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Warm Up: Simple Models

Behavior as € — 0 of the solutions of

atfe + g : va:fe — E%U(,Oe)(pe — f€>7

pe(t, ) = /fe(t,a:,'u) dv = <fe>

0<ox<o(z)<o™, continuous,

t>0, zeRN, ovesSV-1

/ dv =1, / vdv =0, / v ® v dv positive definite.
SN —1 gN —1 SN —1

“Grey Radiative Transfer Eq.” (no frequency, no coupling with
matter p ~ aT?).




Strategy #1: Hilbert Expansion

Plug the ansatz
fe — FO —|— €F1 —|— 62F2 —|—

into

atfe + % : vil?fé — 6%0'(,06)(,06 — f€)7

e ¢ terms: (Fy) — Fy = 0 so that Fy = po(t, z)1(v)
hydrodynamic behavior).

o ¢! terms: o(po)((F1) — Fi) = v Vgpo which yields (

. [ VJJIOO (ta iC)

Bt e v) = ==

o ¢ terms: smthg with vanishing average = d;p¢ + v - VI which




... yields

8t;OO—l_‘/ U°vx(_
SN —1

= O¢po — diVm(

Non linear diffusion equation: Rosseland Approximation.

Possible proof: Expand f. = p — ev0,p + €2 f2 + €g. and estimate
the remainder ge...




Strategy #2: Entropy and Moment Equations

Oufe+ 2 Vufe = 50(p)(pe— fo)

leads to (

f€2dvdx—|——// g(pe) |fe — pGQdde—O
2 dt!/éNjgN 1| | RN JgN-1 | ‘

so that f. = p. + er. with r. bounded in L?.

Set (pe, Je, Pe)(t, x) = / (1, E,v ®v) fe(t,x,v)dv.
§N—1 €

8,5,06 + diVxJG = O,

We get
and €20;J. + Div,P. = —o(pe)Je.

Ase— 0, P. = / v @vdv pe + O(e) yields the Limit System
§N—-1

Div,P=V,p=—0(p)J and Op + div,J = 0.




Mathematical Tools

Nonlinearities require a compactness argument

* Semi-group techniques Bardos-Golse-Perthame '87... but it needs

some monotonicity property.

* Average Lemma Bardos-Golse-Perthame-Sentis, '88 ;

* Compensated-Compactness Argument (Div-Curl Lemma)

Murat-Tartar '78 (Homogenization & Conservation Laws) ;
Marcati-Milani '90, Lions-Toscani '98, G.-Poupaud ’01




Average Lemma
If f(z,v) € LA(RY xV)and v-V,f € L*(RY x V) then

Lf¢(v) dv e HY/2RN).

Crucial Assumption: V¢ € SV, |[{v € V such that v- £ = 0} = 0.
Div-Curl Lemma

Let U, = (ul,...,ul) = U, V, =V in L?(Q) with furthermore
divU, = > (9zun and curlV,, = [@-v — 0 vj} compact in H~! then

U, -V, = Zuw ~U.-VinD.

Crucial Assumption: V¢ € SV, |{v € V such that v - £ # 0}| > 0.
Thus it works for discrete velocity models v € {v!,... v},
dv ="M wiby_yi. (cf. (V@) > 0).




How does it work ?

Using f. = pe + er. we rewrite the Moment equations as

divt,x(pm Je) = 0,
Vape = —€20iJ. — a(pe)Je — eDivy(R,)

so that

O _vx I
divy . (pe, Je) and curly (pe,0,...,0) Pe
Vzpe O

belong to a compact set of H_1((0,T) x RV).




Coupling to Homogeneization

We seek reduced models for routine computations that take into

account heterogeneities of the medium

[Allaire with Bal, Capdeboscq, Sieiss ; G.-Poupaud, G.-Mellet]

e@tf +v- V:,;f

([ ot /e vr@) do — [ ot /e 0o, 1)

€

Set T'=v-V, —Q, y=uxz/e and expand f. = S el fU(t x,x /e, v)
o T =0 is solved by p(t,z)M(x,y,v)

o Tf<1) =v-Vyfo=vM - -Vep+v- -V, Mp.
then f() = —x - V,p + Ap where

Tx=v- -V, M




Eventually, we get

Otp — Vg Vaep —Ul(z)p) =0,

//v@xajy, ) dv dy, U(:L’)://v)\(:v,y,v)dvdy

Convection term related to the space dependance of the

equilibrium function.

Degond-G.-Poupaud, 2003 ;
Chalub-Markowich-Perthame-Schmeiser, 2004

Treatment of the homogeneization aspect relies on double scale

technics

/uew(m x/€) dx—>/ /U¢ x,y)dx dy
Q =0 Jo,1)~




Intermediate Models

Assuming V C (—1,+1), [, dv =1, [,vdv =0, [,v*dv=d >0,

solutions of

ot +00,f = ([ feav—1.)

converge to p(t,x) solution of

Opp — d,p = 0.

One seeks intermediate models for 0 < e < 1:
* heat eq. propagates at infinite speed instead of O(1/e),

* p — ev0,p does not preserve non-negativeness, nor the

condition

1
[ V) S—/fedv.
y € € Jy




Minimum Entropy Principle Closure

The Moment System

8th + lex e — 0
€20;J. + Div,P. = —J.

is closed by imposing [Levermore’97, Dubroca-Feugeas’99, Fort’97]

]P)e:/UQf:d’U
1%

where f minimizes

/ fln f dv, with the constraints /(1, v/e)fdv = (pe, Je)
v V

One obtains P, = p.(eJ./pc), a (strictly) hyperbolic system which
is globally well-posed for small enough initial data, and consistent
to the diffusion eq. as € goes to 0 (¢(0) = d).




On the Entropy-Based Model

Theorem. [Coulombel-Golse-G.’06] Let p > 0. There exist § > 0,
C' > 0 such that, for any € €]0, 1], and for any (pg, Jo) with
|po = Plla2@y < 0 and ||€ Jo|| g2y < 9, there exists a unique global

solution (pe, J.) to the “Levermore System” with initial data
(po, Jo), and that satisfies
(pe —p,Jc) € C(RT; H*(R)) NCHRT; HY(R)). For r solution to the
heat equation with initial data pg, we have
||I/O\€ _ THLQ(RJF X R) < CE, er* o feHL?((O,T)xIR{xR) <Ce.
Arguments:
- Use Relaxation (it looks like 3’ = y* — \y)
- Strong Coupling: “Kawashima-Shizuta Condition”
- Adapt Hanouzet-Natalini’03 analysis... and make it uniform wrt €!

- Junca-Rascle’02’s trick for the convergence to the heat eq.




Nonlocal Models for Hydrodynamic Regimes:
Derivation and Numerical Schemes

Origin and Motivation of the Problem

e Nonlocal Model for Temperature : More or less heuristics models

arising in plasmas physics (FIC)
Luciani-Mora-Virmont, Phys. Rev. Lett. 89
Epperlein-Short, Phys. Fluid B, 91

Where does it come from? properties of the solution? how can we

compute the solution?
e Nonlocal terms : convolution kernel — pseudo-differential op.

...That certainly shares some features with the
arising in tokamaks’ theory... or nonlocal electrostatic

models in biology!




Towards Nonlocal Versions of the Heat Eq.

Idea: Replace the heat eq.
(H) Oip =V, - (KV,p)

by

Op =V, - (/RN Ge(z —y) - KVp(t,y) dy)-

e : Scaling Parameter such that as e — 0 we recover (H).

Questions :
e Expression of the kernel G.7

e Computation of the solution (loss of sparsity)?




Diffusion Asymptotics

atfe+v'axfe: (pe_fe)a
v e (—1,41), /dvzl, p€:/f€dv.

Hilbert Expansion: f. = fO) +ef() 4232 4 .
o O(1/€) term: (p'» — f(0) =0 yields f© = pO(¢, z),

e O(1) term: (pV — M) =0 - 9,p0 (¢, ) yields
O =y 9,0,

o O(e) term: 0,0 +v .9, f1) = smthg with vanishing average
hence

Orp — Oy (/’U@’Ud’v 83;,0) =0




A Modified Hilbert Expansion
We set

Leading Term F%) = o (¢, z) Corrector F'Y) = —v - 9,0,

(solution of f Fe(l) dv — Fe(l) =0 - 3:1:Fe(0))

Equation for p.:

e Define Ggl) solution of

ev-0,GY +a) = )
e And require the conservation relation

8t/F€(O) dv + &C /UGgl) dv = 0.




Nonlocal Equation

Integrating the eq. for Ggl) along characteristics yields

+1
/ ’UGS) dv = _/ '1436(3j — y) a:ch(ta y) dy
R

—1

00 6—’7’/6

dr.

arctan(e\ﬂ)) ¢2 |
e—0

€[¢] 3




Properties of the solution

Theorem. For any pryi; € L?(RY), the nonlocal eq. has a unique
solution o, € CO°(RT; L?(RY)), which converges to p, solution of the
heat eq. in CY([0,T]; L?(RY)) as € goes to 0 (with rate O(e) if

o € H2(RY)).

Approximation

Idea : replace W (&) by a rationale function P.(£)/Q.(&) so that
NLeq — 0;Qc(i02)0c = Pe(10z)0c

Taylor approx. of U.(£) is definitely useless (polynomial behavior)

€%/3

with deg(Q.) = deg(F) : 1+ 3¢2|€[2/5

C_1E%/3
1+ efe2/3

+ impose the correct







Figure 1: Graph of ¥ (blue curve, e = 1) vs. (22/3)/(14+322/5) (red), /3 /(1+
x2/3) (dark green), (x?/3 + 38z%/245) /(1 + 3322 /49 + 382% /245) (green).







(a) e = 0.5, T = 0.005 (b) € = 0.5, T = 0.05
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(c) e=0.5,T=0.1 (d) e=0.5, T =05

Figure 2: Periodic case/FFT : blue = heat, cyan: ¥ (§), red: Padé.
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(a) e = 0.1, T = 0.005 (b) € = 0.1, T = 0.05

~

(c) e=0.1, T=0.1 (d) e=0.1, T =0.5

Figure 3: Periodic case/FFT : blue = heat, cyan: ¥ .(§), red: Padé.




Numerical Scheme for the Approximated Model

62

The Approx. Eq : 0,(1 — $82,)0e = 302, 0 can be treated by

usual FD or FE methods...

n—+1 n—+1 n—+1
) Pit1 —20; iy

Ax?2  Ax?

32 n n n
At € ) Piv1 — 205 +Pj_1

3

2¢? - 3Ax>

FL dition: 1 — 260 — .
CFL condition S oAy

Energy Dissipation

Similar features as for the periodic case.




Asymptotically-Induced Schemes

1
2

Oufe + —0ufe = 5 ((f) = 1)

We have f. = p.(t,x) + er. so that

1 1 v
?tfe + /Uaazrs — 2 < fe) 33,06 — _ETE - Eaa:pe

A\ _J/
N/

transport-like Stiff sources with (-) = 0.

Splitting Approach
e Solving 0 fe +v0,r. = 0 defines f”+1/2, pt1/2

1
e Solve ODEs 0; f. = = — (Pe = fe) — —0zpe

Since (rhs) = 0 we have p"t! = p”+1/2




and we write

fn+1 _ e—At/EforH—l/Q 4+ (1 _ e—At/e2)pn+1/2

prt+l — e—At/e2,’,.n—i—1/2 _ (1 _ e—At/e2),U8xpn—|—1/2

The scheme is Asymptotic Preserving by construction.
Fully Explicit.

Stability condition: certainly better than At/Ax?...

Cheap scheme adapted for intermediate regimes 0 < e < 1.
Adapts to more complicated models (coupling with hydro,

fluid-particles flows...)

. and to the Levermore flux-limited model as well (through

relaxation approach combined to a kinetic interpretation)

|G.-Lafitte ’05, Carrillo-G.-Lafitte-Vecil '07, G. Lafitte ’08]




pdalte AR

I
no u

WENO ---%-*-

0.001 I R N N NN SN N N
0 0.010.02).030.040.09.060.0/0.08.090.10.11

Figure 4: L}, -error of the distribution function f with respect to

the solution of the heat equation with a symmetric initial data and
a mesh of 100x100 with respect to e.




Towards more realistic Radiative Transfer
Problems: Radiative Hydrodynamics and Non
Equilibrium regime

( on + 0z (nu) = 0,
Euler System ¢ 9;(nu) + 0, (nu? +p) = —5,,,
| 0(nE) + 0,((nE + p)u) = —5.

coupled to (scattering vs emission/absorption, Relativistic effects)

1
€0if +v0zf = —Qs + €Qa

1 11
QS:08<F<A2f>_Af)7 Qazaa<F;94_Af>-
with A = (1 — euv)/v1 — €2u? and 5, = ~(vQ,) + (vQ,),
S(—z — €i2<Qs> + <Qa/>-

As € — 0, f. becomes proportional to A~%, which has a O(e) flux.




Non Equilibrium Diffusion Regime

Scattering dominates: relaxation to an isotropic distribution but
final model with TWO temperatures 0 # 0,,4(~ p'/*).

Ref. : Lowrie-Morel-Hittinger’99, Buet-Després’04
Full Model:

’

on + 0z (nu) = 0,
Oy p

O¢(nu) + 0y (nu? +p) = —P 3

1
O (nE) + Op(nBu + pu) = =P udsp + Poa(p — 6%),

1 4 1
Orp — a:%:cp + 50 (pu) — Zudyp = Ua(94 —p).
\ 30 3 3

Doppler corrections make non conservative p,.,q0,u terms appear




Non Equilibrium Diffusion Regime

Questions are related to the effects of the Energy Exchanges on the

features of the usual Euler system:

- Well posedness of the kinetic/hyperbolic system [Lin’06,
Zhong-Jiang’06]

- Asymptotic problems: diffusion regime [G.-Lafitte '06]
- (Smoothing?) effects on the shock profile [Lin-Coulombel-G. ’06]

- Stability questions (of constants, of shocks profiles...)
[Lin-Coulombel-G. ’06, Coulombel-Mascia’07?]

- Numerical Experiments




Radiative Shock Profiles

on + 0 (nu) = 0,
O¢(nu) + 0 (nu? + p) = 0,

Simplified Model: <
0y (nE) + 0 (nEu + pu) = p — 0%,

_agajp — 04 — P,

The last eq. recasts as

1 [T
p(tax) — _/ e_lx_y|04(tay) dy7 q = _axpa

2

—

System version of the toy model

22
ﬁtu—l—aa;? = —0,q = Ku—u,

Ref. : Kawashima-Nishibata’99




Radiative (Small) Shock Profiles

. |Lin, Coulombel, G.’07] Let ~ satisfy
V741
V7 -1

exists a positive constant ¢ (that depends on (p_,u_,e_), and )

1<y < ~ 2.215 and let (p_,u_,e_) be fixed. Then there

such that, for all state (pi,uy,er) verifying:

||(p_|_,’LL_|_,€_|_) o (p_,u_,e_)H < )

and (p4,u+,e4) is a shock wave, with speed o, for the (standard)

Euler equations, then there exists a C? traveling wave

(p, u, e)(x — ot) solution of the Radiative Euler eq. Furthermore,
there exists a sequence (0, )pen if

|(prsur,er)— (p_,u_,e )| < &, then the profile is C"*2. The
profile can be shown to be asymptotically stable wrt zero mass

perturbation.




A smooth profile

Profile (density) for Euler by L-F Profile (welocity) for Euler by L-F

=40 =320 =20 -0 1] =40 -30 -20 -10 0 10 20 20 A0
X k]
Profile (pressura) for Euler by L-P Profila (tempearature) for Euler by L-P

Exact Riemann solution

+ Gauss-Laguame
& Discretization

10 20 20 40

Figure 5: Numerical experiments by Coulombel-Lafitte § ~ 0.2




A non-smooth profile (Zeldovich spike)

Frofile {density) for Eular by Godunow Profila [velogity) for Buler by Godunow

‘40 -30 -20 -10 O 10 20 a0 —an -3 -20 —-10 0 10 20 20 40

X X
Profile [pressure] for Euler by Godunow Profile [termperature) for Euler by Godunoy

Exact Riemann =olution

+ Gauss-Laguems
O Discretization

Figure 6: Numerical experiments by Coulombel-Lafitte § ~ 2




As a conclusion

- Highly nonlinear, strongly coupled models
- Multiscale features

- Many asymptotic problems

- A large variety of relevant models (with maybe different

behavior...)

- Many challenging questions both for analysis and simulations




