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This leture is devoted to a brief introdution to the mathematial theory of ho-mogenization. For a more advaned presentation of homogenization, the reader is referredto the books [2℄, [3℄, [4℄, [6℄, [7℄, [19℄, and [23℄. Roughly speaking, homogenization is arigorous version of what is known as averaging. In other words, homogenization extratshomogeneous e�etive parameters from disordered or heterogeneous media.Homogenization has �rst been developed for periodi strutures. Indeed, in many�elds of siene and tehnology one has to solve boundary value problems in periodi me-dia. Quite often the size of the period is small ompared to the size of a sample of themedium, and, denoting by � their ratio, an asymptoti analysis, as � goes to zero, is alledfor. Starting from a mirosopi desription of a problem, we seek a marosopi, or e�e-tive, desription. This proess of making an asymptoti analysis and seeking an averagedformulation is alled homogenization. The �rst hapter will fous on the homogenizationof periodi strutures.The method of two-sale asymptoti expansions is presented, andits mathematial justi�ation will be briey disussed.However we emphasize that homogenization is not restrited to the periodi ase andan be applied to any kind of disordered media. This is the fous of the seond hapterwhere the notion of G- or H-onvergene is introdued. It allows to onsider any possiblegeometrial situation without any spei� assumptions like periodiity or randomness.
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Chapter 1Periodi homogenization
1.1 Setting of the problem.We onsider a model problem of di�usion or ondutivity in a periodi medium (for exam-ple, an heterogeneous domain obtained by mixing periodially two di�erent phases, onebeing the matrix and the other the inlusions; see Figure 1.1). To �x ideas, the periodidomain is alled 
 (a bounded open set in IRN with N � 1 the spae dimension), itsperiod � (a positive number whih is assumed to be very small in omparison with thesize of the domain), and the resaled unit periodi ell Y = (0; 1)N . The ondutivity in
 is not onstant, but varies periodially with period � in eah diretion. It is a matrix (aseond order tensor) A(y), where y = x=� 2 Y is the fast periodi variable, while x 2 
is the slow variable. Equivalently, x is also alled the marosopi variable, and y themirosopi variable. Sine the omponent ondutors do not need to be isotropi, thematrix A an be any seond order tensor that is bounded and positive de�nite, i.e., thereexist two positive onstants � � � > 0 suh that, for any vetor � 2 IRN and at any pointy 2 Y , �j�j2 � NXi;j=1Aij(y)�i�j � �j�j2: (1.1)At this point, the matrix A is not neessarily symmetri (suh is the ase when some driftis taken into aount in the di�usion proess). The matrix A(y) is a periodi funtionof y, with period Y , and it may be disontinuous in y (to model the disontinuity ofondutivities from one phase to the other).Denoting by f(x) the soure term (a salar funtion de�ned in 
), and enforing aDirihlet boundary ondition (for simpliity), our model problem of ondutivity reads8>><>>: �div�A�x� �ru�� = f in 
u� = 0 on �
; (1.2)2
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ΩFigure 1.1: A periodi domain.where u�(x) is the unknown funtion, modeling the eletrial potential or the temperature.Remark 1.1.1 From a mathematial point of view, problem (1.2) is well posed in thesense that, if the soure term f(x) belongs to the spae L2(
) of square integrable fun-tions on 
, then the Lax-Milgram lemma implies existene and uniqueness of the solutionu� in the Sobolev spae H10 (
) of funtions whih belong to L2(
) along with their �rstderivatives. Furthermore, the following energy estimate holdsku�kL2(
) + kru�kL2(
) � C;where the onstant C does not depend on �.The domain 
, with its ondutivity A �x� �, is highly heterogeneous with periodiheterogeneities of lengthsale �. Usually one does not need the full details of the variationsof the potential or temperature u�, but rather some global of averaged behavior of thedomain 
 onsidered as an homogeneous domain. In other words, an e�etive or equivalentmarosopi ondutivity of 
 is sought. From a numerial point of view, solving equation(1.2) by any method will require too muh e�ort if � is small sine the number of elements(or degrees of freedom) for a �xed level of auray grows like 1=�N . It is thus preferableto average or homogenize the properties of 
 and ompute an approximation of u� on aoarse mesh. Averaging the solution of (1.2) and �nding the e�etive properties of thedomain 
 is what we all homogenization.There is a di�erene of methodology between the traditional physial approah ofhomogenization and the mathematial theory of homogenization. In the mehanial lit-erature, the so-alled representative volume element (RVE) method is often used (see [5℄,or Chapter 1 in [12℄). Roughly speaking, it onsists in taking a sample of the heteroge-neous medium of size muh larger than the heterogeneities, but still muh smaller than the3



medium, and averaging over it the gradient ru� and the ux A �x� �ru�. Denoting by � theaverage of the gradient and by � that of the ux, the e�etive tensor of ondutivity A� ofthis sample is de�ned by the linear relationship � = A��. It turns out that the averagedstored energy A �x� �ru� � ru� is also equal to the e�etive energy A�� � �. Although thistype of de�nition is very intuitive, it is not lear whether it de�nes orretly an e�etivetensor A�. In partiular, it may depend on the hoie of soure term f , sample size, orboundary onditions.The mathematial theory of homogenization works ompletely di�erently. Ratherthan onsidering a single heterogeneous medium with a �xed lengthsale, the problem is�rst embedded in a sequene of similar problems for whih the lengthsale �, beominginreasingly small, goes to zero. Then, an asymptoti analysis is performed as � tendsto zero, and the ondutivity tensor of the limit problem is said to be the e�etive orhomogenized ondutivity. This seemingly more omplex approah has the advantage ofde�ning uniquely the homogenized properties. Further, the approximation made by usinge�etive properties instead of the true mirosopi oeÆients an be rigorously justi�edby quantifying the resulting error.In the ase of a periodi medium 
, this asymptoti analysis of equation (1.2), asthe period � goes to zero, is espeially simple. The solution u� is written as a power seriesin � u� = +1Xi=0 �iui:The �rst term u0 of this series will be identi�ed with the solution of the so-alled homog-enized equation whose e�etive ondutivity A� an be exatly omputed. It turns outthat A� is a onstant tensor, desribing a homogeneous medium, whih is independent of fand of the boundary onditions. Therefore, numerial omputations on the homogenizedequation do not require a �ne mesh sine the heterogeneities of size � have been averagedout. This homogenized tensor A� is almost never a usual average (arithmeti or harmoni)of A(y). Various estimates will on�rm this asymptoti analysis by telling in whih senseu� is lose to u0 as � tends to zero.Remark 1.1.2 From a more theoretial point of view, homogenization an be interpretedas follows. Rather than studying a single problem (1.2) for the physially relevant value of�, we onsider a sequene of suh problems indexed by the period �, whih is now regardedas a small parameter going to zero. The question is to �nd the limit of this sequene ofproblems. The notion of limit problem is de�ned by onsidering the onvergene of thesequene (u�)�>0 of solutions of (1.2): Denoting by u its limit, the limit problem is de�nedas the problem for whih u is a solution. Of ourse, u will turn out to oinide with u0, the�rst term in the series de�ned above, and it is therefore the solution of the homogenized4



equation. Clearly the mathematial diÆulty is to de�ne an adequate topology for thisnotion of onvergene of problems as � goes to zero.1.2 Two-sale asymptoti expansions.1.2.1 AnsatzThe method of two-sale asymptoti expansions is an heuristi method, whih allows oneto formally homogenize a great variety of models or equations posed in a periodi domain.We present it briey and refer to the lassial books [3℄, [4℄, and [19℄ for more detail. Amathematial justi�ation of what follows is to be found in Setion 1.3. As already stated,the starting point is to onsider the following two-sale asymptoti expansion (also alledan ansatz), for the solution u� of equation (1.2)u�(x) = +1Xi=0 �iui �x; x� � ; (1.3)where eah term ui(x; y) is a funtion of both variables x and y, periodi in y with periodY = (0; 1)N (ui is alled a Y -periodi funtion with respet to y). This series is pluggedinto the equation, and the following derivation rule is used:r�ui �x; x� �� = ���1ryui +rxui� �x; x� � ; (1.4)where rx andry denote the partial derivative with respet to the �rst and seond variableof ui(x; y). For example, one hasru�(x) = ��1ryu0 �x; x� �+ +1Xi=0 �i (ryui+1 +rxui)�x; x� � :Equation (1.2) beomes a series in ����2 [divyAryu0℄�x; x� ����1 [divyA(rxu0 +ryu1) + divxAryu0℄�x; x� ���0 [divxA(rxu0 +ryu1) + divyA(rxu1 +ryu2)℄�x; x� �� +1Xi=1 �i [divxA(rxui +ryui+1) + divyA(rxui+1 +ryui+2)℄�x; x� �= f(x):
(1.5)
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Identifying eah oeÆient of (1.5) as an individual equation yields a asade of equations(a series of the variable � is zero for all values of � if eah oeÆient is zero). It turns outthat the three �rst equations are enough for our purpose. The ��2 equation is�divyA(y)ryu0(x; y) = 0;whih is nothing else than an equation in the unit ell Y with periodi boundary ondition.In this equation, y is the variable, and x plays the role of a parameter. It an be heked(see Lemma 1.2.1) that there exists a unique solution of this equation up to a onstant(i.e., a funtion of x independent of y sine x is just a parameter). This implies that u0 isa funtion that does not depend on y, i.e., there exists a funtion u(x) suh thatu0(x; y) � u(x):Sine ryu0 = 0, the ��1 equation is�divyA(y)ryu1(x; y) = divyA(y)rxu(x); (1.6)whih is an equation for the unknown u1 in the periodi unit ell Y . Again, it is a well-posed problem, whih admits a unique solution up to a onstant, as soon as the right handside is known. Equation (1.6) allows one to ompute u1 in terms of u, and it is easily seenthat u1(x; y) depends linearly on the �rst derivative rxu(x).Finally, the �0 equation is�divyA(y)ryu2(x; y) = divyA(y)rxu1+divxA(y) (ryu1 +rxu) + f(x); (1.7)whih is an equation for the unknown u2 in the periodi unit ell Y . Equation (1.7) admitsa solution if a ompatibility ondition is satis�ed (the so-alled Fredholm alternative; seeLemma 1.2.1). Indeed, integrating the left hand side of (1.7) over Y , and using the periodiboundary ondition for u2, we obtainZY divyA(y)ryu2(x; y)dy = Z�Y [A(y)ryu2(x; y)℄ � nds = 0;whih implies that the right hand side of (1.7) must have zero average over Y , i.e.,ZY [divyA(y)rxu1 + divxA(y) (ryu1 +rxu) + f(x)℄ dy = 0;whih simpli�es to �divx�ZY A(y) (ryu1 +rxu) dy� = f(x) in 
: (1.8)Sine u1(x; y) depends linearly on rxu(x), equation (1.8) is simply an equation for u(x)involving only the seond order derivatives of u.6



1.2.2 The ell and the homogenized problems.The method of two-sale asymptoti expansions give rise to a ouple of equations (1.6)(1.8) that have a mathematial, as well as physial, interpretation. In order to omputeu1 and to simplify (1.8), we introdue the so-alled ell problems. We denote by (ei)1�i�Nthe anonial basis of IRN . For eah unit vetor ei, onsider the following ondutivityproblem in the periodi unit ell:( �divyA(y) (ei +rywi(y)) = 0 in Yy ! wi(y) Y -periodi; (1.9)where wi(y) is the loal variation of potential or temperature reated by an averaged (ormarosopi) gradient ei. The existene of a solution wi to equation (1.9) is guaranteedby the following result.Lemma 1.2.1 Let f(y) 2 L2#(Y ) be a periodi funtion. There exists a solution in H1#(Y )(unique up to an additive onstant) of( �divA(y)rw(y) = f in Yy ! w(y) Y -periodi; (1.10)if and only if RY f(y)dy = 0 (this is alled the Fredholm alternative).By linearity, it is not diÆult to ompute u1(x; y), solution of (1.6), in terms of u(x)and wi(y) u1(x; y) = NXi=1 �u�xi (x)wi(y): (1.11)In truth, u1(x; y) is merely de�ned up to the addition of a funtion ~u1(x) (depending onlyon x), but this does not matter sine only its gradient ryu1(x; y) is used in the homog-enized equation. Inserting this expression in equation (1.8), we obtain the homogenizedequation for u that we supplement with a Dirihlet boundary ondition on �
,( �divxA�rxu(x) = f(x) in 
u = 0 on �
: (1.12)The homogenized ondutivity A� is de�ned by its entriesA�ij = ZY [(A(y)rywi) � ej +Aij(y)℄ dy;or equivalently, after a simple integration by parts in Y ,A�ij = ZY A(y) (ei +rywi) � (ej +rwj) dy: (1.13)The onstant tensor A� desribes the e�etive or homogenized properties of the heteroge-neous material A �x� �. Note that A� does not depend on the hoie of domain 
, soureterm f , or boundary ondition on �
. 7



Remark 1.2.2 This method of two-sale asymptoti expansions is unfortunately not rig-orous from a mathematial point of view. In other words, it yields heuristially the ho-mogenized equation, but it does not yield a orret proof of the homogenization proess.The reason is that the ansatz (1.3) is usually not orret after the two �rst terms. Forexample, it does not inlude possible boundary layers in the viinity of �
 (for details,see, e.g., [14℄). Nevertheless, it is possible to rigorously justify the above homogenizationproess (see Setion 1.3).1.2.3 A variational haraterization of the homogenized oeÆients.The homogenized ondutivity A� is de�ned in terms of the solutions of the ell problemsby equation (1.13). When the ondutivity tensor A(y) is symmetri, it is onvenient togive another de�nition of A� involving standard variational priniples. From now on weassume that A(y) is indeed symmetri. Therefore, by (1.13), A� is symmetri too, andis ompletely determined by the knowledge of the quadrati form A�� � � where � is anyonstant vetor in IRN . From de�nition (1.13) it is not diÆult to hek thatA�� � � = ZY A(y) (� +ryw�) � (� +ryw�) dy; (1.14)where w� is the solution of the following ell problem:( �divyA(y) (� +ryw�(y)) = 0 in Y;y ! w�(y) Y -periodi: (1.15)It is well-known that equation (1.15) is the Euler-Lagrange equation of the followingvariational priniple: Find w(y) that minimizesZY A(y) (� +ryw) � (� +ryw) dyover all periodi funtions w. In other words, A�� � � is given by the minimization of thepotential energy A�� � � = minw(y)2H1#(Y ) ZY A(y) (� +ryw) � (� +ryw) dy; (1.16)where H1#(Y ) is the Sobolev spae of Y -periodi funtions w with �nite energy, namely,ZY �w2 + jrywj2� dy < +1:Remark that all the above equivalent de�nitions of A� are not simple algebraiformulas, but rather they deliver the value of A� at the prie of a non-expliit omputationof the solutions of the ell problems. However, in pratie one is not always interested in8



the preise value of A�, but rather in lower or upper estimates of its value. In this respet,the variational haraterization (1.16) of A� is useful sine it provides an upper boundby hoosing a spei� test funtion w(y). The simplest hoie is to take w(y) = 0, whihyields the so-alled arithmeti mean upper boundA�� � � � �ZY A(y)dy� � � �: (1.17)A lower bound an also be obtained from (1.16) if the spae of admissible �elds in theminimization is enlarged. Indeed, remarking that the gradient ryw(y) has zero-averageover Y beause of the periodiity of w(y), this gradient an be replaed by any zero-averagevetor �eld A�� � � � min�(y)2L2#(Y )NRY �(y)dy=0 ZY A(y) (� + �(y)) � (� + �(y)) dy; (1.18)where L2#(Y ) is the spae of square summable Y -periodi funtions. The minimum inthe right hand side of (1.18) is easy to ompute: The optimal vetor ��(y) satis�es thefollowing Euler-Lagrange equationA(y) (� + ��(y)) = C;where C is a onstant (a Lagrange multiplier for the onstraint RY ��(y)dy = 0). Aftersome algebra, one an ompute expliitly the optimal ��, as well as the minimal value thatdelivers the so-alled harmoni mean lower boundA�� � � � �ZY A�1(y)dy��1 � � �: (1.19)From a physial point of view, the harmoni mean in (1.19) orresponds to an overallondutivity obtained by assuming that the values of the ondutivity A(y) are plaed inseries, while the arithmeti mean in (1.17) orresponds to an overall ondutivity obtainedby assuming that the values of the ondutivityA(y) are plaed in parallel. These estimateshold true in great generality, but usually are not optimal and an be improved (see [2℄ inthe ase of two-phase omposites). Atually, improving the harmoni and arithmeti meanbounds is one of the main problems of homogenization theory applied to the modeling ofomposite materials.1.2.4 Evolution problemThe previous analysis extends easily to evolution problems. Let us onsider �rst a paraboliequation modeling, for example, a di�usion proess. For a �nal time T > 0, a soure termf(t; x) 2 L2((0; T ) � 
), and an initial data a 2 L2(
), the Cauhy problem is8>><>>: �x� � �u��t � div�A�x� �ru�� = f in 
� (0; T )u� = 0 on �
� (0; T )u�(0; x) = a(x) in 
: (1.20)9



where A satis�es the oerivity assumption (1.1), and  is a bounded positive Y -periodifuntion 0 < � � (y) � + < +1 8 y 2 Y:Remark 1.2.3 It is a well-known result that there exists a unique solution u� of (1.20)in the spae L2 �(0; T );H10 (
)� \ C([0; T ℄;L2(
)) whih, furthermore, satis�es the energyestimate ku�kC([0;T ℄;L2(
)) + kru�kL2((0;T );L2(
)) � C; (1.21)where the onstant C does not depend on �.One an perform the same two-sale asymptoti expansion on (1.20). The ansatz isu�(t; x) = +1Xi=0 �iui �t; x; x� � ;where eah term ui(t; x; y) is a funtion of time t and both spae variables x and y. Itis lear that the time derivative yield no ontribution in the two �rst equations of theasade of equations (1.5). However it gives a ontribution for the third one. In otherwords the ell problem is the same as in the steady ase, but the homogenized equation ishanged. The reader will hek easily thatu0(t; x; y) � u(t; x); u1(t; x; y) = NXi=1 �u�xi (t; x)wi(y);and the homogenized equation is8>><>>: � �u�t � div (A�ru) = f in 
� (0; T )u = 0 on �
�℄0; T [u(0) = a in 
; (1.22)where the homogenized tensor is still given by (1.13) and� = ZY (y) dy: (1.23)We now onsider an hyperboli equation modeling, for example, the propagation ofwaves. For a �nal time T > 0, a soure term f(t; x) 2 L2((0; T )�
), a pair of initial dataa 2 H10 (
) and b 2 L2(
), the Cauhy problem is8>>>>><>>>>>: �x� � �2u��t2 � div�A�x� �ru�� = f in 
� (0; T )u� = 0 on �
�℄0; T [u�(0; x) = a(x) in 
�u��t (0; x) = b(x) in 
: (1.24)10



where A satis�es the oerivity assumption (1.1), and  is a bounded positive Y -periodifuntion.Remark 1.2.4 It is a well-known result that there exists a unique solution u� of (1.24)in the spae C([0; T ℄;H10 (
)) \ C1([0; T ℄;L2(
)) whih, furthermore, satis�es the energyestimate k�u��t kC([0;T ℄;L2(
)) + kru�kC([0;T ℄;L2(
)) � C; (1.25)where the onstant C does not depend on �.Again one an perform a two-sale asymptoti expansion on (1.24) with the ansatzu�(t; x) = +1Xi=0 �iui �t; x; x� � ;where eah term ui(t; x; y) is a funtion of time t and both spae variables x and y. As inthe paraboli ase, the time derivative yield no ontribution in the two �rst equations ofthe asade of equations (1.5). However it gives a ontribution for the third one. In otherwords the ell problem is the same as in the steady ase, but the homogenized equation ishanged. The reader will hek easily thatu0(t; x; y) � u(t; x); u1(t; x; y) = NXi=1 �u�xi (t; x)wi(y);and the homogenized equation is8>>>>><>>>>>: ��2u�t2 � div (A�ru) = f in 
� (0; T )u = 0 on �
�℄0; T [u(0) = a in 
�u�t (0) = b in 
; (1.26)where the homogenized tensor is still given by (1.13) and � is given by (1.23).1.3 Mathematial justi�ation of homogenizationThis setion is devoted to a brief introdution to the mathematial methods that justifythe previous heuristi analysis of homogenization. We onsider only two methods out ofmany more available. 11



1.3.1 The osillating test funtion methodThe osillating test funtion method is a very elegant and eÆient method for rigorouslyhomogenizing partial di�erential equations whih was devised by Tartar [22℄, [15℄ (some-times it is also alled the energy method). This method is very general and does not requireany geometri assumptions on the behavior of the p.d.e. oeÆients: neither periodiitynor statistial properties like stationarity or ergodiity. However, for the sake of laritywe present the osillating test funtion method only in the periodi setting. Let us alsomention that this method works for many models, and not only di�usion equations.Reall that our model problem of di�usion reads( �div �A �x� �ru�� = f in 
u� = 0 on �
; (1.27)where the soure term f(x) belongs to L2(
). By appliation of Lax-Milgram lemma,equation (1.27) admits a unique solution u� in the spae H10 (
) whih satis�es the a prioriestimate ku�kH10 (
) � CkfkL2(
); (1.28)where C is a positive onstant whih does not depend on �. Estimate (1.28) is obtainedby multiplying equation (1.27) by u�, integrating by parts, and using Poinar�e inequality.It implies that the sequene u�, indexed by a sequene of periods � whih goes to 0, isbounded in the Sobolev spae H10 (
). Therefore, up to a subsequene, it onverges weaklyto a limit u in H10 (
). The goal is to �nd the homogenized equation satis�ed by u.Theorem 1.3.1 The sequene u�(x) of solutions of (1.27) onverges weakly in H10 (
) toa limit u(x) whih is the unique solution of the homogenized problem( �div (A�ru(x)) = f(x) in 
u = 0 on �
; (1.29)where the homogenized di�usion tensor, A�, is de�ned by (1.13).In order to shed some light on the priniples of the energy method, let us beginwith a naive attempt to prove Theorem 1.3.1 by passing to the limit in the variationalformulation. The original problem (1.27) admits the following variational formulationZ
A�x� �ru�(x) � r'(x)dx = Z
 f(x)'(x)dx; (1.30)for any test funtion ' 2 H10 (
). By estimate (1.28), we an extrat a subsequene, stilldenoted by �, suh that u� onverges weakly in H10 (
) to a limit u. Unfortunately, theleft hand side of (1.30) involves the produt of two weakly onverging sequenes in L2(
),12



A �x� � and ru�(x), and it is not true that it onverges to the produt of the weak limits.Therefore, we annot pass to the limit in (1.30) without any further argument.The main idea of the energy method is to replae in (1.30) the �xed test funtion 'by a weakly onverging sequene '� (the so-alled osillating test funtion), hosen in suha way that the left hand side of (1.30) miraulously passes to the limit. This phenomenonis an example of the ompensated ompatness theory, developed by Murat and Tartar,whih under additional onditions permits to pass to the limit in some produts of weakonvergenes.Proof of Theorem 1.3.1. The key idea is the hoie of an osillating test funtion '�(x).Let '(x) 2 D(
) be a smooth funtion with ompat support in 
. Copying the two �rstterms of the asymptoti expansion of u�, the osillating test funtion '� is de�ned by'�(x) = '(x) + � NXi=1 �'�xi (x)w�i �x� � ; (1.31)where w�i (y) are not the solutions of the ell problems, de�ned in (1.9), but that of thedual ell problems ( �divy �At(y) (ei +ryw�i (y))� = 0 in Yy ! w�i (y) Y -periodi: (1.32)The di�erene between (1.9) and (1.32) is that the matrix A(y) has been replaed by itstranspose At(y). By periodiity in y of w�i , it is easily seen that �w�i �x� � is a boundedsequene in H1(
) whih onverges weakly to 0 (see Lemma 1.3.2 below if neessary).The next step is to insert this osillating test funtion '� in the variational formu-lation (1.30) Z
A�x� �ru�(x) � r'�(x)dx = Z
 f(x)'�(x)dx: (1.33)To take advantage of our knowledge of equation (1.32), we develop and integrate by partsin (1.33). Remarking thatr'� = NXi=1 �'�xi (x)�ei +ryw�i �x� ��+ � NXi=1 �r'�xi (x)w�i �x� � ;yieldsZ
A�x� �ru�(x) � r'�(x)dx = Z
A�x� �ru�(x) � NXi=1 �'�xi (x)�ei +ryw�i �x� �� dx+�Z
A�x� �ru�(x) � NXi=1 �r'�xi (x)w�i �x� � : (1.34)13



The last term in (1.34) is easily seen to be bounded by a onstant time �, and thus anelsout in the limit. In the �rst term of (1.34), an integration by parts givesZ
A�x� �ru�(x) � NXi=1 �'�xi (x)�ei +ryw�i �x� �� dx = (1.35)�Z
 u�(x)div At �x� � NXi=1 �'�xi (x)�ei +ryw�i �x� ��! dx:Let us ompute the divergene in the right hand side of (1.35) whih is atually a funtionof x and y = x=� d�(x) = div At �x� � NXi=1 �'�xi (x)�ei +ryw�i �x� ��!= NXi=1 �r'�xi (x) �At(y) (ei +ryw�i (y)) + 1� NXi=1 �'�xi (x)divy �At(y) (ei +ryw�i (y))� : (1.36)The last term of order ��1 in the right hand side of (1.36) is simply zero by de�nition(1.32) of w�i . Therefore, d�(x) is bounded in L2(
), and, sine it is a periodially osillatingfuntion, it onverges weakly to its average by virtue of Lemma 1.3.2.The main point of this simpli�ation is that we are now able to pass to the limitin the right hand side of (1.35). Reall that u� is bounded in H10 (
): by appliation ofRellih theorem, there exists a subsequene (still indexed by � for simpliity) and a limitu 2 H10 (
) suh that u� onverges strongly to u in L2(
). The right hand side of (1.35)is the produt of a weak onvergene (d�) and a strong one (u�), and thus its limit is theprodut of the two limits. In other words,lim�!0Z
A�x� �ru�(x) � r'�(x)dx =�Z
 u(x)divx ZY At(y) NXi=1 �'�xi (x) (ei +ryw�i (y)) dy! dx: (1.37)By de�nition (1.13) of A�, it is easily seen that the right hand side of (1.37) is nothingelse than �Z
 u(x)divx �A�tr'(x)� dx:Finally, a last integration by parts yields the limit variational formulation of (1.33)Z
A�ru(x) � r'(x)dx = Z
 f(x)'(x)dx: (1.38)By density of smooth funtions in H10 (
), (1.38) is valid for any test funtion ' 2 H10 (
).Sine A� satis�es the same oerivity ondition as A, Lax-Milgram lemma shows that14



(1.38) admits a unique solution in H10 (
). This last result proves that any subsequeneof u� onverges to the same limit u. Therefore, the entire sequene u�, and not onlya subsequene, onverges to the homogenized solution u. This onludes the proof ofTheorem 1.3.1. �In the ourse of the proof of Theorem 1.3.1, the following lemma on periodiallyosillating funtions was used several times. Its proof is elementary, at least for smoothfuntions, by using a overing of the domain 
 in small ubes of size � and the notion ofRiemann integration (approximation of integrals by disrete sums).Lemma 1.3.2 Let w(x; y) be a ontinuous funtion in x, square integrable and Y -periodiin y, i.e. w(x; y) 2 L2# (Y ;C(
)). Then, the sequene w �x; x� � onverges weakly in L2(
)to RY w(x; y)dy.1.3.2 Two-Sale ConvergeneUnlike the osillating test funtion method, the two-sale onvergene method is devotedonly to periodi homogenization problems. It is therefore a less general method, butit is rather more eÆient and simple in this ontext. Two-sale onvergene has beenintrodued by Nguetseng [16℄ and Allaire [1℄ to whih we refer for most proofs.We denote by C1# (Y ) the spae of in�nitely di�erentiable funtions in IRN whihare periodi of period Y, and by C#(Y ) the Banah spae of ontinuous and Y-periodifuntions. Eventually, D(
;C1# (Y )) denotes the spae of in�nitely smooth and ompatlysupported funtions in 
 with values in the spae C1# (Y ).De�nition 1.3.3 A sequene of funtions u� in L2(
) is said to two-sale onverge toa limit u0(x; y) belonging to L2(
 � Y ) if, for any funtion '(x; y) in D(
;C1# (Y )), itsatis�es lim�!0Z
 u�(x)'�x; x� � dx = Z
 ZY u0(x; y)'(x; y)dxdy:Theorem 1.3.4 From eah bounded sequene u� in L2(
) one an extrat a subsequene,and there exists a limit u0(x; y) 2 L2(
�Y ) suh that this subsequene two-sale onvergesto u0.Here are some examples of two-sale onvergene.1. Any sequene u� whih onverges strongly in L2(
) to a limit u(x), two-sale onvergesto the same limit u(x).2. For any smooth funtion u0(x; y), being Y -periodi in y, the assoiated sequeneu�(x) = u0 �x; x� � two-sale onverges to u0(x; y).15



3. For the same smooth and Y -periodi funtion u0(x; y) the sequene de�ned by v�(x) =u0(x; x�2 ) has the same two-sale limit and weak-L2 limit, namely RY u0(x; y)dy (this isa onsequene of the di�erene of orders in the speed of osillations for v� and the testfuntions ' �x; x� �). Clearly the two-sale limit aptures only the osillations whih arein resonane with those of the test funtions ' �x; x� �.4. Any sequene u� whih admits an asymptoti expansion of the type u�(x) = u0 �x; x� �+�u1 �x; x� � + �2u2 �x; x� � + � � �, where the funtions ui(x; y) are smooth and Y -periodiin y, two-sale onverges to the �rst term of the expansion, namely u0(x; y).The next theorem shows that more information is ontained in a two-sale limitthan in a weak-L2 limit ; some of the osillations of a sequene are ontained in itstwo-sale limit. When all of them are aptured by the two-sale limit (ondition (1.40)below), one an even obtain a strong onvergene (a orretor result in the voabulary ofhomogenization).Theorem 1.3.5 Let u� be a sequene of funtions in L2(
) whih two-sale onverges toa limit u0(x; y) 2 L2(
� Y ).1. Then, u� onverges weakly in L2(
) to u(x) = RY u0(x; y)dy, and we havelim�!0 ku�k2L2(
) � ku0k2L2(
�Y ) � kuk2L2(
): (1.39)2. Assume further that u0(x; y) is smooth and thatlim�!0 ku�k2L2(
) = ku0k2L2(
�Y ): (1.40)Then, we have ku�(x)� u0 �x; x� � k2L2(
) ! 0: (1.41)Proof. By taking test funtions depending only on x in De�nition 1.3.3, the weak on-vergene in L2(
) of the sequene u� is established. Then, developing the inequalityZ
 ju�(x)� '�x; x� � j2dx � 0;yields easily formula (1.39). Furthermore, under assumption (1.40), it is easily obtainedthat lim�!0Z
 ju�(x)� '�x; x� � j2dx = Z
 ZY ju0(x; y)� '(x; y)j2dxdy:If u0 is smooth enough to be a test funtion ', it yields (1.41). �Theorem 1.3.6 Let u� be a bounded sequene in H1(
). Then, up to a subsequene, u�two-sale onverges to a limit u(x) 2 H1(
), and ru� two-sale onverges to rxu(x) +ryu1(x; y), where the funtion u1(x; y) belongs to L2(
;H1#(Y )=IR).16



Proof. Sine u� (resp. ru�) is bounded in L2(
) (resp. L2(
)N ), up to a subsequene, ittwo-sale onverges to a limit u0(x; y) 2 L2(
� Y ) (resp. �0(x; y) 2 L2(
� Y )N ). Thusfor any  (x; y) 2 D �
;C1# (Y )N�, we havelim�!0Z
ru�(x) �  �x; x� � dx = Z
 ZY �0(x; y) �  (x; y)dxdy: (1.42)Integrating by parts the left hand side of (1.42) gives�Z
ru�(x) �  �x; x� � dx = �Z
 u�(x)�divy �x; x� �+ �divx �x; x� �� dx: (1.43)Passing to the limit yields0 = �Z
 ZY u0(x; y)divy (x; y)dxdy: (1.44)This implies that u0(x; y) does not depend on y. Thus there exists u(x) 2 L2(
), suhthat u0 = u. Next, in (1.42) we hoose a funtion  suh that divy (x; y) = 0. Integratingby parts we obtainlim�!0Z
 u�(x)divx �x; x� � dx = �Z
 ZY �0(x; y) �  (x; y)dxdy= Z
 ZY u(x)divx (x; y)dxdy: (1.45)If  does not depend on y, (1.45) proves that u(x) belongs to H1(
). Furthermore, wededue from (1.45) thatZ
 ZY (�0(x; y)�ru(x)) �  (x; y)dxdy = 0 (1.46)for any funtion  (x; y) 2 D �
;C1# (Y )N� with divy (x; y) = 0. Reall that the orthog-onal of divergene-free funtions are exatly the gradients (this well-known result an bevery easily proved in the present ontext by means of Fourier analysis in Y ). Thus, thereexists a unique funtion u1(x; y) in L2(
;H1#(Y )=IR) suh that�0(x; y) = ru(x) +ryu1(x; y): � (1.47)Appliation to the model problem (1.27). We now desribe how the \two-saleonvergene method" an justify the homogenization of (1.27). In a �rst step, we deduefrom the a priori estimate (1.27) the preise form of the two-sale limit of the sequene u�.By appliation of Theorem 1.3.6, there exist two funtions, u(x) 2 H10 (
) and u1(x; y) 2L2(
;H1#(Y )=IR), suh that, up to a subsequene, u� two-sale onverges to u(x), andru� two-sale onverges to rxu(x) +ryu1(x; y). In view of these limits, u� is expetedto behave as u(x) + �u1 �x; x� �. 17



Thus, in a seond step, we multiply equation (1.27) by a test funtion similar tothe limit of u�, namely '(x)+�'1 �x; x� �, where '(x) 2 D(
) and '1(x; y) 2 D(
;C1# (Y )).This yieldsZ
A�x� �ru���r'(x) +ry'1 �x; x� �+ �rx'1 �x; x� �� dx = Z
 f(x)�'(x) + �'1 �x; x� �� dx:(1.48)Regarding At �x� � �r'(x) +ry'1 �x; x� �� as a test funtion for the two-sale onvergene(see De�nition 1.3.3), we pass to the two-sale limit in (1.48) for the sequene ru�. Al-though this test funtion is not neessarily very smooth, as required by De�nition 1.3.3, itbelongs at least to C ��
;L2#(Y )� whih an be shown to be enough for the two-sale on-vergene Theorem 1.3.4 to hold (see [1℄ for details). Thus, the two-sale limit of equation(1.48) isZ
 ZY A(y) (ru(x) +ryu1(x; y)) � (r'(x) +ry'1(x; y)) dxdy = Z
 f(x)'(x)dx: (1.49)In a third step, we read o� a variational formulation for (u; u1) in (1.49). Remarkthat (1.49) holds true for any (';'1) in the Hilbert spae H10 (
)� L2 �
;H1#(Y )=IR� bydensity of smooth funtions in this spae. Endowing it with the norm p(kru(x)k2L2(
) +kryu1(x; y)k2L2(
�Y )), the assumptions of the Lax-Milgram lemma are easily heked forthe variational formulation (1.49). The main point is the oerivity of the bilinear formde�ned by the left hand side of (1.49): the oerivity of A yieldsZ
 ZY A(y) (r'(x) +ry'1(x; y)) � (r'(x) +ry'1(x; y)) dxdy ��Z
 ZY jr'(x) +ry'1(x; y)j2dxdy = � Z
 jr'(x)j2dx+ �Z
 ZY jry'1(x; y)j2dxdy:By appliation of the Lax-Milgram lemma, we onlude that there exists a unique solution(u; u1) of the variational formulation (1.49) in H10 (
)�L2 �
;H1#(Y )=IR�. Consequently,the entire sequenes u� and ru� onverge to u(x) and ru(x) +ryu1(x; y). An easy inte-gration by parts shows that (1.49) is a variational formulation assoiated to the followingsystem of equations, the so-alled \two-sale homogenized problem",8>>>><>>>>: �divy (A(y) (ru(x) +ryu1(x; y))) = 0 in 
� Y�divx �RY A(y) (ru(x) +ryu1(x; y)) dy� = f(x) in 
y ! u1(x; y) Y -periodiu = 0 on �
: (1.50)At this point, the homogenization proess ould be onsidered as ahieved sine the entiresequene of solutions u� onverges to the solution of a well-posed limit problem, namely thetwo-sale homogenized problem (1.50). However, it is usually preferable, from a physial18



or numerial point of view, to eliminate the mirosopi variable y (one does not wantto solve the small sale struture). In other words, we want to extrat and deouple theusual homogenized and loal (or ell) equations from the two-sale homogenized problem.Thus, in a fourth (and optional) step, the y variable and the u1 unknown areeliminated from (1.50). It is an easy exerise of algebra to prove that u1 an be omputedin terms of the gradient of u through the relationshipu1(x; y) = NXi=1 �u�xi (x)wi(y); (1.51)where wi(y) are de�ned as the solutions of the ell problems (1.9). Then, plugging for-mula (1.51) in (1.50) yields the usual homogenized problem (1.12) with the homogenizeddi�usion tensor de�ned by (1.13).Due to the simple form of our model problem the two equations of (1.50) an be de-oupled in a mirosopi and a marosopi equation, (1.9) and (1.12) respetively, but weemphasize that it is not always possible, and sometimes it leads to very ompliate formsof the homogenized equation, inluding integro-di�erential operators. Thus, the homog-enized equation does not always belong to a lass for whih an existene and uniquenesstheory is easily available, on the ontrary of the two-sale homogenized system, whih is inmost ases of the same type as the original problem, but with a double number of variables(x and y) and unknowns (u and u1). The supplementary mirosopi variable and un-known play the role of \hidden" variables in the voabulary of mehanis. Although theirpresene doubles the size of the limit problem, it greatly simpli�es its struture (whihould be useful for numerial purposes too), while eliminating them introdues \strange"e�ets (like memory or non-loal e�ets) in the usual homogenized problem.Remark 1.3.7 It is often very useful to obtain so-alled \orretor" results whih permitto obtain strong (or pointwise) onvergenes instead of just weak ones by adding some extrainformation stemming from the loal equations. Typially, in the above example we simplyproved that the sequene u� onverges weakly to the homogenized solution u in H10 (
).Introduing the loal solution u1, this weak onvergene an be improved as follows�u�(x)� u(x)� �u1 �x; x� ��! 0 in H10 (
) strongly: (1.52)This type of result is easily obtained with the two-sale onvergene method. This rigorouslyjusti�es the two �rst term in the usual asymptoti expansion of the sequene u�. Indeedwe an developZ
A�x� ��ru�(x)�ru(x)�ryu1 �x; x��� � �ru�(x)�ru(x)�ryu1 �x; x� �� dx:After some algebra and passing to the two-sale limit, we dedue that (ru�(x)�ru(x)�ryu1 �x; x� �) goes to zero in L2(
)N . 19



Chapter 2General theory of homogenization
2.1 Introdution.The �rst hapter was devoted to a brief presentation of homogenization in a periodi set-ting. This seond hapter fous on the general setting of homogenization when no geomet-ri assumptions are available (like periodiity, or ergodiity in a probabilisti framework).It turns out that homogenization an be applied to any kind of disordered media, and isde�nitely not restrited to the periodi ase (although the nie "expliit" formulae of theperiodi setting for the homogenized ondutivity tensor have no analogue). We introduethe notion of G- or H-onvergene whih is due to DeGiorgi and Spagnolo [11℄, [20℄, [21℄,and has been further generalized by Murat and Tartar [15℄, [22℄ (see also the textbooks[17℄, [23℄). It allows to onsider any possible geometrial situation without any spei�assumptions like periodiity or randomness. The G- or H-onvergene turns out to bethe adequate notion of onvergene for e�etive properties that will be the key tool in thestudy of optimal shape design problems.Finally, let us mention that there is also a stohasti theory of homogenization (see[13℄, [8℄, [18℄) and a variational theory of homogenization (the �-onvergene of De Giorgi,[9℄, [10℄, see also the book [7℄) that will not be desribed below.2.2 De�nition of G-, or H-onvergene.The G-onvergene is a notion of onvergene assoiated to sequenes of symmetri opera-tors (typially, these operators are appliations giving the solution of a partial di�erentialequation in terms of the right hand side). The G means Green sine this type of on-vergene orresponds roughly to the onvergene of the assoiated Green funtions. TheH-onvergene is a generalization of the G-onvergene to the ase of non-symmetri oper-ators (it provides also an easier mathematial framework, but we shall not dwell on that).20



The H stands for Homogenization sine it is an important tool of that theory. For thesake of simpliity, we restrit ourselves to the ase of symmetri operators (i.e. di�usionequations with symmetri oeÆients). In suh a ase, G- and H-onvergene oinide.Therefore in the sequel, we use only the notation G-onvergene.The main result of the G-onvergene is a ompatness theorem in the homoge-nization theory whih states that, for any bounded and uniformly oerive sequene ofoeÆients of a symmetri seond order ellipti equation, there exist a subsequene and aG-limit (i.e. homogenized oeÆients) suh that, for any soure term, the orrespondingsubsequene of solutions onverges to the solution of the homogenized equation. In pra-tial terms, it means that the mehanial properties of an heterogeneous medium (like itsondutivity, or elasti moduli) an be well approximated by the properties of a homoge-neous or homogenized medium if the size of the heterogeneities are small ompared to theoverall size of the medium.The G-onvergene an be seen as a mathematially rigorous version of the so-alledrepresentative volume element method for omputing e�etive or averaged parameters ofheterogeneous media.We introdue the notion of G-onvergene for the spei� ase of a di�usion equationwith a Dirihlet boundary ondition, but all the results hold for a larger lass of seondorder ellipti operators and boundary onditions. Let 
 be a bounded open set in IRN , andlet �; � be two positive onstants suh that 0 < � � �. We introdue the set M(�; �;
)of all possible symmetri matries de�ned on 
 with uniform oerivity onstant � andL1(
)-bound �. In other words, A 2M(�; �;
) if A(x) satis�es�j�j2 � NXi;j=1Aij(x)�i�j � �j�j2:We onsider a sequene A�(x) of ondutivity tensors in M(�; �;
), indexed by asequene of positive numbers � going to 0. Here, � is not assoiated to any spei� length-sale or statistial property of the elasti medium. In other words, no speial assumptions(like periodiity or stationarity) are plaed on the sequene A�.For a given soure term f(x) 2 L2(
), there exists a unique solution u� in theSobolev spae H10 (
) of the following di�usion equation( �div (A�(x)ru�) = f(x) in 
u� = 0 on �
: (2.1)The G-onvergene of the sequene A� is de�ned below as the onvergene of the orre-sponding solutions u�. 21



De�nition 2.2.1 The sequene of tensors A�(x) is said to G-onverge to a limit A�(x),as � goes to 0, if, for any f 2 L2(
) in (2.1), the sequene of solutions u� onverges weaklyin H10 (
) to a limit u whih is the unique solution of the homogenized equation assoiatedto A�: ( �div (A�(x)ru) = f(x) in 
u = 0 on �
: (2.2)Remark that, by de�nition, the homogenized tensor A� is independent of the soureterm f . We shall see that it is also independent of the boundary ondition and of thedomain.This de�nition makes sense beause of the ompatness of the set M(�; �;
) withrespet to the G-onvergene, as stated in the following theorem.Theorem 2.2.2 For any sequene A� in M(�; �;
), there exist a subsequene (still de-noted by �) and a homogenized limit A�, belonging toM(�; �;
), suh that A� G-onvergesto A�.The G-onvergene of a general sequene A� is always stated up to a subsequenesine A� an be the union of two sequenes onverging to two di�erent limits. The G-onvergene of A� is not equivalent to any other "lassial" onvergene. For example,if A� onverges strongly in L1(
) to a limit A (i.e. the onvergene is pointwise), thenits G-limit A� oinides with A. But the onverse is not true ! On the same token,the G-onvergene has nothing to do with the usual weak onvergene. Indeed, the G-limit A� of a sequene A� is usually di�erent of its weak-* L1(
)-limit. For example,a straightforward omputation in one spae dimension (N = 1) shows that the G-limitof a sequene A� is given as the inverse of the weak-* L1(
)-limit of A�1� (the so-alledharmoni limit). However, this last result holds true only in 1-D, and no suh expliitformula is available in higher dimensions.The G-onvergene enjoys a few useful properties as enumerated in the followingproposition.Proposition 2.2.3 Properties of G-onvergene.1. If a sequene A� G-onverges, its G-limit is unique.2. Let A� and B� be two sequenes whih G-onverge to A� and B� respetively. Let ! � 
be a subset stritly inluded in 
 suh that A� = B� in !. Then A� = B� in ! (thisproperty is alled the loality of G-onvergene).3. The G-limit of a sequene A� is independent of the soure term f and of the boundaryondition on �
. 22



4. Let A� be a sequene whih G-onverges to A�. Then, the assoiated density of energyA�ru� �ru� also onverges to the homogenized density of energy A�ru �ru in the senseof distributions in 
.5. If a sequene A� G-onverges to a limit A�, then the sequene of uxes A�ru� onvergesweakly in L2(
)N to the homogenized ux A�ru.These properties of the G-onvergene implies that the homogenized medium A�approximates the heterogeneous medium A� in many di�erent ways. First of all, by def-inition of G-onvergene, the �elds u, u� and their gradients are losed (this is the senseof the onvergene of u� to u in the Sobolev spae H10 (
)). Then, by appliation of theabove proposition, the uxes and the energy densities are also losed.Remark also that, by loality of the G-onvergene, the homogenized tensor is de-�ned at eah point of the domain 
 independently of what may happen in other regionsof 
. Of ourse, a partiular example of G-onvergent sequenes A� is given by periodimedia of the type A �x� � as in the previous setion.
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