H1 . ε‖u0‖H2 . ε‖f‖L2 .

We therefore deduce that

‖uε − uI‖H1 . ‖u0 − u0
I‖H1 + ε‖u1 − u1

I‖H1 + ε‖θ1 − θ1
I‖H1 + ε‖f‖L2 .

It remains to estimate the three terms of the right hand side. But we already
know that

‖u0 − u0
I‖H1 . h‖f‖L2

from the classical finite element theory. Next, notice that the correctors ωi
are regular functions that satisfy ωi ∈ W 1,∞(Y ). We therefore have

ε‖u1 − u1
I‖L2(K) . ε‖∇(u0 − u0

I)‖L2(K) . εh‖u0‖H2(K)

which after summation over all the triangles leads to

ε‖u1 − u1
I‖L2 . ε‖∇(u0 − u0

I)‖L2 . εh‖u0‖H2 . εh‖f‖L2 .

On the oher hand, one has

ε‖∇(u1 − u1
I)‖L2(K) = ε

∥∥∥∥∥∇
(

2∑
j=1

ωj

(
∂u0

∂xj
− ∂u0

I

∂xj

))∥∥∥∥∥
L2(K)

. ε sup
j

(
‖∇ωj(x/ε)‖L∞(K)

∥∥∥∥∂u0

∂xj
− ∂u0

I

∂xj

∥∥∥∥
L2(K)

)

+ε sup
j

(
‖ωj(x/ε)‖L∞(K)

∥∥∥∥∂u0

∂xj
− ∂u0

I

∂xj

∥∥∥∥
H1(K)

)
. ‖∇(u0 − u0

I)‖L2(K) + ε‖∇(u0 − u0
I)‖H1(K).
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Summing again over the triangulation gives

ε‖∇(u1 − u1
I)‖L2 . (h+ ε)‖u0‖H2 . (h+ ε)‖f‖L2 .

For the last term, we use the previous estimation of the correctors θ. Namely

ε‖θ1 − θ1
I‖H1 ≤ ε‖θ1‖H1 + ε‖θ1

I‖H1 .

On the one hand, we know that ‖θ1‖H1 . ‖u1‖H1/2(∂Ω) . ε−1/2, while on each
triangle K, one has ‖θ1

I‖H1(K) . ‖u1
I‖H1/2(∂K) and from interpolation

‖u1
I‖2
H1/2(∂K) . ‖u1

I‖L2(∂K)‖∇u1
I‖L2(∂K).

But, ‖u1
I‖L2(∂K) . ‖∇u0

I‖L2(∂K) . h1/2 and ‖∇u1
I‖L2(∂K) . ε−1‖∇u0

I‖L2(∂K) .
h1/2ε−1. We therefore deduce that

ε‖θ1
I‖H1 . ε

(∑
K∈τh

(h1/2h1/2ε−1)

) 1
2

.

√
ε

h

since there are O(1/h2) triangles in the mesh.
Putting all the pieces together leads to

‖uε − uI‖H1 . h‖f‖L2 + εh‖f‖L2 + (h+ ε)‖f‖L2 +
√
ε+

√
ε

h

which is the desired result in view of ε� h� 1. �

The estimate given above shows a new feature. Indeed, if h is of the
order of ε, then the estimate breaks down. This phenomenon, usually called
resonance implies that ε must be small compared to h. Although this is
clearly the goal of the method (to catch oscillations at a much finer scale
than the mesh-scale) one must pay attention to this in practice. Many more
details can be found in [10].

6.4 Conclusion

We have presented a small tour on the estimation for finite element method
for homogenization problems. Applying the classical finite element method
to the original problem is likely to fail due to the fine scale of the oscillations.
Instead one can either compute the 2-scale limit (at order 1 and ε), or use
the so-called multiscale finite element method for which the base functions
are recomputed on each triangle of the triangulation. The extra work leads
to much better error estimates.
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