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Abstract. We consider applications, illustration and concrete numerical treatments of
some homogenization results on Stokes flow in porous media. In particular, we compute
the global permeability tensor corresponding to an unidirectional array of circular fibers for
several volume-fractions. A 3-dimensional problem is also considered.
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1. Introduction

The study of the low speed flow in porous media is important in a wide range of
areas, including oil recovery, geothermal development, chemical and nuclear indus-

tries and civil engineering. A direct numerical treatment of such problems becomes
cumbersome due to the rapid variations on the microscale level. However, when the

characteristic size of the obstacles in the porous media ε is small as compared with
the whole sample and the arrangement of obstacles is periodic with period equal to

ε then it is possible to describe the macroscopic behavior by means of more sophisti-
cated methods. One way to proceed is to use the homogenization theory, developed

in the studies of partial differential equations for strongly heterogeneous problems.
Among mathematicians the most famous work in this field is Tartar’s work on the

Stokes equation with homogeneous Dirichlet data in periodic perforated domains
(see [25]). This work contains for example a rigorous mathematical proof of Darcy’s

law and permits us to obtain a detailed description of microscopic as well as global
phenomena; e.g., it is possible to prove the tensorial character of the permeability as

well as its symmetry and positivity. Similar results for more general periodic cases
are obtained by Ene and Polisevski in [10] and by Allaire in [1]. In [12] Lipton and
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Avellaneda introduce an explicit characterization of the pressure extension introduced

by Tartar in [25], and in [3], [8] and [9] Arbagast, Douglas, Hornung, Ene, Donato,
and Saint Jean Paulin study porous media with a double periodicity. We also want to
mention that Allaire and Mikelic (see [2] and [20]) treat some evolution cases and [22]

an entirely new approach based on two-scale convergence developed by Allaire and
Nandakumaran. Moreover, in [7] a generalization is developed for non-Newtonian

flows in porous media by Mikelic and Bourgeat. Various periodic structures are
considered in all these papers and the corresponding proofs of convergences are based

on specific types of homogenization techniques. To our knowledge, the very recent
paper of Beliaev and Kozlov [5] is the first of its kind where homogenization of

Stokes equation in porous media has been rigorously treated without the traditional
periodicity assumptions (see also [11]).

In this paper we focus on applications, illustration and concrete numerical treat-

ments of some of the mathematical results mentioned above.

We start by presenting our model problem (see Section 2) and giving a short

description of the homogenization theory for this problem (see Section 3). Whenever
it is possible we give physical interpretations. We remark that this treatment of the

homogenization theory yields the following:

• A concrete homogenization algorithm for computing the permeability tensor
and solving the global problem.

• According to the theoretical results we have good control of the error estimates,
stability and convergence questions.

It turns out that the key problem for computing the effective permeability tensor

is to identify and solve a variational problem called the cell problem. Here, we choose
to use a commercially available Computational Fluid Dynamics (CFD) package from

Flow-Science, Los Alamos, called Flow3D, for solving this crucial problem (see Sec-
tion 4). We utilize the homogenization algorithm to compute the global permeability

tensor for unidirectional array of circular fibers for several volume-fractions. For the
sake of illustration, we also present numerical results for some three dimensional

problems. Moreover, we give a concrete example of a design problem where we
utilize our numerical results.

Section 5 is reserved for concluding remarks and a final discussion of the homog-

enization method, our modeling and our numerical experiments. In particular we
point out and compare some of the main difficulties regarding characterization of

admissible effective moduli in the case of Stokes flow, elasticity and heat conduction.
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2. The model problem

Let Ω be a smooth bounded and connected open subset of �n . For positive numbers
ε we consider the following class of Navier-Stokes equations:

(1)

∇pε −∆uε = f in Ωε,

uε = 0 on ∂Ωε,

∇ · uε = 0 in Ωε.

Here, Ωε is a smooth open subset of Ω which is εY -periodically distributed relative to

a cell Y ⊂ �
n . We also assume that Ωε has Lipschitz boundary and that ∂Ωε ⊆ ∂Cε,

where Cε is the union of all εY -cells entirely contained in Ω. In Figure 2.1 we
illustrate the typical geometry of Ωε on ε-scale level.

solid part

support network

Figure 2.1. An example of a periodic structure. The obstacles (which in this case

are spheres) are supported by a very small network (which is neglected).

It is a well known fact that if f ∈ [L2(Ω)]n, then for each ε > 0, the weak
formulation of (1) possesses a unique solution (uε, pε) ∈ [H10(Ωε)]n × [L2(Ωε) \ �]. A
direct numerical treatment of this problem is practically impossible for small values
of ε. However, by using the homogenization procedure in the next section, we can
solve a corresponding homogenized problem which approximates, in a weak sense,

our original problem (1) well for sufficiently small ε.

3. The homogenization procedure

Let Yf (the fluid part of Y ) and Ys (the solid part of Y ) denote the sets Y ∩ Ω1
and Y/Yf , respectively. The key step in the homogenization procedure is to solve
the cell problem:

(2)

∇qk −∆vk = ek in Y,

vk is Y -periodic,

vk = 0 on ∂Ys,

∇ · vk = 0 in Y
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for k = 1, 2, . . . , n. The weak formulation of (2) possesses a unique solution (vk, qk) ∈
[H1(Yf )]n× [L2(Yf )/�] (see [1]).When vk is found, we can compute the permeability
tensor Â defined by

(3) Âij =
1
|Y |

∫

Y

(vj)i dx.

Here |Y | denotes the measure (volume) of Y.We now define the homogenized problem
(also called Darcy’s law):

(4)
∇ · Â(f −∇p) = 0 in Ω,

Â(f −∇p) · n = 0 on ∂Ω.

It is possible to prove that Â is symmetric and positive definite (see e.g. [4]). This

implies that (4) is an elliptic problem with a Neumann boundary condition which,
accordingly, has a unique solution p ∈ H1(Ω)/�.

Let us define functions u and the extension ũε of uε to Ω as follows:

(5) u = Â(f −∇p),

ũε =

{
uε in Ωε,

0 in Ω \ Ωε.

We can also define a similar (though more complicated) extension p̃ε of pε to Ω (see

e.g. [10]). The following homogenization result is crucial in the whole theory. For
the proof we refer to Sanches-Palencia 1980.

Theorem 1. As ε → 0, then ε−2ũε ⇀ u weakly in
[
L2(Ω)

]n
and p̃ε → p in

L2loc(Ω) strongly.

������ 1. From a practical point of view Theorem 3 yields in particular the
information that for any domain of V ⊂ Ω, ε2u and p approximate well the average

values of ũε and p̃ε (taken over V ), respectively, for small values of ε (compared with
the size of Ω).

From the above we obtain that the model problem considered as an average prob-
lem can be solved by using the following homogenization procedure:

1. solve the cell problem (2) numerically;

2. insert the solution of the cell problem into (3);

3. find p by solving the homogenized problem (4) numerically;
4. compute u by (5).
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������ 2. In the more general case (1) is of the form

∇pε − ν∆wε = f in Ωε,

wε = 0 on ∂Ωε,

∇wε = 0 in Ωε.

Since ν is constant, the solution of this equation can be found directly from the solu-
tion of (1) simply by replacing “uε” by “νwε”. Summing up, we find that generally,

for small ε, the extension w̃ε of wε to Ω (the actual velocity) is approximately equal
(in the weak sense) to Âglob(ε)(f −∇p), written

w̃ε weak� Âglob(ε)(f −∇p),

where

(6) Âglob(ε) =
ε2

ν
Â

(the “global” permeability).

4. Numerical results

In this section we present some numerical results. We start by letting Y be the
unit cube in �2 with center at origin and let Ys be a disc of radius r with center at

origin. This geometry yields a permeability tensor of the form Â = λI, where λ > 0
(the permeability) and

I =

[
1 0

0 1

]
.

It is easily seen that by varying the radius r between 0 and 1/2, λ takes all values

between ∞ and 0, correspondingly. Hence, on macroscopic level, low speed flow in
any isotropic porous medium may be modelled in this way. In order to compute

λ we must go through the steps 1 and 2 of the procedure given in Section 3. We
have chosen to use a commercially available Computational Fluid Dynamics (CFD)

package from Flow-Science, Los Alamos, called Flow3D, for solving the cell problem.
Flow 3D uses the Finite Difference Method and solves the full transient momentum

equation, optionally coupled with turbulence models. Due to the fact that Flow3D
always solves a time dependent equation, we put vk = 0 and qk = 0 at t = 0, where

t denotes the time, and use the numerical solution vk, qk for t = ∞ as solutions
for the (stationary) cell problem. For all concrete cases considered in our work vk
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and qk converge rapidly and it turns out that the variations for t > 1 are negligible

(see Figure 4.3). Therefore, the numerical solution vk, qk for t = 1 serves as a good
approximation for the cell problem. The Y -cell is subdivided into a number of Nn

Finite Difference Cells.

ε 1

the actuall structure the Y -cell

Figure 4.1. Periodic distribution of circular discs.

Figure 4.2. Solution of the cell problem. The velocity vk is illustrated as streamlines
for the case when k = 1 and r = 0.25.

W

t

Figure 4.3. The estimated mean kinetic energy W as function of the time t for
r = 0.25.
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In the table below we have listed λ for some values of N for the case r = 0.25.

λ 0.025 0.023 0.021 0.021 0.021 0.020
N 10 20 40 60 80 100

In Figure 4.4 we have plotted λ as a function of r for two values of N. From the
figure we see that with N = 10 the subdivision to computational cells becomes too

coarse to get the necessary resolution for both the low and high values of r. As we
see in the above table the N = 40 subdivision gives a good approximation of the

permeability, at least for r ∈ [0.1, 0.4].

λ

r

N = 10

N = 40

Figure 4.4. Numerical computations of the permeability in the two-dimensional case.

As the name indicates Flow3D is capable of handling three dimensional cases as

well. In order to illustrate we have solved the cell problem numerically and computed
the permeability λ for the case when Y is the unit cube in �3 with center at origin

and Ys is a sphere of radius r = 0.25 with center at origin (see Figure 4.5).

Figure 4.5. Solution of the three dimensional cell problem. The velocity vk is illus-

trated as streamlines for the case when k = 1 and r = 0.3.

From the table below we see that λ = 0.07 serves as a good approximation in this

case.
λ 0.058 0.067 0.068 0.070 0.071
N 10 20 30 40 50
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4.1. A computational example.
In order to illustrate the usefulness of the above results we present an example. Let

us consider a periodic and square symmetric distribution of circular fibres subjected
to a flow of water whose direction is perpendicular to the fibre orientation (see

Figure 4.6). The following data is given: The thickness of each fibre d = 6 · 10−4m
and the viscosity of water ν = 1.7 · 10−3Ns/m2. We want to find the distance ε

between any two fibres such that the global permeability λglob(ε) = 1 · 10−4m3/Ns.

main flow direction

support network

d = 0.6mm

ε = ?

Figure 4.6. Periodic distribution of fibres.

From 6 we have that

λglob(ε) =
ε2

ν
λ(ε),

where λ(ε) = λ is the permeability corresponding to the relative radius r = d/2ε =

3 ·10−4/ε. Using the curve in Figure 4.4 we are now able to plot λglob as a function of
the distance ε (see Figure 4.7). According to this plot we obtain that ε � 2 · 10−3m
serves as a god approximation to our problem.

λglob(ε) [m
3/Ns]

ε [m]

Figure 4.7. The global permeability as a function of the distance between the fibres.
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5. Some final comments

The homogenization method is mathematically based and we therefore have good

control of convergence questions (see Theorem 1). Moreover, this method enables us
to extract a useful algorithm for solving the model problem.

In this paper we have used the homogenization method to solve a linear flow

problem. However, it is important to observe that the method is not restricted to
linear problems and can be applied to other partial differential equations as well (see

e.g. [4, 11, 16, 23]). In particular, problems regarding computer aided applications
of the homogenized method for concrete practical purposes in elasticity and heat

conduction can be found (see [18, 19]).

In recent years, several bounds on effective moduli of non homogeneous problems

have been discovered (see e.g. [13, 14, 15, 16, 17, 21] and the references therein).
However, non-trivial bounds for the permeability tensor have not been found yet.

For example, an interesting problem will be to characterize the set of all possible
permeability tensors that can be generated for a given volume fraction |Ys| / |Y |.
Particularly, for two dimensional problems this set will principally look like the one
illustrated in Figure 5.1, where λ1 and λ2 denote the eigenvalues of the permeability

tensor Ã. It is interesting to note that in contrast to e.g. the two dimensional
conductivity problem the laminate structure is not necessarily optimal with respect

to Stokes flow. This is most easily seen for low volume fractions by using the following
argument: due to the no-slip condition along the surfaces of the laminate it is obvious

that the values of λ1 and λ2 must be lower than for example those corresponding to
the structure consisting of one circular fiber in each period. Thus, even the points

(0, a) and (a, 0) are nontrivial to determine.

λ1

λ2

(0, a)

(a, 0)

Line of isotropy

Figure 5.1. The set of admissable eigenvalues of the permeability tensor for a fixed
volume-fraction.
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The values of λ1 and λ2 computed numerically in this paper lie on the line of

isotropy. An interesting question is how large these values are compared with the
best possible ones. We intend to develop these ideas further in a forthcoming paper.
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