Coding multitype branching forests: application to the law of the total progeny.

Loïc Chaumont
Université d'Angers

Joint work with Rongli Liu, University of Nanjing

Introduction

- μ distribution on \mathbb{Z}_{+}such that $\sum_{k=0}^{\infty} k \mu(k) \leq 1, \mu(1)<1$.
- τ branching (rooted) tree with offspring distribution μ.
- $O(\tau)$ total progeny of τ.
- $u_{0}, \ldots, u_{O(\tau)-1}$ vertices of τ ranked in the breadth first search order.
- $k_{u}(\tau)$ number of children of $u \in \tau$.

Introduction

The genealogy of any tree τ is encoded through :

$$
X_{0}=0, \quad X_{n+1}(\tau)-X_{n}(\tau)=k_{u_{n}}(\tau)-1, \quad 0 \leq n \leq O(\tau)-1
$$

$\left(X_{n}\right)_{n \geq 0}$ downward skip free random walk with step distribution : $\mathbb{P}\left(X_{1}=i\right)=\mu(i+1)$.

Rooted tree τ

Introduction

The law of the total progeny $O(\tau)$ follows from the identity :

$$
O(\tau)=\inf \left\{n: X_{n}=-1\right\}
$$

and the Ballot theorem :

$$
P\left(T_{1}=n\right)=\frac{1}{n} P\left(X_{n}=-1\right),
$$

$$
T_{1}=\inf \left\{n: X_{n}=-1\right\}
$$

Theorem (Dwass, 1969)
The lan of the total progeny of τ is

Introduction

The law of the total progeny $O(\tau)$ follows from the identity :

$$
O(\tau)=\inf \left\{n: X_{n}=-1\right\}
$$

and the Ballot theorem :

$$
P\left(T_{1}=n\right)=\frac{1}{n} P\left(X_{n}=-1\right),
$$

$$
T_{1}=\inf \left\{n: X_{n}=-1\right\}
$$

Theorem (Dwass, 1969)
The law of the total progeny of τ is

$$
\mathbb{P}_{1}(O(\tau)=n)=\frac{1}{n} \mu^{* n}(n-1)
$$

Introduction

τ_{1}

τ_{2}

τ_{3}

$$
\tau_{n}
$$

More generally, for any downward skipfree random walk $\left(X_{n}\right)$,

$$
P\left(T_{k}=n\right)=\frac{k}{n} P\left(X_{n}=-k\right),
$$

where $T_{k}=\inf \left\{n: X_{n}=-k\right\}$.

Introduction

τ_{1}

τ_{2}

τ_{3}

$$
\tau_{n}
$$

More generally, for any downward skipfree random walk $\left(X_{n}\right)$,

$$
P\left(T_{k}=n\right)=\frac{k}{n} P\left(X_{n}=-k\right),
$$

where $T_{k}=\inf \left\{n: X_{n}=-k\right\}$.

- The law of the total progeny of the forest $\mathcal{F}=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ is,

$$
\mathbb{P}_{k}(O(\mathcal{F})=n)=\frac{k}{n} \mu^{* n}(n-k)
$$

Progeny of 2-type branching processes

μ_{1} and μ_{2} probabilities on $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$.
$\mathbf{Z}_{n}:=\left(Z_{n}^{(1)}, Z_{n}^{(2)}\right), n \geq 0$, 2-type branching process with progeny law $\left(\mu_{1}, \mu_{2}\right)$, such that $\mathbf{Z}_{0}=(1,0)$. Assume that

$$
T:=\inf \left\{n: \mathbf{Z}_{n}=0\right\}<\infty, \quad \text { a.s. }
$$

What is the joint law of
$O_{1}=\sum_{n=0}^{T} Z_{n}^{(1)}=$ total number of individuals of type 1 at time T
$O_{2}=\sum_{n=0}^{T} Z_{n}^{(2)}=$ total number of individuals of type 2 at time T ?

Progeny of 2-type branching processes

Define the mean matrix :

$$
m_{i j}=\sum_{\mathbf{z} \in \mathbb{Z}_{+}^{2}} z_{j} \mu_{i}(\mathbf{z}), \quad i, j \in\{1,2\}
$$

- $m_{12}>0,1 \geq m_{11}>0$ and $m_{22}=m_{21}=0$, (Bertoin, 2010) :

$$
\mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}\right)=\frac{1}{n_{1}} \mu_{1}^{* n_{1}}\left(n_{1}-1, n_{2}\right), \quad n_{1} \geq 1, n_{2} \geq 0
$$

- $m_{12}>0,1 \geq m_{11}, m_{22}>0$ but $m_{21}=0$,

$$
\mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}\right)=\frac{1}{n_{1} n_{2}} \sum_{j=0}^{n_{2}} j \mu_{1}^{* n_{1}}\left(n_{1}-1, j\right) \mu_{2}^{* n_{2}}\left(0, n_{2}-j\right)
$$

Progeny of 2-type branching processes

In all the remaining cases the matrix $\left(m_{i j}\right)_{i, j \in\{1,2\}}$ (or the process \mathbf{Z}) is irreducible, i.e.

$$
m_{12}>0 \text { and } m_{21}>0
$$

Let ρ be the dominant eigenvalue (Perron-Frobenius).

Then,

$$
\rho \leq 1 \Longleftrightarrow T:=\inf \left\{n: \mathbf{Z}_{n}=0\right\}<\infty, \quad \text { a.s. }
$$

The process is said to be critical ($\rho=1$) or subcritical ($\rho<1$).

Progeny of 2-type branching processes

O_{1} : total number of individuals of type 1 .
O_{2} : total number of individuals of type 2 .
N_{1} : total number of individuals of type 1 whose parent is of type 2.
N_{2} : total number of individuals of type 2 whose parent is of type 1.
Theorem
Assume that Z is irreducible and critical or subcritical and $\mathbf{Z}_{0}=(1,0)$. Then for all $n_{1} \geq 1 n_{2} \geq 0,1 \leq k_{1} \leq n_{1}$ and $0 \leq k_{2} \leq n_{2}$,

Progeny of 2-type branching processes

O_{1} : total number of individuals of type 1.
O_{2} : total number of individuals of type 2 .
N_{1} : total number of individuals of type 1 whose parent is of type 2.
N_{2} : total number of individuals of type 2 whose parent is of type 1.

Theorem

Assume that \mathbf{Z} is irreducible and critical or subcritical and $\mathbf{Z}_{0}=(1,0)$. Then for all $n_{1} \geq 1 n_{2} \geq 0,1 \leq k_{1} \leq n_{1}$ and $0 \leq k_{2} \leq n_{2}$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right)= \\
& \frac{k_{2}}{n_{1} n_{2}} \mu_{1}^{* n_{1}}\left(n_{1}-k_{1}, k_{2}\right) \mu_{2}^{* n_{2}}\left(k_{1}, n_{2}-k_{2}\right)
\end{aligned}
$$

Encoding 2-type forests

Define a 2-type forest,

$$
\mathcal{F}=\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots\right\},
$$

as an infinite sequence of independent 2-type rooted trees, with progeny law $\left(\mu_{1}, \mu_{2}\right)$.

- Each vertex $u \in \mathbf{t}_{i}$ is either of type 1 or type 2.
- The root of each tree is of type 1 .
- Vertices of \mathcal{F} are ranked in the breadth first search order.

\mathbf{t}_{1}
\mathbf{t}_{2}
\mathbf{t}_{3}

Type $1=\bullet$

Type $2=0$

Encoding 2-type forests

Ordering vertices of type 1:

- Subtrees of type 1 are ranked according to the breadth first search order of their roots in the forest :

$$
\mathbf{t}_{1}^{(1)}, \mathbf{t}_{2}^{(1)}, \ldots, \mathbf{t}_{n}^{(1)}, \ldots
$$

- Then vertices $u_{i}^{(1)}, \ldots, u_{j}^{(1)}$ of $\mathbf{t}_{n}^{(1)}$ are ranked according to the 'local' breadth first search order of $\mathbf{t}_{n}^{(1)}$:

\mathbf{t}_{1}

\mathbf{t}_{2}

\mathbf{t}_{1}

Encoding 2-type forests

Let $k_{i}(u)$ be the number of children of type i of the vertex u.
Then define the integer valued chains $X=\left(X^{(1)}, X^{(2)}\right)$ and $Y=\left(Y^{(1)}, Y^{(2)}\right)$ by :

$$
\begin{array}{ll}
X_{n+1}^{(1)}-X_{n}^{(1)}=k_{1}\left(u_{n}^{(1)}\right)-1 & Y_{n+1}^{(1)}-Y_{n}^{(1)}=k_{1}\left(u_{n}^{(2)}\right) \\
X_{n+1}^{(2)}-X_{n}^{(2)}=k_{2}\left(u_{n}^{(1)}\right) & Y_{n+1}^{(2)}-Y_{n}^{(2)}=k_{2}\left(u_{n}^{(2)}\right)-1 .
\end{array}
$$

Proposition

The chains X and Y are independent random walks in $\mathbb{Z} \times \mathbb{Z}_{+}$and $\mathbb{Z}_{+} \times \mathbb{Z}$, respectively, with step distributions :

$$
P\left(X_{1}=(i, j)\right)=\mu_{1}(i+1, j), \quad P\left(Y_{1}=(i, j)\right)=\mu_{2}(i, j+1) .
$$

Encoding 2-type forests

Define

$$
T_{k}=\inf \left\{n: X_{n}^{(1)}=-k\right\} \quad S_{k}=\inf \left\{n: Y_{n}^{(2)}=-k\right\}
$$

Then,

- $X^{(2)}\left(T_{k}\right)$ is the number of subtrees of type 2 encountered when k subtrees of type 1 have been visited,
- $Y^{(1)}\left(S_{k}\right)$ is the number of subtrees of type 1 encountered when k subtrees of type 2 have been visited.

Therefore, if $k_{i}, i=1,2$ is the total number of subtrees of type i in the first tree \mathbf{t}_{1} of the 2 -type forest \mathcal{F}, then

Encoding 2-type forests

Define

$$
T_{k}=\inf \left\{n: X_{n}^{(1)}=-k\right\} \quad S_{k}=\inf \left\{n: Y_{n}^{(2)}=-k\right\}
$$

Then,

- $X^{(2)}\left(T_{k}\right)$ is the number of subtrees of type 2 encountered when k subtrees of type 1 have been visited,
- $Y^{(1)}\left(S_{k}\right)$ is the number of subtrees of type 1 encountered when k subtrees of type 2 have been visited.

Therefore, if $k_{i}, i=1,2$ is the total number of subtrees of type i in the first tree \mathbf{t}_{1} of the 2-type forest \mathcal{F}, then

$$
\left\{\begin{array}{l}
k_{2}=X^{(2)}\left(T_{k_{1}}\right) \\
k_{1}=1+Y^{(1)}\left(S_{k_{2}}\right)
\end{array}\right.
$$

Encoding 2-type forests

Let $\left(k_{1}, k_{2}\right)$ be the smallest solution of

$$
(S)\left\{\begin{array}{l}
k_{2}=X^{(2)}\left(T_{k_{1}}\right) \\
k_{1}=1+Y^{(1)}\left(S_{k_{2}}\right)
\end{array}\right.
$$

Proposition

- $k_{i}, i=1,2$ is the total number of subtrees of type i in \mathbf{t}_{1}.
- $T_{k_{1}}$ is the total number of individuals of type 1 in \mathbf{t}_{1}.
- $S_{k_{2}}$ is the total number of individuals of type 2 in \mathbf{t}_{1}.
- \mathbf{t}_{1} is encoded by the two 2-dimensional chains :

$$
\begin{aligned}
& {\left[\left(X_{n}^{(1)}, X_{n}^{(2)}\right), 0 \leq n \leq T_{k_{1}}\right]} \\
& {\left[\left(Y_{n}^{(1)}, Y_{n}^{(2)}\right), 0 \leq n \leq S_{k_{2}}\right]}
\end{aligned}
$$

The progeny law

Recall that:

- O_{1} : total number of individuals of type 1 .
- O_{2} : total number of individuals of type 2 .
- N_{1} : total number of individuals of type 1 whose parent is of type 2 .
- N_{2} : total number of individuals of type 2 whose parent is of type 1 .

$$
(S)\left\{\begin{array}{l}
k_{2}=X^{(2)}\left(T_{k_{1}}\right) \\
k_{1}=1+Y^{(1)}\left(S_{k_{2}}\right)
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right)= \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S) .\right)
\end{aligned}
$$

The progeny law

Let ($U_{k}, 0 \leq k \leq k_{1}$) and ($V_{k}, 0 \leq k \leq k_{2}$) be independent, integer valued, nondecreasing, with $U_{0}=V_{0}=0$ and with cyclically exchangeable increments.

$$
\left(S_{U, V}\right)\left\{\begin{array}{l}
k_{1}=r_{1}+V_{k_{2}} \\
k_{2}=r_{2}+U_{k_{1}}
\end{array}\right.
$$

Theorem (Bivariate ballot Theorem)

Assume that ($S_{U, V}$) admits a solution a.s., then
$P\left(\left(k_{1}, k_{2}\right)\right.$ is the smallest solution of $\left.(S).\right)=$

$$
\frac{k_{1} r_{2}+k_{2} r_{1}-r_{1} r_{2}}{k_{1} k_{2}} P\left(U_{k_{1}}=k_{2}-r_{2}, V_{k_{2}}=k_{1}-r_{1}\right)
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S) .\right)
\end{aligned}
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S) .\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(S_{k_{2}}\right)=k_{1}-1, X^{(2)}\left(T_{k_{1}}\right)=k_{2}\right)
\end{aligned}
$$

$$
=\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(n_{2}\right)=k_{1}-1, X^{(2)}\left(n_{1}\right)=k_{2}\right)
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S)\right. \text {.) } \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(S_{k_{2}}\right)=k_{1}-1, X^{(2)}\left(T_{k_{1}}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(n_{2}\right)=k_{1}-1, X^{(2)}\left(n_{1}\right)=k_{2}\right)
\end{aligned}
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S) .\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(S_{k_{2}}\right)=k_{1}-1, X^{(2)}\left(T_{k_{1}}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(n_{2}\right)=k_{1}-1, X^{(2)}\left(n_{1}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, X_{n_{1}}^{(2)}=k_{2}\right) \mathbb{P}\left(S_{k_{2}}=n_{2}, Y_{n_{2}}^{(1)}=k_{1}-1\right)
\end{aligned}
$$

$$
=\frac{k_{2}}{n_{1} n_{2}} \mu_{1}^{* n_{1}}\left(n_{1}-k_{1}, k_{2}\right) \mu_{2}^{* n_{2}}\left(k_{1}, n_{2}-k_{2}\right) .
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S)\right. \text {.) } \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(S_{k_{2}}\right)=k_{1}-1, X^{(2)}\left(T_{k_{1}}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(n_{2}\right)=k_{1}-1, X^{(2)}\left(n_{1}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, X_{n_{1}}^{(2)}=k_{2}\right) \mathbb{P}\left(S_{k_{2}}=n_{2}, Y_{n_{2}}^{(1)}=k_{1}-1\right) \\
& =\frac{k_{2}}{n_{1} n_{2}} \mu_{1}^{* n_{1}}\left(n_{1}-k_{1}, k_{2}\right) \mu_{2}^{* n_{2}}\left(k_{1}, n_{2}-k_{2}\right) .
\end{aligned}
$$

The progeny law

Apply the biveriate ballot Theorem to $r_{1}=1, r_{2}=0$, and to $U_{k}=X^{(2)}\left(T_{k}\right)$ and $V_{k}=Y^{(1)}\left(S_{k}\right)$,

$$
\begin{aligned}
& \mathbb{P}_{(1,0)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-1, N_{2}=k_{2}\right) \\
& P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2} \text { and }\left(k_{1}, k_{2}\right) \text { is the smallest solution of }(S)\right. \text {.) } \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y^{(1)}\left(S_{k_{2}}\right)=k_{1}-1, X^{(2)}\left(T_{k_{1}}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, S_{k_{2}}=n_{2}, Y{ }^{(1)}\left(n_{2}\right)=k_{1}-1, X^{(2)}\left(n_{1}\right)=k_{2}\right) \\
& =\frac{1}{k_{1}} P\left(T_{k_{1}}=n_{1}, X_{n_{1}}^{(2)}=k_{2}\right) \mathbb{P}\left(S_{k_{2}}=n_{2}, Y_{n_{2}}^{(1)}=k_{1}-1\right) \\
& =\frac{k_{2}}{n_{1} n_{2}} \mu_{1}^{* n_{1}}\left(n_{1}-k_{1}, k_{2}\right) \mu_{2}^{* n_{2}}\left(k_{1}, n_{2}-k_{2}\right)
\end{aligned}
$$

The progeny law

More generally, when $\mathbf{Z}_{0}=\left(r_{1}, r_{2}\right)$:

Theorem

Assume that \mathbf{Z} is irreducible and critical or subcritical and $\mathbf{Z}_{0}=\left(r_{1}, r_{2}\right)$. Then for all $n_{1} \geq r_{1} n_{2} \geq r_{2}, r_{1} \leq k_{1} \leq n_{1}$ and $r_{2} \leq k_{2} \leq n_{2}$,

$$
\begin{aligned}
& \mathbb{P}_{\left(r_{1}, r_{2}\right)}\left(O_{1}=n_{1}, O_{2}=n_{2}, N_{1}=k_{1}-r_{1}, N_{2}=k_{2}-r_{2}\right)= \\
& \frac{r_{1} k_{2}+r_{2} k_{1}-r_{1} r_{2}}{n_{1} n_{2}} \mu_{1}^{* n_{1}}\left(n_{1}-k_{1}, k_{2}\right) \mu_{2}^{* n_{2}}\left(k_{1}, n_{2}-k_{2}\right) .
\end{aligned}
$$

The progeny law

Three types :

- $A_{i j}=$ number of individuals of type j whose parent is of type i.

Theorem

Assume that \mathbf{Z} is irreducible and critical or subcritical and $\mathbf{Z}_{0}=\left(r_{1}, r_{2}, r_{3}\right)$. Then for all $n_{j} \geq 1$ and $0 \leq k_{i j} \leq n_{j}, j=1,2,3$,

$$
\begin{aligned}
& \mathbb{P}\left(O_{1}=n_{1}, O_{2}=n_{2}, O_{3}=n_{3}, A_{i j}=k_{i j}, i=1,2,3, i \neq j\right)= \\
& \left(n_{1} n_{2} n_{3}\right)^{-1}\left\{r_{1}\left[\left(r_{3}+k_{12}\right) k_{23}+\left(k_{23}+r_{2}+k_{12}\right)\left(r_{3}+k_{13}\right)\right]+\right. \\
& \left.k_{21}\left[r_{3} k_{32}+\left(k_{23}+r_{3}+k_{13}\right) r_{2}\right]+k_{31}\left[r_{2} k_{23}+\left(k_{32}+r_{2}+k_{12}\right) r_{3}\right]\right\} \\
& \times \mu_{1}^{* n_{1}}\left(n_{1}-k_{21}-k_{31}-r_{1}, k_{12}, k_{13}\right) \\
& \times \mu_{2}^{* n_{2}}\left(k_{21}, n_{2}-k_{12}-k_{32}-r_{2}, k_{23}\right) \\
& \times \mu_{3}^{* n_{3}}\left(k_{31}, k_{32}, n_{3}-k_{13}-k_{23}-r_{3}\right)
\end{aligned}
$$

