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Introduction

I µ distribution on Z+ such that
∑∞

k=0 kµ(k) ≤ 1, µ(1) < 1 .

I τ branching (rooted) tree with offspring distribution µ.

I O(τ) total progeny of τ .

I u0, . . . , uO(τ)−1 vertices of τ ranked in the breadth first search
order.

I ku(τ) number of children of u ∈ τ .



Introduction
The genealogy of any tree τ is encoded through :

X0 = 0 , Xn+1(τ)−Xn(τ) = kun(τ)− 1, 0 ≤ n ≤ O(τ)− 1 .

(Xn)n≥0 downward skip free random walk with step distribution :
P(X1 = i) = µ(i+ 1).
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Introduction

The law of the total progeny O(τ) follows from the identity :

O(τ) = inf{n : Xn = −1}

and the Ballot theorem :

P (T1 = n) =
1
n
P (Xn = −1) ,

T1 = inf{n : Xn = −1}.

Theorem (Dwass, 1969)

The law of the total progeny of τ is

P1(O(τ) = n) =
1
n
µ∗n(n− 1) .
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More generally, for any downward skipfree random walk (Xn),

P (Tk = n) =
k

n
P (Xn = −k) ,

where Tk = inf{n : Xn = −k}.

I The law of the total progeny of the forest F = {τ1, . . . , τk} is,

Pk(O(F) = n) =
k

n
µ∗n(n− k) .
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Progeny of 2-type branching processes

µ1 and µ2 probabilities on Z+ × Z+.

Zn := (Z(1)
n , Z

(2)
n ), n ≥ 0, 2-type branching process with progeny

law (µ1, µ2), such that Z0 = (1, 0). Assume that

T := inf{n : Zn = 0} <∞ , a.s.

What is the joint law of

O1 =
T∑
n=0

Z(1)
n = total number of individuals of type 1 at time T

O2 =
T∑
n=0

Z(2)
n = total number of individuals of type 2 at time T ?



Progeny of 2-type branching processes

Define the mean matrix :

mij =
∑
z∈Z2

+

zjµi(z) , i, j ∈ {1, 2} .

I m12 > 0, 1 ≥ m11 > 0 and m22 = m21 = 0, (Bertoin, 2010) :

P(1,0)(O1 = n1, O2 = n2) =
1
n1
µ∗n1

1 (n1−1, n2), n1 ≥ 1, n2 ≥ 0 .

I m12 > 0, 1 ≥ m11,m22 > 0 but m21 = 0,

P(1,0)(O1 = n1, O2 = n2) =
1

n1n2

n2∑
j=0

jµ∗n1
1 (n1−1, j)µ∗n2

2 (0, n2−j).



Progeny of 2-type branching processes

In all the remaining cases the matrix (mij)i,j∈{1,2} (or the process
Z) is irreducible, i.e.

m12 > 0 and m21 > 0 .

Let ρ be the dominant eigenvalue (Perron-Frobenius).

Then,

ρ ≤ 1⇐⇒ T := inf{n : Zn = 0} <∞ , a.s. .

The process is said to be critical (ρ = 1) or subcritical (ρ < 1).



Progeny of 2-type branching processes

O1 : total number of individuals of type 1.

O2 : total number of individuals of type 2.

N1 : total number of individuals of type 1 whose parent is of type 2.

N2 : total number of individuals of type 2 whose parent is of type 1.

Theorem
Assume that Z is irreducible and critical or subcritical and
Z0 = (1, 0). Then for all n1 ≥ 1 n2 ≥ 0, 1 ≤ k1 ≤ n1 and
0 ≤ k2 ≤ n2,

P(1,0)(O1 = n1, O2 = n2, N1 = k1 − 1, N2 = k2) =
k2

n1n2
µ∗n1

1 (n1 − k1, k2)µ∗n2
2 (k1, n2 − k2) .
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Encoding 2-type forests

Define a 2-type forest,

F = {t1, t2, . . .} ,

as an infinite sequence of independent 2-type rooted trees, with
progeny law (µ1, µ2).

I Each vertex u ∈ ti is either of type 1 or type 2.

I The root of each tree is of type 1.

I Vertices of F are ranked in the breadth first search order.



t1 t2 t3

Type 1 =

Type 2 =



Encoding 2-type forests

Ordering vertices of type 1 :

I Subtrees of type 1 are ranked according to the breadth first
search order of their roots in the forest :

t(1)
1 , t(1)

2 , . . . , t(1)
n , ...

I Then vertices u(1)
i , . . . , u

(1)
j of t(1)

n are ranked according to the

’local’ breadth first search order of t(1)
n :

u
(1)
0 , . . . , u

(1)
i1−1︸ ︷︷ ︸ ,

t(1)
1

u
(1)
i1
, . . . , u

(1)
i1+i2−1︸ ︷︷ ︸ ,......

t(1)
2
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Encoding 2-type forests

Let ki(u) be the number of children of type i of the vertex u.

Then define the integer valued chains X = (X(1), X(2)) and
Y = (Y (1), Y (2)) by :

X
(1)
n+1 −X

(1)
n = k1(u

(1)
n )− 1 Y

(1)
n+1 − Y

(1)
n = k1(u

(2)
n )

X
(2)
n+1 −X

(2)
n = k2(u

(1)
n ) Y

(2)
n+1 − Y

(2)
n = k2(u

(2)
n )− 1 .

Proposition

The chains X and Y are independent random walks in Z× Z+ and
Z+ × Z, respectively, with step distributions :

P (X1 = (i, j)) = µ1(i+ 1, j) , P (Y1 = (i, j)) = µ2(i, j + 1) .



Encoding 2-type forests

Define

Tk = inf{n : X(1)
n = −k} Sk = inf{n : Y (2)

n = −k} .

Then,
I X(2)(Tk) is the number of subtrees of type 2 encountered

when k subtrees of type 1 have been visited,
I Y (1)(Sk) is the number of subtrees of type 1 encountered

when k subtrees of type 2 have been visited.

Therefore, if ki, i = 1, 2 is the total number of subtrees of type i in
the first tree t1 of the 2-type forest F , then{

k2 = X(2)(Tk1)
k1 = 1 + Y (1)(Sk2) .
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Encoding 2-type forests

Let (k1, k2) be the smallest solution of

(S)
{
k2 = X(2)(Tk1)
k1 = 1 + Y (1)(Sk2) .

Proposition

I ki, i = 1, 2 is the total number of subtrees of type i in t1.
I Tk1 is the total number of individuals of type 1 in t1.
I Sk2 is the total number of individuals of type 2 in t1.
I t1 is encoded by the two 2-dimensional chains :

[(X(1)
n , X(2)

n ), 0 ≤ n ≤ Tk1 ]
[(Y (1)

n , Y (2)
n ), 0 ≤ n ≤ Sk2 ] .



The progeny law

Recall that :

I O1 : total number of individuals of type 1.

I O2 : total number of individuals of type 2.

I N1 : total number of individuals of type 1 whose parent is of type 2.

I N2 : total number of individuals of type 2 whose parent is of type 1.

(S)
{
k2 = X(2)(Tk1)
k1 = 1 + Y (1)(Sk2) .

Then,

P(1,0)(O1 = n1, O2 = n2, N1 = k1 − 1, N2 = k2) =
P (Tk1 = n1, Sk2 = n2 and (k1, k2) is the smallest solution of (S).)



The progeny law

Let (Uk , 0 ≤ k ≤ k1) and (Vk , 0 ≤ k ≤ k2) be independent,
integer valued, nondecreasing, with U0 = V0 = 0 and with cyclically
exchangeable increments.

(SU,V )
{
k1 = r1 + Vk2
k2 = r2 + Uk1

Theorem (Bivariate ballot Theorem)

Assume that (SU,V ) admits a solution a.s., then

P ( (k1, k2) is the smallest solution of (S).) =
k1r2 + k2r1 − r1r2

k1k2
P (Uk1 = k2 − r2, Vk2 = k1 − r1) .



The progeny law

Apply the biveriate ballot Theorem to r1 = 1, r2 = 0, and to
Uk = X(2)(Tk) and Vk = Y (1)(Sk),

P(1,0)(O1 = n1, O2 = n2, N1 = k1 − 1, N2 = k2)

P (Tk1 = n1, Sk2 = n2 and (k1, k2) is the smallest solution of (S).)

= 1
k1
P (Tk1 = n1, Sk2 = n2, Y

(1)(Sk2) = k1 − 1, X(2)(Tk1) = k2)

= 1
k1
P (Tk1 = n1, Sk2 = n2, Y

(1)(n2) = k1 − 1, X(2)(n1) = k2)

= 1
k1
P (Tk1 = n1, X

(2)
n1 = k2)P(Sk2 = n2, Y

(1)
n2 = k1 − 1)

= k2
n1n2

µ∗n1
1 (n1 − k1, k2)µ∗n2

2 (k1, n2 − k2) .
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The progeny law

More generally, when Z0 = (r1, r2) :

Theorem
Assume that Z is irreducible and critical or subcritical and
Z0 = (r1, r2). Then for all n1 ≥ r1 n2 ≥ r2, r1 ≤ k1 ≤ n1 and
r2 ≤ k2 ≤ n2,

P(r1,r2)(O1 = n1, O2 = n2, N1 = k1 − r1, N2 = k2 − r2) =
r1k2 + r2k1 − r1r2

n1n2
µ∗n1

1 (n1 − k1, k2)µ∗n2
2 (k1, n2 − k2) .



The progeny law

Three types :

I Aij = number of individuals of type j whose parent is of type i.

Theorem
Assume that Z is irreducible and critical or subcritical and
Z0 = (r1, r2, r3). Then for all nj ≥ 1 and 0 ≤ kij ≤ nj , j = 1, 2, 3,

P(O1 = n1, O2 = n2, O3 = n3, Aij = kij , i = 1, 2, 3, i 6= j) =
(n1n2n3)−1{r1[(r3 + k12)k23 + (k23 + r2 + k12)(r3 + k13)]+
k21[r3k32 + (k23 + r3 + k13)r2] + k31[r2k23 + (k32 + r2 + k12)r3]}
×µ∗n1

1 (n1 − k21 − k31 − r1, k12, k13)
×µ∗n2

2 (k21, n2 − k12 − k32 − r2, k23)
×µ∗n3

3 (k31, k32, n3 − k13 − k23 − r3) .


