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Models and Theory

The aim of this book is to give a unified mathematical theory of branched
transportation (or irrigation) networks. The only axiom of the theory is a
[ x §% cost law (0 < a < 1) for transporting a good with size s on a path
with length [. Let us explain first why this assumption is relevant.



The economic justification in graph theory (with fixed
geometry)

W.I. ZANGWILL. Minimum Concave Cost Flows in Certain Networks. Man-
agement Science, 14(7):429-450, 1968.

A similar view is developed in the more recent article [98]: Although a
mathematical model with a linear arc cost function is easier to solve, it may
not reflect the actual transportation cost in real operations. In practice, the
unit cost for transporting freight usually decreases as the amount of freight
increases. The cargo transportation cost in particular is mainly influenced by
the cargo type, the loading/unloading activities, the transportation distance,
and the amount. In general, each transportation unit cost decreases as the
amount of cargo increases, due to economy of scale in practice. Hence, in
actual operations the transportation cost function can usually be formulated
as a concave cost function.



Economic justifications: communication networks,
pipe-lines: problem of optimal geometry

E.N. GILBERT. Minimum cost communication networks. Bell System Tech.
J., 46:2200-2227, 1967.

Minimum Concave Cost Flows: Much research has been developed around op-
timizing pipeline design assuming a predetermined geographical layout of the
distribution system. There has been less work done, however, on the problem
of optimizing the configuration of the network itself. Generally, engineers de-
velop the basic layout through experience and sheer intuition.

R.P. LEJANO. Optimizing the layout and design of branched pipeline water
distribution systems. Irrigation and Drainage Systems, 20(1):125-137, 2006.



First biological motivation: plants

Q. XIA. The formation of a tree leaf. to appear in ESAIM: Control, Opt.
Cale. Var., 2006.

Fig. 1.1. The structure of the nerves of a leaf (see [96] for a model of leaves based
on optimal irrigation transport).



Fig. 1.3. A very old tree (1200 years) spans his branches towards the light. Trees
and plants solve the problem of spanning their branches as mmuch as possible in
order to maximize the amount of light their leaves receive for photosynthesis. The
surface of the branches is minimized for a better resistance to parasites, temperature
changes, etc.



B. MAUROY, M. FILOCHE, E. WEIBEL, and B. SAPOVAL. An optimal
bronchial tree may be dangerous. Nature, 427:633-636, 2004,

Fig. 1.2. Image: A cast of a set of lungs. They solve the problem of bringing
the air entering the trachea onto a surface with very large area (about 500 ??12].
A mathematical and physical study of the lungs efficiency is developed in [60].
Copyright: Jonathan Natiuk, stock.xchng
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Fig. 1.4. Arteries of the human body. They solve the problem of transport-
ing the blood from the heart to the whole body with very low basal metabolic
rate. Attempts to demonstrate scaling laws in Nature have focused on the basal
metabolic rate [88, 89]. This rate has been linked to the total blood flow. (From
www.mspong.org/cyclopedia/medicine_pics.html).

G.B. WEST, J.H. BROWN, and B.J. ENQUIST. A general model for the
origin of allometric scaling laws in biology. Science, 276(4):122-126, 1997.

C.D. MURRAY. The physiological principle of minimum work applied to the
angle of branching arteries. J. Gen. Physiology, 9:835-841, 1926.



Besicovich’s plumbery: the first irrigation fractal

AB; BESIC?O\-"ITGH, On t.h_e_deﬁnition and value of the area of a surface.
Quart. J. Math., 16:86-102, 1945.



Fig. 2.4. A map of western France’s river network. This branched network manages
to bring back to the Atlantic ocean water raining over the whole territory. According
to [72], such a network evolves towards a locally minimal flow energy configuration

[. RODRIGUEZ-ITURBE and A. RINALDO. Fractal River Basins. Cam-
bridge University Press, 1997.

A.N. STRAHLER. Quantitative analysis of watershed geomorphology. Am.
Geophys. Un. Trans., 38:913, 1957.

E. TOKUNAGA. Consideration on the composition of drainage networks and
their evolution. Geogr. Rep., Tokyo Metrop. Univ, 13:1-27, 1978.

J.R. BANAVAR, F. COLAIORI, A. FLAMMINI, A. MARITAN, and A. RI-
NALDO. Scaling, optimality, and landscape evolution. .J. Stat. Physics,
104(1):1-48, 2001.



Important variant : subway + walk models:

A. BRANCOLINI and G. BUTTAZZO. Optimal networks for mass trans-
portation problems. ESAIM: COCYV, 11:88-101, 2005.

G. BUTTAZZO. Three optimization problems in mass transportation theory.
preprint, 2004.

G. BUTTAZZO, A. PRATELLI, S. SOLIMINI, and E. STEPANOV. Mass
transportation and urban planning problems. Forthecoming.

G. BUTTAZZO, A. PRATELLI, and E. STEPANOV. Optimal pricing policies
for public transportation networks. SITAM J. Opt., 16:826-853, 2006.

G. BUTTAZZO and E. STEPANOV. Optimal transportation networks as free
Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super.
Pisa, 5(4):631-678, 2003,

G. BUTTAZZO and E. STEPANOV. Minimization problems for average dis-
tance functionals, volume 14, pages 47-83. 2004,



Subway + walk model

Fig. 2.6. A Paris subway map. According to the works of Brancolini, Buttazzo,
Paolini, Pratelli, Santambrogio. Stepanov and Solimini described in Section 2.5.2,
the urban transportation model involves two or more competing transportation
means. In the basic model, the subway, or any fast network, is modeled as a
connected set with finite length and very low cost for the users. Users walk to
this network and then use it. Thus the problem is a mixed problem involving a
Monge-Kantorovich individual transport to and from the fast network (a = 1).
The fast transportation means has instead a Steiner energy (the length, a = 0),



Mathematical side: problem introduced by :

V. CASELLES and J-M. MOREL. [rrigation, pages 81-90. Progress in
Nonlinear Differential Equations and their Applications, vol. 51, VARMET
2001, Trieste, June, 2001. Birkhauser, F. Tomarelli and G. Dal Maso edition,
2002.

Q). XIA. Optimal paths related to transport problems. Commun. Contemp.
Math., 5:251-279, 2003.

F. MADDALENA., S. SOLIMINI, and J.-M. MOREL. A variational model of
irrigation patterns. Interfaces and Free Boundaries, 5(4):391-416, 2003,

(). XIA. Boundary regularity of optimal transport paths. Preprint, 2004,

(). XIA. Interior regularity of optimal transport paths. Calculus of Variations
and Partial Differential Fquations, 20(3):283-299, 2004.

M. BERNOT, V. CASELLES, and J.-M. MOREL. Traffic plans. Publicacions
Matematiques, 49(2):417-451, 2005.
M. BERNOT, V. CASELLES. and J.-M. MOREL. The structure of branched
transportation networks. to appear in Calc. Var. and PDE, 2006,

S. SOLIMINI and G. DE VILLANOVA. Elementary properties of optimal
irrigation patterns. to appear in Cale. Var. and PDE, 2005,

F. SANTAMBROGIO. Optimal channel networks, landscape function and
branched transport. to appear in Interface and Free Boundaries, 2006.



Interpolating from Monge-Kantorovich to
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Fig. 2.1. The transport from 9, to %{51,1 + 0y, ). Monge-Kantorovich straight so-
lution (left) versus Gilbert’s branching one (right).



Optimal network, O<alpha<l, Dirac to discrete 1D Lebesgue
(Bernot)
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The Gilbert discrete energy (1967)

G= ) o(e)H'|ce (2.1)
ecE(G)
where e denotes the unit vector in the direction of ¢ and H* the Hausdorff one-
dimensional measure. We say that G irrigates (pt, ™) if its distributional
derivative OG satisfies
IG=pu" —put. (2.2)

T'he Gilbert energy of G is defined by
JIQI:G'] = Z ;((Z}&'-’Hl{(:). (2*”
ecE(G)

We call the problem of minimizing M“((G) among all finite graphs irri-
pating (uT, =) the Gilbert-Steiner problem. The Monge-Kantorovich model
corresponds to the limit case @ = 1 and the Steiner problem to o = 0. The



Defining infinite irrigation graphs irrigating
measures:. Traffic plans

Let K be the set of 1-Lipschitz maps v : RT — X,
metric d of uniform convergence on compact sets.
Let v € K. We define its stopping time as

T(v) := inf{t : v constant on [t, o[}

Let us denote by B the Borel o-algebra on K.

We define a traffic plan P as a positive measure on (I, B)

such that [ T(v)dP(y) < oc.



Traffic plans as measures on the space of Lipschitz
paths
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Fig. 2.2. Three traffic plans and their associated embedding : a Dirac measure on
v, a tree with one bifurcation, a spread tree irrigating Lebesgue’s measure on the
segment [0, 1] x {0} of the plane. In the bottom example, to w € [0, 1] corresponds
x(w) € K, the straight path from (1/2,1) to (w,0).



Other definition: parametric traffic plans as sets of
fibers

call parameterized traffic plan a measurable map v : 2 x Rt — X such that
t — x(w,t) s 1-Lipschitz for all w € 2 and [, T\ (w) < +00. Without risk
of ambiguity we shall call fiber both a path x(w.-) and the range in RN of
X(w.-). Denote by |x| := |{2| the total mass transported by y and by P, the
law of w — x(w) € K defined by P, (E) = |x HE)| for every Borel set
E C K. Then P, is a traffic plan. Ve



From traffic plans to parametric traffic plans

According to Skorokhod theorem we can parameterize

any traffic plan P by a measurable function y : 2 = [0,[2|]] — K such
that P = yyA, where A is the Lebesgue measure on [0, |2|] . We shall set
X(w,t) = y(w)(t) and consider it as a function of the variable pair (w.,?).

stopping time

T, (w) ;= inf{t : x(w) is constant on [t,0)}.
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convergence of measures, or uniform convergence
of all paths

Convergence

Definition 3.16. Let P,, be a sequence of traffic plans. We shall say that P,
converges to a traffic plan P if one of the equivalent relations is satisfied:

P, — P.
\nlw) — x(w) in K for almost all w € (2.

for some common parameterization of P, and P.



Irrigated, Irrigating measure, transference plan

Irrigated measures and transference plan in the parametric setting.
T (E) = {w : (x(w,0), x(w, Ty (w))) € E| = |(70, 7o) " (EF)|, and in particular
Tx(A X B) = [{w: x(w,0) € A, x(w, Ty (w)) € B}|.

Informally, m, (A x B) represents the amount of mass transported from A to
B through the traffic plan y. In the same way we can compute the 1rrigating
and rrigated measures of y by

ut(x)(A) := [{w : x(w,0) € A},
1 (0)(A) i= e : x(w, Ty (@) € A},

respectively, where A is any Borel subset of RY. Observe that pt(y)(A4) =
Ty (A x X) and p~(x)(B) = my (X x B). In short, p~ = oy A and pt = mocpA.



The Gilbert energy for traffic plans

the multiplicity of v at «
1zl = P({7:3t7(t) = x}) = |z| p.
Let o € [0,1]. We call (Gilbert) energy of a traffic plan P

parameterized by y the functional

£2(P) = /@fw x (@, )12 X (w, £)| dtdeo.

The energy of a traffic plan can also be written

fale! S ke x— p dtd vl
@)= [ [ hlF holdre



Main semicontinuity lemma (Maddalena-Solimini)

Let y,, be a sequence of traffic plans

converging to x. Assume that [T (xn(w))dw < C for some C. Then, for
almost all w,



Back to a geometric energy ; lower semicontinuity
of energy

Let P be a traffic plan with mass one. Then,

£ (P) = [K L(7)dP(7).

// (w, )27 X (w, f)|.ffmw_/ @ dH ().
(¥ EN

for loop-free traffic plans, where |z|, denotes the measure of the set of fibers
passing by x.

If (P, ), is a sequence in TPo of traffic plans with mass
one such that P, — P, then

ERLP ) s limpin b £ Py ).

L



Traffic plans

Theorem Given a bounded sequence of traffic plans (P, ), in TPc

it is possible to erxtract a subsequence converging to some P. In addition,
1 (Prn) = p(P), p= (Pn) = p=(P) and mp_ — 7p.



Definition of optimality for the irrigation and for the « who goes where » problem

Definition A traffic plan \ is said to be optimal for the irrigation prob-

lem, respectively optimal for the who goes where problem if it is of minimal
cost in TP(u™(x), 1~ (x)), respectively in TP(m, ).



All measures can be irrigated for a > 1 — %

Fig. 6.1. To transport pu; to pi+1, all the mass at the center of a cube with edge

length P—‘r‘_r is transported to the centers of its sub-cubes with edge length Z.

21:-



Tratlic plans and distances between measures

for @« > 1 — & where N is the dimension of the a,mhlent space, the optimal cost
to transport ,u+ to p~ is finite. More precisely, if 4™ and p~ are two nonnegative
measures on a domain X with the same total mass M and o > 1 — 1/N, set

E*(ut,u7) = min  E°(x). (6.1)

Wi(ut,p™) SE(u,p7) < Wit pm)?



The tree-like structure: single path property

This traffic plan is obtained through the concatenation of a traffic plan
transporting a Dirac mass to the Lebesgue measure on a segment and a traffic plan

such a structure is not optimal.



Technigue to prove the « single path property »

Suppose that in an optimal traffic
plan v two sets of fibers {2, and (22 go from x to y. Some part of the mass of 22 can
be conveyed through the fibers of {21, or conversely, without changing the irrigated
measures or the transference plan of v . Thus the modified traffic plan displayed
on the right has an energy larger or equal to the energy of .



Main structure result

We say that a traffic plan v is normal if it is loop-free,
strictly single path and if for any fiber w, |x(w,t)|y is bounded away from

zero on any compact set contained in |0, T (w)].

One can transform a traffic plan into a
normal traffic plan by modifying its domain on a set with zero measure.
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of the irrigated or irrigating measure Is finite
atomic)

Theorem Let o € (1 — % 1) and let x be an optimal traffic plan in

TP(u™, u~). Assume that the .‘f'f}.j_}pn*r'iﬁ of u and p~ are at positive distance.
In any closed ball B(x,r) not meeting the supports of ut and p=, the traffic

plan has the structure of a finite graph



EXxcision technique

Interior and boundary regularity



Regqularity tecnique : Cutting a traffic plan into
optimal subtrees

I
7]



Main regularity lemma

Lemma

Let v € (1 — % 1) and (xn)o—, a sequence of disjoint traffic

plans such that ) |y,| < o0 and

dist(U,supp(pe+ (xn)): Unsupp(p=(xn))) > 0.

Then there is some n or some pair (n,m) such that y,, or x, U X, is not

optimal. Therefore, U, v, ts not optimal.



Reqularity technigue: short cuts

@En Ly
Ly
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Fig. 8.3. Illustrates the proof of Lemma 8.9. Under the assumptions of Lemma
8.9, there is a shortcut y,, through vy, that has a better cost than the union of
Ym With y, that is represented on the left-hand side. The traffic plan represented
on the right-hand side is the shortcut of v,, through v,. i.e. all the mass that was
transported by . 1s transported through yn.




Boundary regularity

Theorem 8.20. (bounded branching property) Let o € (0,1]. At every
point & of the support of an optimal traffic plan v in RY, the number of
branches at x is less than a constant N'(«, N) depending only on N and «.



Other recent results for Lebesgue
Irrigated measures:

* One can associate a landscape function to
any optimal traffic plan and the traffic plan
IS the steepest descent network of this
landscape. The landscape is holder
(Santambrogio)

* More on regularity: curvature Is a bounded
measure on each path. Existence of a
finite tangent cone at each point. (M. ,
Santambrogio)




