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This le
ture is devoted to a brief introdu
tion to the mathemati
al theory of ho-mogenization. For a more advan
ed presentation of homogenization, the reader is referredto the books [2℄, [3℄, [4℄, [6℄, [7℄, [19℄, and [23℄. Roughly speaking, homogenization is arigorous version of what is known as averaging. In other words, homogenization extra
tshomogeneous e�e
tive parameters from disordered or heterogeneous media.Homogenization has �rst been developed for periodi
 stru
tures. Indeed, in many�elds of s
ien
e and te
hnology one has to solve boundary value problems in periodi
 me-dia. Quite often the size of the period is small 
ompared to the size of a sample of themedium, and, denoting by � their ratio, an asymptoti
 analysis, as � goes to zero, is 
alledfor. Starting from a mi
ros
opi
 des
ription of a problem, we seek a ma
ros
opi
, or e�e
-tive, des
ription. This pro
ess of making an asymptoti
 analysis and seeking an averagedformulation is 
alled homogenization. The �rst 
hapter will fo
us on the homogenizationof periodi
 stru
tures.The method of two-s
ale asymptoti
 expansions is presented, andits mathemati
al justi�
ation will be brie
y dis
ussed.However we emphasize that homogenization is not restri
ted to the periodi
 
ase and
an be applied to any kind of disordered media. This is the fo
us of the se
ond 
hapterwhere the notion of G- or H-
onvergen
e is introdu
ed. It allows to 
onsider any possiblegeometri
al situation without any spe
i�
 assumptions like periodi
ity or randomness.
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Chapter 1Periodi
 homogenization
1.1 Setting of the problem.We 
onsider a model problem of di�usion or 
ondu
tivity in a periodi
 medium (for exam-ple, an heterogeneous domain obtained by mixing periodi
ally two di�erent phases, onebeing the matrix and the other the in
lusions; see Figure 1.1). To �x ideas, the periodi
domain is 
alled 
 (a bounded open set in IRN with N � 1 the spa
e dimension), itsperiod � (a positive number whi
h is assumed to be very small in 
omparison with thesize of the domain), and the res
aled unit periodi
 
ell Y = (0; 1)N . The 
ondu
tivity in
 is not 
onstant, but varies periodi
ally with period � in ea
h dire
tion. It is a matrix (ase
ond order tensor) A(y), where y = x=� 2 Y is the fast periodi
 variable, while x 2 
is the slow variable. Equivalently, x is also 
alled the ma
ros
opi
 variable, and y themi
ros
opi
 variable. Sin
e the 
omponent 
ondu
tors do not need to be isotropi
, thematrix A 
an be any se
ond order tensor that is bounded and positive de�nite, i.e., thereexist two positive 
onstants � � � > 0 su
h that, for any ve
tor � 2 IRN and at any pointy 2 Y , �j�j2 � NXi;j=1Aij(y)�i�j � �j�j2: (1.1)At this point, the matrix A is not ne
essarily symmetri
 (su
h is the 
ase when some driftis taken into a

ount in the di�usion pro
ess). The matrix A(y) is a periodi
 fun
tionof y, with period Y , and it may be dis
ontinuous in y (to model the dis
ontinuity of
ondu
tivities from one phase to the other).Denoting by f(x) the sour
e term (a s
alar fun
tion de�ned in 
), and enfor
ing aDiri
hlet boundary 
ondition (for simpli
ity), our model problem of 
ondu
tivity reads8>><>>: �div�A�x� �ru�� = f in 
u� = 0 on �
; (1.2)2
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ΩFigure 1.1: A periodi
 domain.where u�(x) is the unknown fun
tion, modeling the ele
tri
al potential or the temperature.Remark 1.1.1 From a mathemati
al point of view, problem (1.2) is well posed in thesense that, if the sour
e term f(x) belongs to the spa
e L2(
) of square integrable fun
-tions on 
, then the Lax-Milgram lemma implies existen
e and uniqueness of the solutionu� in the Sobolev spa
e H10 (
) of fun
tions whi
h belong to L2(
) along with their �rstderivatives. Furthermore, the following energy estimate holdsku�kL2(
) + kru�kL2(
) � C;where the 
onstant C does not depend on �.The domain 
, with its 
ondu
tivity A �x� �, is highly heterogeneous with periodi
heterogeneities of lengths
ale �. Usually one does not need the full details of the variationsof the potential or temperature u�, but rather some global of averaged behavior of thedomain 
 
onsidered as an homogeneous domain. In other words, an e�e
tive or equivalentma
ros
opi
 
ondu
tivity of 
 is sought. From a numeri
al point of view, solving equation(1.2) by any method will require too mu
h e�ort if � is small sin
e the number of elements(or degrees of freedom) for a �xed level of a

ura
y grows like 1=�N . It is thus preferableto average or homogenize the properties of 
 and 
ompute an approximation of u� on a
oarse mesh. Averaging the solution of (1.2) and �nding the e�e
tive properties of thedomain 
 is what we 
all homogenization.There is a di�eren
e of methodology between the traditional physi
al approa
h ofhomogenization and the mathemati
al theory of homogenization. In the me
hani
al lit-erature, the so-
alled representative volume element (RVE) method is often used (see [5℄,or Chapter 1 in [12℄). Roughly speaking, it 
onsists in taking a sample of the heteroge-neous medium of size mu
h larger than the heterogeneities, but still mu
h smaller than the3



medium, and averaging over it the gradient ru� and the 
ux A �x� �ru�. Denoting by � theaverage of the gradient and by � that of the 
ux, the e�e
tive tensor of 
ondu
tivity A� ofthis sample is de�ned by the linear relationship � = A��. It turns out that the averagedstored energy A �x� �ru� � ru� is also equal to the e�e
tive energy A�� � �. Although thistype of de�nition is very intuitive, it is not 
lear whether it de�nes 
orre
tly an e�e
tivetensor A�. In parti
ular, it may depend on the 
hoi
e of sour
e term f , sample size, orboundary 
onditions.The mathemati
al theory of homogenization works 
ompletely di�erently. Ratherthan 
onsidering a single heterogeneous medium with a �xed lengths
ale, the problem is�rst embedded in a sequen
e of similar problems for whi
h the lengths
ale �, be
omingin
reasingly small, goes to zero. Then, an asymptoti
 analysis is performed as � tendsto zero, and the 
ondu
tivity tensor of the limit problem is said to be the e�e
tive orhomogenized 
ondu
tivity. This seemingly more 
omplex approa
h has the advantage ofde�ning uniquely the homogenized properties. Further, the approximation made by usinge�e
tive properties instead of the true mi
ros
opi
 
oeÆ
ients 
an be rigorously justi�edby quantifying the resulting error.In the 
ase of a periodi
 medium 
, this asymptoti
 analysis of equation (1.2), asthe period � goes to zero, is espe
ially simple. The solution u� is written as a power seriesin � u� = +1Xi=0 �iui:The �rst term u0 of this series will be identi�ed with the solution of the so-
alled homog-enized equation whose e�e
tive 
ondu
tivity A� 
an be exa
tly 
omputed. It turns outthat A� is a 
onstant tensor, des
ribing a homogeneous medium, whi
h is independent of fand of the boundary 
onditions. Therefore, numeri
al 
omputations on the homogenizedequation do not require a �ne mesh sin
e the heterogeneities of size � have been averagedout. This homogenized tensor A� is almost never a usual average (arithmeti
 or harmoni
)of A(y). Various estimates will 
on�rm this asymptoti
 analysis by telling in whi
h senseu� is 
lose to u0 as � tends to zero.Remark 1.1.2 From a more theoreti
al point of view, homogenization 
an be interpretedas follows. Rather than studying a single problem (1.2) for the physi
ally relevant value of�, we 
onsider a sequen
e of su
h problems indexed by the period �, whi
h is now regardedas a small parameter going to zero. The question is to �nd the limit of this sequen
e ofproblems. The notion of limit problem is de�ned by 
onsidering the 
onvergen
e of thesequen
e (u�)�>0 of solutions of (1.2): Denoting by u its limit, the limit problem is de�nedas the problem for whi
h u is a solution. Of 
ourse, u will turn out to 
oin
ide with u0, the�rst term in the series de�ned above, and it is therefore the solution of the homogenized4



equation. Clearly the mathemati
al diÆ
ulty is to de�ne an adequate topology for thisnotion of 
onvergen
e of problems as � goes to zero.1.2 Two-s
ale asymptoti
 expansions.1.2.1 AnsatzThe method of two-s
ale asymptoti
 expansions is an heuristi
 method, whi
h allows oneto formally homogenize a great variety of models or equations posed in a periodi
 domain.We present it brie
y and refer to the 
lassi
al books [3℄, [4℄, and [19℄ for more detail. Amathemati
al justi�
ation of what follows is to be found in Se
tion 1.3. As already stated,the starting point is to 
onsider the following two-s
ale asymptoti
 expansion (also 
alledan ansatz), for the solution u� of equation (1.2)u�(x) = +1Xi=0 �iui �x; x� � ; (1.3)where ea
h term ui(x; y) is a fun
tion of both variables x and y, periodi
 in y with periodY = (0; 1)N (ui is 
alled a Y -periodi
 fun
tion with respe
t to y). This series is pluggedinto the equation, and the following derivation rule is used:r�ui �x; x� �� = ���1ryui +rxui� �x; x� � ; (1.4)where rx andry denote the partial derivative with respe
t to the �rst and se
ond variableof ui(x; y). For example, one hasru�(x) = ��1ryu0 �x; x� �+ +1Xi=0 �i (ryui+1 +rxui)�x; x� � :Equation (1.2) be
omes a series in ����2 [divyAryu0℄�x; x� ����1 [divyA(rxu0 +ryu1) + divxAryu0℄�x; x� ���0 [divxA(rxu0 +ryu1) + divyA(rxu1 +ryu2)℄�x; x� �� +1Xi=1 �i [divxA(rxui +ryui+1) + divyA(rxui+1 +ryui+2)℄�x; x� �= f(x):
(1.5)
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Identifying ea
h 
oeÆ
ient of (1.5) as an individual equation yields a 
as
ade of equations(a series of the variable � is zero for all values of � if ea
h 
oeÆ
ient is zero). It turns outthat the three �rst equations are enough for our purpose. The ��2 equation is�divyA(y)ryu0(x; y) = 0;whi
h is nothing else than an equation in the unit 
ell Y with periodi
 boundary 
ondition.In this equation, y is the variable, and x plays the role of a parameter. It 
an be 
he
ked(see Lemma 1.2.1) that there exists a unique solution of this equation up to a 
onstant(i.e., a fun
tion of x independent of y sin
e x is just a parameter). This implies that u0 isa fun
tion that does not depend on y, i.e., there exists a fun
tion u(x) su
h thatu0(x; y) � u(x):Sin
e ryu0 = 0, the ��1 equation is�divyA(y)ryu1(x; y) = divyA(y)rxu(x); (1.6)whi
h is an equation for the unknown u1 in the periodi
 unit 
ell Y . Again, it is a well-posed problem, whi
h admits a unique solution up to a 
onstant, as soon as the right handside is known. Equation (1.6) allows one to 
ompute u1 in terms of u, and it is easily seenthat u1(x; y) depends linearly on the �rst derivative rxu(x).Finally, the �0 equation is�divyA(y)ryu2(x; y) = divyA(y)rxu1+divxA(y) (ryu1 +rxu) + f(x); (1.7)whi
h is an equation for the unknown u2 in the periodi
 unit 
ell Y . Equation (1.7) admitsa solution if a 
ompatibility 
ondition is satis�ed (the so-
alled Fredholm alternative; seeLemma 1.2.1). Indeed, integrating the left hand side of (1.7) over Y , and using the periodi
boundary 
ondition for u2, we obtainZY divyA(y)ryu2(x; y)dy = Z�Y [A(y)ryu2(x; y)℄ � nds = 0;whi
h implies that the right hand side of (1.7) must have zero average over Y , i.e.,ZY [divyA(y)rxu1 + divxA(y) (ryu1 +rxu) + f(x)℄ dy = 0;whi
h simpli�es to �divx�ZY A(y) (ryu1 +rxu) dy� = f(x) in 
: (1.8)Sin
e u1(x; y) depends linearly on rxu(x), equation (1.8) is simply an equation for u(x)involving only the se
ond order derivatives of u.6



1.2.2 The 
ell and the homogenized problems.The method of two-s
ale asymptoti
 expansions give rise to a 
ouple of equations (1.6)(1.8) that have a mathemati
al, as well as physi
al, interpretation. In order to 
omputeu1 and to simplify (1.8), we introdu
e the so-
alled 
ell problems. We denote by (ei)1�i�Nthe 
anoni
al basis of IRN . For ea
h unit ve
tor ei, 
onsider the following 
ondu
tivityproblem in the periodi
 unit 
ell:( �divyA(y) (ei +rywi(y)) = 0 in Yy ! wi(y) Y -periodi
; (1.9)where wi(y) is the lo
al variation of potential or temperature 
reated by an averaged (orma
ros
opi
) gradient ei. The existen
e of a solution wi to equation (1.9) is guaranteedby the following result.Lemma 1.2.1 Let f(y) 2 L2#(Y ) be a periodi
 fun
tion. There exists a solution in H1#(Y )(unique up to an additive 
onstant) of( �divA(y)rw(y) = f in Yy ! w(y) Y -periodi
; (1.10)if and only if RY f(y)dy = 0 (this is 
alled the Fredholm alternative).By linearity, it is not diÆ
ult to 
ompute u1(x; y), solution of (1.6), in terms of u(x)and wi(y) u1(x; y) = NXi=1 �u�xi (x)wi(y): (1.11)In truth, u1(x; y) is merely de�ned up to the addition of a fun
tion ~u1(x) (depending onlyon x), but this does not matter sin
e only its gradient ryu1(x; y) is used in the homog-enized equation. Inserting this expression in equation (1.8), we obtain the homogenizedequation for u that we supplement with a Diri
hlet boundary 
ondition on �
,( �divxA�rxu(x) = f(x) in 
u = 0 on �
: (1.12)The homogenized 
ondu
tivity A� is de�ned by its entriesA�ij = ZY [(A(y)rywi) � ej +Aij(y)℄ dy;or equivalently, after a simple integration by parts in Y ,A�ij = ZY A(y) (ei +rywi) � (ej +rwj) dy: (1.13)The 
onstant tensor A� des
ribes the e�e
tive or homogenized properties of the heteroge-neous material A �x� �. Note that A� does not depend on the 
hoi
e of domain 
, sour
eterm f , or boundary 
ondition on �
. 7



Remark 1.2.2 This method of two-s
ale asymptoti
 expansions is unfortunately not rig-orous from a mathemati
al point of view. In other words, it yields heuristi
ally the ho-mogenized equation, but it does not yield a 
orre
t proof of the homogenization pro
ess.The reason is that the ansatz (1.3) is usually not 
orre
t after the two �rst terms. Forexample, it does not in
lude possible boundary layers in the vi
inity of �
 (for details,see, e.g., [14℄). Nevertheless, it is possible to rigorously justify the above homogenizationpro
ess (see Se
tion 1.3).1.2.3 A variational 
hara
terization of the homogenized 
oeÆ
ients.The homogenized 
ondu
tivity A� is de�ned in terms of the solutions of the 
ell problemsby equation (1.13). When the 
ondu
tivity tensor A(y) is symmetri
, it is 
onvenient togive another de�nition of A� involving standard variational prin
iples. From now on weassume that A(y) is indeed symmetri
. Therefore, by (1.13), A� is symmetri
 too, andis 
ompletely determined by the knowledge of the quadrati
 form A�� � � where � is any
onstant ve
tor in IRN . From de�nition (1.13) it is not diÆ
ult to 
he
k thatA�� � � = ZY A(y) (� +ryw�) � (� +ryw�) dy; (1.14)where w� is the solution of the following 
ell problem:( �divyA(y) (� +ryw�(y)) = 0 in Y;y ! w�(y) Y -periodi
: (1.15)It is well-known that equation (1.15) is the Euler-Lagrange equation of the followingvariational prin
iple: Find w(y) that minimizesZY A(y) (� +ryw) � (� +ryw) dyover all periodi
 fun
tions w. In other words, A�� � � is given by the minimization of thepotential energy A�� � � = minw(y)2H1#(Y ) ZY A(y) (� +ryw) � (� +ryw) dy; (1.16)where H1#(Y ) is the Sobolev spa
e of Y -periodi
 fun
tions w with �nite energy, namely,ZY �w2 + jrywj2� dy < +1:Remark that all the above equivalent de�nitions of A� are not simple algebrai
formulas, but rather they deliver the value of A� at the pri
e of a non-expli
it 
omputationof the solutions of the 
ell problems. However, in pra
ti
e one is not always interested in8



the pre
ise value of A�, but rather in lower or upper estimates of its value. In this respe
t,the variational 
hara
terization (1.16) of A� is useful sin
e it provides an upper boundby 
hoosing a spe
i�
 test fun
tion w(y). The simplest 
hoi
e is to take w(y) = 0, whi
hyields the so-
alled arithmeti
 mean upper boundA�� � � � �ZY A(y)dy� � � �: (1.17)A lower bound 
an also be obtained from (1.16) if the spa
e of admissible �elds in theminimization is enlarged. Indeed, remarking that the gradient ryw(y) has zero-averageover Y be
ause of the periodi
ity of w(y), this gradient 
an be repla
ed by any zero-averageve
tor �eld A�� � � � min�(y)2L2#(Y )NRY �(y)dy=0 ZY A(y) (� + �(y)) � (� + �(y)) dy; (1.18)where L2#(Y ) is the spa
e of square summable Y -periodi
 fun
tions. The minimum inthe right hand side of (1.18) is easy to 
ompute: The optimal ve
tor ��(y) satis�es thefollowing Euler-Lagrange equationA(y) (� + ��(y)) = C;where C is a 
onstant (a Lagrange multiplier for the 
onstraint RY ��(y)dy = 0). Aftersome algebra, one 
an 
ompute expli
itly the optimal ��, as well as the minimal value thatdelivers the so-
alled harmoni
 mean lower boundA�� � � � �ZY A�1(y)dy��1 � � �: (1.19)From a physi
al point of view, the harmoni
 mean in (1.19) 
orresponds to an overall
ondu
tivity obtained by assuming that the values of the 
ondu
tivity A(y) are pla
ed inseries, while the arithmeti
 mean in (1.17) 
orresponds to an overall 
ondu
tivity obtainedby assuming that the values of the 
ondu
tivityA(y) are pla
ed in parallel. These estimateshold true in great generality, but usually are not optimal and 
an be improved (see [2℄ inthe 
ase of two-phase 
omposites). A
tually, improving the harmoni
 and arithmeti
 meanbounds is one of the main problems of homogenization theory applied to the modeling of
omposite materials.1.2.4 Evolution problemThe previous analysis extends easily to evolution problems. Let us 
onsider �rst a paraboli
equation modeling, for example, a di�usion pro
ess. For a �nal time T > 0, a sour
e termf(t; x) 2 L2((0; T ) � 
), and an initial data a 2 L2(
), the Cau
hy problem is8>><>>: 
�x� � �u��t � div�A�x� �ru�� = f in 
� (0; T )u� = 0 on �
� (0; T )u�(0; x) = a(x) in 
: (1.20)9



where A satis�es the 
oer
ivity assumption (1.1), and 
 is a bounded positive Y -periodi
fun
tion 0 < 
� � 
(y) � 
+ < +1 8 y 2 Y:Remark 1.2.3 It is a well-known result that there exists a unique solution u� of (1.20)in the spa
e L2 �(0; T );H10 (
)� \ C([0; T ℄;L2(
)) whi
h, furthermore, satis�es the energyestimate ku�kC([0;T ℄;L2(
)) + kru�kL2((0;T );L2(
)) � C; (1.21)where the 
onstant C does not depend on �.One 
an perform the same two-s
ale asymptoti
 expansion on (1.20). The ansatz isu�(t; x) = +1Xi=0 �iui �t; x; x� � ;where ea
h term ui(t; x; y) is a fun
tion of time t and both spa
e variables x and y. Itis 
lear that the time derivative yield no 
ontribution in the two �rst equations of the
as
ade of equations (1.5). However it gives a 
ontribution for the third one. In otherwords the 
ell problem is the same as in the steady 
ase, but the homogenized equation is
hanged. The reader will 
he
k easily thatu0(t; x; y) � u(t; x); u1(t; x; y) = NXi=1 �u�xi (t; x)wi(y);and the homogenized equation is8>><>>: 
� �u�t � div (A�ru) = f in 
� (0; T )u = 0 on �
�℄0; T [u(0) = a in 
; (1.22)where the homogenized tensor is still given by (1.13) and
� = ZY 
(y) dy: (1.23)We now 
onsider an hyperboli
 equation modeling, for example, the propagation ofwaves. For a �nal time T > 0, a sour
e term f(t; x) 2 L2((0; T )�
), a pair of initial dataa 2 H10 (
) and b 2 L2(
), the Cau
hy problem is8>>>>><>>>>>: 
�x� � �2u��t2 � div�A�x� �ru�� = f in 
� (0; T )u� = 0 on �
�℄0; T [u�(0; x) = a(x) in 
�u��t (0; x) = b(x) in 
: (1.24)10



where A satis�es the 
oer
ivity assumption (1.1), and 
 is a bounded positive Y -periodi
fun
tion.Remark 1.2.4 It is a well-known result that there exists a unique solution u� of (1.24)in the spa
e C([0; T ℄;H10 (
)) \ C1([0; T ℄;L2(
)) whi
h, furthermore, satis�es the energyestimate k�u��t kC([0;T ℄;L2(
)) + kru�kC([0;T ℄;L2(
)) � C; (1.25)where the 
onstant C does not depend on �.Again one 
an perform a two-s
ale asymptoti
 expansion on (1.24) with the ansatzu�(t; x) = +1Xi=0 �iui �t; x; x� � ;where ea
h term ui(t; x; y) is a fun
tion of time t and both spa
e variables x and y. As inthe paraboli
 
ase, the time derivative yield no 
ontribution in the two �rst equations ofthe 
as
ade of equations (1.5). However it gives a 
ontribution for the third one. In otherwords the 
ell problem is the same as in the steady 
ase, but the homogenized equation is
hanged. The reader will 
he
k easily thatu0(t; x; y) � u(t; x); u1(t; x; y) = NXi=1 �u�xi (t; x)wi(y);and the homogenized equation is8>>>>><>>>>>: 
��2u�t2 � div (A�ru) = f in 
� (0; T )u = 0 on �
�℄0; T [u(0) = a in 
�u�t (0) = b in 
; (1.26)where the homogenized tensor is still given by (1.13) and 
� is given by (1.23).1.3 Mathemati
al justi�
ation of homogenizationThis se
tion is devoted to a brief introdu
tion to the mathemati
al methods that justifythe previous heuristi
 analysis of homogenization. We 
onsider only two methods out ofmany more available. 11



1.3.1 The os
illating test fun
tion methodThe os
illating test fun
tion method is a very elegant and eÆ
ient method for rigorouslyhomogenizing partial di�erential equations whi
h was devised by Tartar [22℄, [15℄ (some-times it is also 
alled the energy method). This method is very general and does not requireany geometri
 assumptions on the behavior of the p.d.e. 
oeÆ
ients: neither periodi
itynor statisti
al properties like stationarity or ergodi
ity. However, for the sake of 
laritywe present the os
illating test fun
tion method only in the periodi
 setting. Let us alsomention that this method works for many models, and not only di�usion equations.Re
all that our model problem of di�usion reads( �div �A �x� �ru�� = f in 
u� = 0 on �
; (1.27)where the sour
e term f(x) belongs to L2(
). By appli
ation of Lax-Milgram lemma,equation (1.27) admits a unique solution u� in the spa
e H10 (
) whi
h satis�es the a prioriestimate ku�kH10 (
) � CkfkL2(
); (1.28)where C is a positive 
onstant whi
h does not depend on �. Estimate (1.28) is obtainedby multiplying equation (1.27) by u�, integrating by parts, and using Poin
ar�e inequality.It implies that the sequen
e u�, indexed by a sequen
e of periods � whi
h goes to 0, isbounded in the Sobolev spa
e H10 (
). Therefore, up to a subsequen
e, it 
onverges weaklyto a limit u in H10 (
). The goal is to �nd the homogenized equation satis�ed by u.Theorem 1.3.1 The sequen
e u�(x) of solutions of (1.27) 
onverges weakly in H10 (
) toa limit u(x) whi
h is the unique solution of the homogenized problem( �div (A�ru(x)) = f(x) in 
u = 0 on �
; (1.29)where the homogenized di�usion tensor, A�, is de�ned by (1.13).In order to shed some light on the prin
iples of the energy method, let us beginwith a naive attempt to prove Theorem 1.3.1 by passing to the limit in the variationalformulation. The original problem (1.27) admits the following variational formulationZ
A�x� �ru�(x) � r'(x)dx = Z
 f(x)'(x)dx; (1.30)for any test fun
tion ' 2 H10 (
). By estimate (1.28), we 
an extra
t a subsequen
e, stilldenoted by �, su
h that u� 
onverges weakly in H10 (
) to a limit u. Unfortunately, theleft hand side of (1.30) involves the produ
t of two weakly 
onverging sequen
es in L2(
),12



A �x� � and ru�(x), and it is not true that it 
onverges to the produ
t of the weak limits.Therefore, we 
annot pass to the limit in (1.30) without any further argument.The main idea of the energy method is to repla
e in (1.30) the �xed test fun
tion 'by a weakly 
onverging sequen
e '� (the so-
alled os
illating test fun
tion), 
hosen in su
ha way that the left hand side of (1.30) mira
ulously passes to the limit. This phenomenonis an example of the 
ompensated 
ompa
tness theory, developed by Murat and Tartar,whi
h under additional 
onditions permits to pass to the limit in some produ
ts of weak
onvergen
es.Proof of Theorem 1.3.1. The key idea is the 
hoi
e of an os
illating test fun
tion '�(x).Let '(x) 2 D(
) be a smooth fun
tion with 
ompa
t support in 
. Copying the two �rstterms of the asymptoti
 expansion of u�, the os
illating test fun
tion '� is de�ned by'�(x) = '(x) + � NXi=1 �'�xi (x)w�i �x� � ; (1.31)where w�i (y) are not the solutions of the 
ell problems, de�ned in (1.9), but that of thedual 
ell problems ( �divy �At(y) (ei +ryw�i (y))� = 0 in Yy ! w�i (y) Y -periodi
: (1.32)The di�eren
e between (1.9) and (1.32) is that the matrix A(y) has been repla
ed by itstranspose At(y). By periodi
ity in y of w�i , it is easily seen that �w�i �x� � is a boundedsequen
e in H1(
) whi
h 
onverges weakly to 0 (see Lemma 1.3.2 below if ne
essary).The next step is to insert this os
illating test fun
tion '� in the variational formu-lation (1.30) Z
A�x� �ru�(x) � r'�(x)dx = Z
 f(x)'�(x)dx: (1.33)To take advantage of our knowledge of equation (1.32), we develop and integrate by partsin (1.33). Remarking thatr'� = NXi=1 �'�xi (x)�ei +ryw�i �x� ��+ � NXi=1 �r'�xi (x)w�i �x� � ;yieldsZ
A�x� �ru�(x) � r'�(x)dx = Z
A�x� �ru�(x) � NXi=1 �'�xi (x)�ei +ryw�i �x� �� dx+�Z
A�x� �ru�(x) � NXi=1 �r'�xi (x)w�i �x� � : (1.34)13



The last term in (1.34) is easily seen to be bounded by a 
onstant time �, and thus 
an
elsout in the limit. In the �rst term of (1.34), an integration by parts givesZ
A�x� �ru�(x) � NXi=1 �'�xi (x)�ei +ryw�i �x� �� dx = (1.35)�Z
 u�(x)div At �x� � NXi=1 �'�xi (x)�ei +ryw�i �x� ��! dx:Let us 
ompute the divergen
e in the right hand side of (1.35) whi
h is a
tually a fun
tionof x and y = x=� d�(x) = div At �x� � NXi=1 �'�xi (x)�ei +ryw�i �x� ��!= NXi=1 �r'�xi (x) �At(y) (ei +ryw�i (y)) + 1� NXi=1 �'�xi (x)divy �At(y) (ei +ryw�i (y))� : (1.36)The last term of order ��1 in the right hand side of (1.36) is simply zero by de�nition(1.32) of w�i . Therefore, d�(x) is bounded in L2(
), and, sin
e it is a periodi
ally os
illatingfun
tion, it 
onverges weakly to its average by virtue of Lemma 1.3.2.The main point of this simpli�
ation is that we are now able to pass to the limitin the right hand side of (1.35). Re
all that u� is bounded in H10 (
): by appli
ation ofRelli
h theorem, there exists a subsequen
e (still indexed by � for simpli
ity) and a limitu 2 H10 (
) su
h that u� 
onverges strongly to u in L2(
). The right hand side of (1.35)is the produ
t of a weak 
onvergen
e (d�) and a strong one (u�), and thus its limit is theprodu
t of the two limits. In other words,lim�!0Z
A�x� �ru�(x) � r'�(x)dx =�Z
 u(x)divx ZY At(y) NXi=1 �'�xi (x) (ei +ryw�i (y)) dy! dx: (1.37)By de�nition (1.13) of A�, it is easily seen that the right hand side of (1.37) is nothingelse than �Z
 u(x)divx �A�tr'(x)� dx:Finally, a last integration by parts yields the limit variational formulation of (1.33)Z
A�ru(x) � r'(x)dx = Z
 f(x)'(x)dx: (1.38)By density of smooth fun
tions in H10 (
), (1.38) is valid for any test fun
tion ' 2 H10 (
).Sin
e A� satis�es the same 
oer
ivity 
ondition as A, Lax-Milgram lemma shows that14



(1.38) admits a unique solution in H10 (
). This last result proves that any subsequen
eof u� 
onverges to the same limit u. Therefore, the entire sequen
e u�, and not onlya subsequen
e, 
onverges to the homogenized solution u. This 
on
ludes the proof ofTheorem 1.3.1. �In the 
ourse of the proof of Theorem 1.3.1, the following lemma on periodi
allyos
illating fun
tions was used several times. Its proof is elementary, at least for smoothfun
tions, by using a 
overing of the domain 
 in small 
ubes of size � and the notion ofRiemann integration (approximation of integrals by dis
rete sums).Lemma 1.3.2 Let w(x; y) be a 
ontinuous fun
tion in x, square integrable and Y -periodi
in y, i.e. w(x; y) 2 L2# (Y ;C(
)). Then, the sequen
e w �x; x� � 
onverges weakly in L2(
)to RY w(x; y)dy.1.3.2 Two-S
ale Convergen
eUnlike the os
illating test fun
tion method, the two-s
ale 
onvergen
e method is devotedonly to periodi
 homogenization problems. It is therefore a less general method, butit is rather more eÆ
ient and simple in this 
ontext. Two-s
ale 
onvergen
e has beenintrodu
ed by Nguetseng [16℄ and Allaire [1℄ to whi
h we refer for most proofs.We denote by C1# (Y ) the spa
e of in�nitely di�erentiable fun
tions in IRN whi
hare periodi
 of period Y, and by C#(Y ) the Bana
h spa
e of 
ontinuous and Y-periodi
fun
tions. Eventually, D(
;C1# (Y )) denotes the spa
e of in�nitely smooth and 
ompa
tlysupported fun
tions in 
 with values in the spa
e C1# (Y ).De�nition 1.3.3 A sequen
e of fun
tions u� in L2(
) is said to two-s
ale 
onverge toa limit u0(x; y) belonging to L2(
 � Y ) if, for any fun
tion '(x; y) in D(
;C1# (Y )), itsatis�es lim�!0Z
 u�(x)'�x; x� � dx = Z
 ZY u0(x; y)'(x; y)dxdy:Theorem 1.3.4 From ea
h bounded sequen
e u� in L2(
) one 
an extra
t a subsequen
e,and there exists a limit u0(x; y) 2 L2(
�Y ) su
h that this subsequen
e two-s
ale 
onvergesto u0.Here are some examples of two-s
ale 
onvergen
e.1. Any sequen
e u� whi
h 
onverges strongly in L2(
) to a limit u(x), two-s
ale 
onvergesto the same limit u(x).2. For any smooth fun
tion u0(x; y), being Y -periodi
 in y, the asso
iated sequen
eu�(x) = u0 �x; x� � two-s
ale 
onverges to u0(x; y).15



3. For the same smooth and Y -periodi
 fun
tion u0(x; y) the sequen
e de�ned by v�(x) =u0(x; x�2 ) has the same two-s
ale limit and weak-L2 limit, namely RY u0(x; y)dy (this isa 
onsequen
e of the di�eren
e of orders in the speed of os
illations for v� and the testfun
tions ' �x; x� �). Clearly the two-s
ale limit 
aptures only the os
illations whi
h arein resonan
e with those of the test fun
tions ' �x; x� �.4. Any sequen
e u� whi
h admits an asymptoti
 expansion of the type u�(x) = u0 �x; x� �+�u1 �x; x� � + �2u2 �x; x� � + � � �, where the fun
tions ui(x; y) are smooth and Y -periodi
in y, two-s
ale 
onverges to the �rst term of the expansion, namely u0(x; y).The next theorem shows that more information is 
ontained in a two-s
ale limitthan in a weak-L2 limit ; some of the os
illations of a sequen
e are 
ontained in itstwo-s
ale limit. When all of them are 
aptured by the two-s
ale limit (
ondition (1.40)below), one 
an even obtain a strong 
onvergen
e (a 
orre
tor result in the vo
abulary ofhomogenization).Theorem 1.3.5 Let u� be a sequen
e of fun
tions in L2(
) whi
h two-s
ale 
onverges toa limit u0(x; y) 2 L2(
� Y ).1. Then, u� 
onverges weakly in L2(
) to u(x) = RY u0(x; y)dy, and we havelim�!0 ku�k2L2(
) � ku0k2L2(
�Y ) � kuk2L2(
): (1.39)2. Assume further that u0(x; y) is smooth and thatlim�!0 ku�k2L2(
) = ku0k2L2(
�Y ): (1.40)Then, we have ku�(x)� u0 �x; x� � k2L2(
) ! 0: (1.41)Proof. By taking test fun
tions depending only on x in De�nition 1.3.3, the weak 
on-vergen
e in L2(
) of the sequen
e u� is established. Then, developing the inequalityZ
 ju�(x)� '�x; x� � j2dx � 0;yields easily formula (1.39). Furthermore, under assumption (1.40), it is easily obtainedthat lim�!0Z
 ju�(x)� '�x; x� � j2dx = Z
 ZY ju0(x; y)� '(x; y)j2dxdy:If u0 is smooth enough to be a test fun
tion ', it yields (1.41). �Theorem 1.3.6 Let u� be a bounded sequen
e in H1(
). Then, up to a subsequen
e, u�two-s
ale 
onverges to a limit u(x) 2 H1(
), and ru� two-s
ale 
onverges to rxu(x) +ryu1(x; y), where the fun
tion u1(x; y) belongs to L2(
;H1#(Y )=IR).16



Proof. Sin
e u� (resp. ru�) is bounded in L2(
) (resp. L2(
)N ), up to a subsequen
e, ittwo-s
ale 
onverges to a limit u0(x; y) 2 L2(
� Y ) (resp. �0(x; y) 2 L2(
� Y )N ). Thusfor any  (x; y) 2 D �
;C1# (Y )N�, we havelim�!0Z
ru�(x) �  �x; x� � dx = Z
 ZY �0(x; y) �  (x; y)dxdy: (1.42)Integrating by parts the left hand side of (1.42) gives�Z
ru�(x) �  �x; x� � dx = �Z
 u�(x)�divy �x; x� �+ �divx �x; x� �� dx: (1.43)Passing to the limit yields0 = �Z
 ZY u0(x; y)divy (x; y)dxdy: (1.44)This implies that u0(x; y) does not depend on y. Thus there exists u(x) 2 L2(
), su
hthat u0 = u. Next, in (1.42) we 
hoose a fun
tion  su
h that divy (x; y) = 0. Integratingby parts we obtainlim�!0Z
 u�(x)divx �x; x� � dx = �Z
 ZY �0(x; y) �  (x; y)dxdy= Z
 ZY u(x)divx (x; y)dxdy: (1.45)If  does not depend on y, (1.45) proves that u(x) belongs to H1(
). Furthermore, wededu
e from (1.45) thatZ
 ZY (�0(x; y)�ru(x)) �  (x; y)dxdy = 0 (1.46)for any fun
tion  (x; y) 2 D �
;C1# (Y )N� with divy (x; y) = 0. Re
all that the orthog-onal of divergen
e-free fun
tions are exa
tly the gradients (this well-known result 
an bevery easily proved in the present 
ontext by means of Fourier analysis in Y ). Thus, thereexists a unique fun
tion u1(x; y) in L2(
;H1#(Y )=IR) su
h that�0(x; y) = ru(x) +ryu1(x; y): � (1.47)Appli
ation to the model problem (1.27). We now des
ribe how the \two-s
ale
onvergen
e method" 
an justify the homogenization of (1.27). In a �rst step, we dedu
efrom the a priori estimate (1.27) the pre
ise form of the two-s
ale limit of the sequen
e u�.By appli
ation of Theorem 1.3.6, there exist two fun
tions, u(x) 2 H10 (
) and u1(x; y) 2L2(
;H1#(Y )=IR), su
h that, up to a subsequen
e, u� two-s
ale 
onverges to u(x), andru� two-s
ale 
onverges to rxu(x) +ryu1(x; y). In view of these limits, u� is expe
tedto behave as u(x) + �u1 �x; x� �. 17



Thus, in a se
ond step, we multiply equation (1.27) by a test fun
tion similar tothe limit of u�, namely '(x)+�'1 �x; x� �, where '(x) 2 D(
) and '1(x; y) 2 D(
;C1# (Y )).This yieldsZ
A�x� �ru���r'(x) +ry'1 �x; x� �+ �rx'1 �x; x� �� dx = Z
 f(x)�'(x) + �'1 �x; x� �� dx:(1.48)Regarding At �x� � �r'(x) +ry'1 �x; x� �� as a test fun
tion for the two-s
ale 
onvergen
e(see De�nition 1.3.3), we pass to the two-s
ale limit in (1.48) for the sequen
e ru�. Al-though this test fun
tion is not ne
essarily very smooth, as required by De�nition 1.3.3, itbelongs at least to C ��
;L2#(Y )� whi
h 
an be shown to be enough for the two-s
ale 
on-vergen
e Theorem 1.3.4 to hold (see [1℄ for details). Thus, the two-s
ale limit of equation(1.48) isZ
 ZY A(y) (ru(x) +ryu1(x; y)) � (r'(x) +ry'1(x; y)) dxdy = Z
 f(x)'(x)dx: (1.49)In a third step, we read o� a variational formulation for (u; u1) in (1.49). Remarkthat (1.49) holds true for any (';'1) in the Hilbert spa
e H10 (
)� L2 �
;H1#(Y )=IR� bydensity of smooth fun
tions in this spa
e. Endowing it with the norm p(kru(x)k2L2(
) +kryu1(x; y)k2L2(
�Y )), the assumptions of the Lax-Milgram lemma are easily 
he
ked forthe variational formulation (1.49). The main point is the 
oer
ivity of the bilinear formde�ned by the left hand side of (1.49): the 
oer
ivity of A yieldsZ
 ZY A(y) (r'(x) +ry'1(x; y)) � (r'(x) +ry'1(x; y)) dxdy ��Z
 ZY jr'(x) +ry'1(x; y)j2dxdy = � Z
 jr'(x)j2dx+ �Z
 ZY jry'1(x; y)j2dxdy:By appli
ation of the Lax-Milgram lemma, we 
on
lude that there exists a unique solution(u; u1) of the variational formulation (1.49) in H10 (
)�L2 �
;H1#(Y )=IR�. Consequently,the entire sequen
es u� and ru� 
onverge to u(x) and ru(x) +ryu1(x; y). An easy inte-gration by parts shows that (1.49) is a variational formulation asso
iated to the followingsystem of equations, the so-
alled \two-s
ale homogenized problem",8>>>><>>>>: �divy (A(y) (ru(x) +ryu1(x; y))) = 0 in 
� Y�divx �RY A(y) (ru(x) +ryu1(x; y)) dy� = f(x) in 
y ! u1(x; y) Y -periodi
u = 0 on �
: (1.50)At this point, the homogenization pro
ess 
ould be 
onsidered as a
hieved sin
e the entiresequen
e of solutions u� 
onverges to the solution of a well-posed limit problem, namely thetwo-s
ale homogenized problem (1.50). However, it is usually preferable, from a physi
al18



or numeri
al point of view, to eliminate the mi
ros
opi
 variable y (one does not wantto solve the small s
ale stru
ture). In other words, we want to extra
t and de
ouple theusual homogenized and lo
al (or 
ell) equations from the two-s
ale homogenized problem.Thus, in a fourth (and optional) step, the y variable and the u1 unknown areeliminated from (1.50). It is an easy exer
ise of algebra to prove that u1 
an be 
omputedin terms of the gradient of u through the relationshipu1(x; y) = NXi=1 �u�xi (x)wi(y); (1.51)where wi(y) are de�ned as the solutions of the 
ell problems (1.9). Then, plugging for-mula (1.51) in (1.50) yields the usual homogenized problem (1.12) with the homogenizeddi�usion tensor de�ned by (1.13).Due to the simple form of our model problem the two equations of (1.50) 
an be de-
oupled in a mi
ros
opi
 and a ma
ros
opi
 equation, (1.9) and (1.12) respe
tively, but weemphasize that it is not always possible, and sometimes it leads to very 
ompli
ate formsof the homogenized equation, in
luding integro-di�erential operators. Thus, the homog-enized equation does not always belong to a 
lass for whi
h an existen
e and uniquenesstheory is easily available, on the 
ontrary of the two-s
ale homogenized system, whi
h is inmost 
ases of the same type as the original problem, but with a double number of variables(x and y) and unknowns (u and u1). The supplementary mi
ros
opi
 variable and un-known play the role of \hidden" variables in the vo
abulary of me
hani
s. Although theirpresen
e doubles the size of the limit problem, it greatly simpli�es its stru
ture (whi
h
ould be useful for numeri
al purposes too), while eliminating them introdu
es \strange"e�e
ts (like memory or non-lo
al e�e
ts) in the usual homogenized problem.Remark 1.3.7 It is often very useful to obtain so-
alled \
orre
tor" results whi
h permitto obtain strong (or pointwise) 
onvergen
es instead of just weak ones by adding some extrainformation stemming from the lo
al equations. Typi
ally, in the above example we simplyproved that the sequen
e u� 
onverges weakly to the homogenized solution u in H10 (
).Introdu
ing the lo
al solution u1, this weak 
onvergen
e 
an be improved as follows�u�(x)� u(x)� �u1 �x; x� ��! 0 in H10 (
) strongly: (1.52)This type of result is easily obtained with the two-s
ale 
onvergen
e method. This rigorouslyjusti�es the two �rst term in the usual asymptoti
 expansion of the sequen
e u�. Indeedwe 
an developZ
A�x� ��ru�(x)�ru(x)�ryu1 �x; x��� � �ru�(x)�ru(x)�ryu1 �x; x� �� dx:After some algebra and passing to the two-s
ale limit, we dedu
e that (ru�(x)�ru(x)�ryu1 �x; x� �) goes to zero in L2(
)N . 19



Chapter 2General theory of homogenization
2.1 Introdu
tion.The �rst 
hapter was devoted to a brief presentation of homogenization in a periodi
 set-ting. This se
ond 
hapter fo
us on the general setting of homogenization when no geomet-ri
 assumptions are available (like periodi
ity, or ergodi
ity in a probabilisti
 framework).It turns out that homogenization 
an be applied to any kind of disordered media, and isde�nitely not restri
ted to the periodi
 
ase (although the ni
e "expli
it" formulae of theperiodi
 setting for the homogenized 
ondu
tivity tensor have no analogue). We introdu
ethe notion of G- or H-
onvergen
e whi
h is due to DeGiorgi and Spagnolo [11℄, [20℄, [21℄,and has been further generalized by Murat and Tartar [15℄, [22℄ (see also the textbooks[17℄, [23℄). It allows to 
onsider any possible geometri
al situation without any spe
i�
assumptions like periodi
ity or randomness. The G- or H-
onvergen
e turns out to bethe adequate notion of 
onvergen
e for e�e
tive properties that will be the key tool in thestudy of optimal shape design problems.Finally, let us mention that there is also a sto
hasti
 theory of homogenization (see[13℄, [8℄, [18℄) and a variational theory of homogenization (the �-
onvergen
e of De Giorgi,[9℄, [10℄, see also the book [7℄) that will not be des
ribed below.2.2 De�nition of G-, or H-
onvergen
e.The G-
onvergen
e is a notion of 
onvergen
e asso
iated to sequen
es of symmetri
 opera-tors (typi
ally, these operators are appli
ations giving the solution of a partial di�erentialequation in terms of the right hand side). The G means Green sin
e this type of 
on-vergen
e 
orresponds roughly to the 
onvergen
e of the asso
iated Green fun
tions. TheH-
onvergen
e is a generalization of the G-
onvergen
e to the 
ase of non-symmetri
 oper-ators (it provides also an easier mathemati
al framework, but we shall not dwell on that).20



The H stands for Homogenization sin
e it is an important tool of that theory. For thesake of simpli
ity, we restri
t ourselves to the 
ase of symmetri
 operators (i.e. di�usionequations with symmetri
 
oeÆ
ients). In su
h a 
ase, G- and H-
onvergen
e 
oin
ide.Therefore in the sequel, we use only the notation G-
onvergen
e.The main result of the G-
onvergen
e is a 
ompa
tness theorem in the homoge-nization theory whi
h states that, for any bounded and uniformly 
oer
ive sequen
e of
oeÆ
ients of a symmetri
 se
ond order ellipti
 equation, there exist a subsequen
e and aG-limit (i.e. homogenized 
oeÆ
ients) su
h that, for any sour
e term, the 
orrespondingsubsequen
e of solutions 
onverges to the solution of the homogenized equation. In pra
-ti
al terms, it means that the me
hani
al properties of an heterogeneous medium (like its
ondu
tivity, or elasti
 moduli) 
an be well approximated by the properties of a homoge-neous or homogenized medium if the size of the heterogeneities are small 
ompared to theoverall size of the medium.The G-
onvergen
e 
an be seen as a mathemati
ally rigorous version of the so-
alledrepresentative volume element method for 
omputing e�e
tive or averaged parameters ofheterogeneous media.We introdu
e the notion of G-
onvergen
e for the spe
i�
 
ase of a di�usion equationwith a Diri
hlet boundary 
ondition, but all the results hold for a larger 
lass of se
ondorder ellipti
 operators and boundary 
onditions. Let 
 be a bounded open set in IRN , andlet �; � be two positive 
onstants su
h that 0 < � � �. We introdu
e the set M(�; �;
)of all possible symmetri
 matri
es de�ned on 
 with uniform 
oer
ivity 
onstant � andL1(
)-bound �. In other words, A 2M(�; �;
) if A(x) satis�es�j�j2 � NXi;j=1Aij(x)�i�j � �j�j2:We 
onsider a sequen
e A�(x) of 
ondu
tivity tensors in M(�; �;
), indexed by asequen
e of positive numbers � going to 0. Here, � is not asso
iated to any spe
i�
 length-s
ale or statisti
al property of the elasti
 medium. In other words, no spe
ial assumptions(like periodi
ity or stationarity) are pla
ed on the sequen
e A�.For a given sour
e term f(x) 2 L2(
), there exists a unique solution u� in theSobolev spa
e H10 (
) of the following di�usion equation( �div (A�(x)ru�) = f(x) in 
u� = 0 on �
: (2.1)The G-
onvergen
e of the sequen
e A� is de�ned below as the 
onvergen
e of the 
orre-sponding solutions u�. 21



De�nition 2.2.1 The sequen
e of tensors A�(x) is said to G-
onverge to a limit A�(x),as � goes to 0, if, for any f 2 L2(
) in (2.1), the sequen
e of solutions u� 
onverges weaklyin H10 (
) to a limit u whi
h is the unique solution of the homogenized equation asso
iatedto A�: ( �div (A�(x)ru) = f(x) in 
u = 0 on �
: (2.2)Remark that, by de�nition, the homogenized tensor A� is independent of the sour
eterm f . We shall see that it is also independent of the boundary 
ondition and of thedomain.This de�nition makes sense be
ause of the 
ompa
tness of the set M(�; �;
) withrespe
t to the G-
onvergen
e, as stated in the following theorem.Theorem 2.2.2 For any sequen
e A� in M(�; �;
), there exist a subsequen
e (still de-noted by �) and a homogenized limit A�, belonging toM(�; �;
), su
h that A� G-
onvergesto A�.The G-
onvergen
e of a general sequen
e A� is always stated up to a subsequen
esin
e A� 
an be the union of two sequen
es 
onverging to two di�erent limits. The G-
onvergen
e of A� is not equivalent to any other "
lassi
al" 
onvergen
e. For example,if A� 
onverges strongly in L1(
) to a limit A (i.e. the 
onvergen
e is pointwise), thenits G-limit A� 
oin
ides with A. But the 
onverse is not true ! On the same token,the G-
onvergen
e has nothing to do with the usual weak 
onvergen
e. Indeed, the G-limit A� of a sequen
e A� is usually di�erent of its weak-* L1(
)-limit. For example,a straightforward 
omputation in one spa
e dimension (N = 1) shows that the G-limitof a sequen
e A� is given as the inverse of the weak-* L1(
)-limit of A�1� (the so-
alledharmoni
 limit). However, this last result holds true only in 1-D, and no su
h expli
itformula is available in higher dimensions.The G-
onvergen
e enjoys a few useful properties as enumerated in the followingproposition.Proposition 2.2.3 Properties of G-
onvergen
e.1. If a sequen
e A� G-
onverges, its G-limit is unique.2. Let A� and B� be two sequen
es whi
h G-
onverge to A� and B� respe
tively. Let ! � 
be a subset stri
tly in
luded in 
 su
h that A� = B� in !. Then A� = B� in ! (thisproperty is 
alled the lo
ality of G-
onvergen
e).3. The G-limit of a sequen
e A� is independent of the sour
e term f and of the boundary
ondition on �
. 22



4. Let A� be a sequen
e whi
h G-
onverges to A�. Then, the asso
iated density of energyA�ru� �ru� also 
onverges to the homogenized density of energy A�ru �ru in the senseof distributions in 
.5. If a sequen
e A� G-
onverges to a limit A�, then the sequen
e of 
uxes A�ru� 
onvergesweakly in L2(
)N to the homogenized 
ux A�ru.These properties of the G-
onvergen
e implies that the homogenized medium A�approximates the heterogeneous medium A� in many di�erent ways. First of all, by def-inition of G-
onvergen
e, the �elds u, u� and their gradients are 
losed (this is the senseof the 
onvergen
e of u� to u in the Sobolev spa
e H10 (
)). Then, by appli
ation of theabove proposition, the 
uxes and the energy densities are also 
losed.Remark also that, by lo
ality of the G-
onvergen
e, the homogenized tensor is de-�ned at ea
h point of the domain 
 independently of what may happen in other regionsof 
. Of 
ourse, a parti
ular example of G-
onvergent sequen
es A� is given by periodi
media of the type A �x� � as in the previous se
tion.
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