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1 Preliminaries on diffusions on [0, 1]

1.1 Kolmogorov backward and forward
dr, L f (z,) dt + g (2) dwy, 29 = 2 € (0,1). (1)
G = (5) 00 + 56" (1) 0% and G* () = =0, (f (4) ) + 505 (6" () )
wi=u(x,t) = B (z4nr,) and p:=p (a5t y)

Opu = G (u); u(z,0) =4 (x) and gp = G" (p), p (;0,y) = b, (x) . (2)
£,

Inu, t A7, :=in z) Where 7, = T, 0 AT, <oooroo. g(0)=g(1)=0.



1.2 Natural coordinate, scale and speed measure

_o (v £ 4,
dy) = AT >0

o fy 1(=) 4
p(x) = / w7 dy.

¢ harmonic kills f of {z;} : G () = 0. Speed density: m (x) =1/ (g*¢’) (z) :
G*(m)=0.

Examples (population genetics). Reversibility of z; w.r. to m.
e f(z) =0 and ¢? (z) =z (1 — z). Neutral WF model .

o uj,us >0, f(x) =u; — (u1 + ug) z and ¢* (z) =z (1 — x).

e 0 € R, logistic drift f (z) = oz (1 —z) and ¢* (z) = z (1 — z).
o f(z)=0x(1—x)+u — (v +ux)z and ¢* (z) =z (1 — ).

1.3 Transition probability density
Boundaries abs. p, (x fo (xz;t,y) dy: p,(x) =P (1, > t).
Oy () = G (p, (), with py (2) = 10,1) (2)-

Normalize: ¢ (x;t,y) :=p(x;t,y) /p; (x)

g = —0p, (z) [py (x) - ¢+ G (q), q(x;0,y) =6, (x).



Creation of mass process: birth rate b, (z) := —0;p, (z) /p, (x) > 0 create
mass to compensate loss of mass of {z;} at boundaries. b, (z) depends on z
and ¢, not on y. 3 positive eigenvalues (Ag);s,

—G* (vg) = Mg and — G (yx) = Apug.

plaity) =Y e

k>1

(z) vx (y

uy (x )
spectral exp.
fol ug (z) vy (z) do ( )

—00

A1 > Ao = 0 smallest non-null eigenvalue: b, (z) B~ Al
]

YAGLOM limit of [{z;} conditioned on 7, >t

q (ar;t,y) — Goo (y) =l (y> ) <3>

t—o00

Example. Neutral WF, \y = 1 with vy = 1. Yaglom limit uniform.

1.4 Feller classification of boundaries

Boundaries 01 := {0,1} are of 2 types: accessible or inaccessible. Acces-
sible boundaries are either regular or exit (absorbing) boundaries, whereas
inaccessible boundaries are either entrance (reflecting) or natural boundaries.



1.5 Additive functionals along sample paths

Boundaries absorbing (exit). Process transient.

o () :E(/Omc(xs)ds—%d(x”)), (@)

¢ and d non-negative. a(x) > 0 on (0,1) (superharmonic) solves Dirichlet:
—G(a):cifxej and a =d if x € 0I.

Examples.
l.c=0and d(c) =1(c=1).

v (r) — ¢ (0)
v (1) —¢(0)

ap () : G(ag) =0, with BC a3 (0) =0 and oy (1) = 1.

a=01(x) =P (1,1 < Tyo) =

ag () =P (1,0 <7p1) =1—a;(z).

2. o = g(z,y) = E(limeo o [ Lycyse) (x5)ds) = [ p(z;s,y)ds
Green function,

-G (g) =0, (2) if v €] and g =0if z € 01.

g = expected local time at y, starting from z (sojourn time dens. at y).



g(z,y) =200 (x)m(y) (0 (y) —¢(0)) f0<y <=z

g(z,y) =21 (x)m(y) (p(1) —p(y) fz<y<1

Green kernel inverts —G

a(x):%g(x,y)c(y)dyifxe}) and o« =d if v € OI.
I

3o =B ([ Pe)ds i),
0
ay (z) > 0 solves Dynkin problem:

()J—G)(ou):cifxe; and oy = d if x € 01

involving the resolvent operator (Al — G) ™" on c.
If ¢(z) =6, (x), d=0, then,

ay=:gr(z,y) =E (/ e 4, (:cs)d8> =/ e p (55, y) ds
0 0
A—potential function, solution to:

(AL — Q) (gr) = 0y (2) if v €] and gy = 0 if z € 1.

g, temporal Laplace transform of the tpd p from x to y at t, go = g.



a,\(m):ﬁg,\(a:,y)c(y)dy if 2 €] and ay=difxedl.
I

LST of law of 7., [first-passage time to y starting from x|

E (e77) = gy (2,9) /or (4,9) - (6)

1.6 Transformation of sample paths (Doob transform)

aly)
a (x)p

Sample paths © — y of {z;} with a (y) /a (x) large favored.

{z}df — p(x;t,y) = (z;t,y). (7)

G (p)=alyG(@/aly) ad G ()= G(a(z)),

a(x)

G() =290 () +G (), [f (x) = f () + %g* ()]

G()=~G(0)+G()=-2-4G() 0
T, = f (3) dt + g () dwy, To =z € (0,1), (9)

possibly killed at rate d = £ as soon as ¢ # 0.

<
«a



Whenever {z;} killed = enters into coffin state {0}.

T, abs. time at the boundaries of {Z;} started at x, with 7, = oo if boundaries
inaccessible to new process z;. T, killing time in I of {7} started at x (the
hitting time of ), with 7, 9 = oo if ¢ = 0. Then 7,, := 7, AT, 9 novel stopping
time of {7} .

SDE for {z;}, together with its global stopping time T, characterize {T;}.

Suppose F; absorbed at {0,1} . For {z,}, evaluate [¢ and d both > 0]
- 7(2) -
3 (z) =B / ¢(@) ds + d (Trw)
0

—G@)=Ccifrel anda=difx el

Itis: a(z) = aéx) /;g(a:,y)a(y)g(y)dy, v €l

Normalizing and conditioning. p,(z) := f;ﬁ(x;t,y) dy = P(7, > t)
solves

9ip; (z) = G(p; () = —d () p, (v) + é(ﬁt (z)), Po (x) = Lo (z). (10)
Normalize. q (z;t,y) :=p(;t,y) /p, (), T(7;0,y) = 0y (),

0G=—0,p,(2) /7, () - T+ G (@) = (b (z) —d(y)) - T+ G (7).



bi(z) =M = q(@ty) = T (y), (11)
G (@) = M = d () ooy Or = G (Go) = A1 - Toe
G (1) = a (1) 02 (4) / / o () v1 () dy. (12)

7., = av;/norm Yaglom limit law of (Z;;¢ > 0) conditioned on the event
Ty > 1.

Examples: (i) Take o : —G (o) = 0 if « €] with BCs a(0) = 0 and
a(l)=1=c=0:Tp9=0050T7, =17, G=G. {7} is {x;} conditioned
on exit at x = 1. Boundary 1 exit ; 0 entrance.

drift : f(z) = f(z) +

a(w) = E(7,) solves G (@) =1 — a(2) = ;55 [0 (z,9) o (y) dy



(i) a: =G (o) =9, (x) if el , BC a(0) = (1) = 0: Selects {z;} sample
paths with large sojourn time density at y

Flo) = £+ e 2]
)
)

ao (
o/l(x
1 (

«

ify<uxzx

= [(x)+g°(2) ——=

ifr<uy

{Z;} is {x;} conditioned on exit at o = 1 if z < y and {z;} conditioned on exit
at o =0 if x > y. Stopping time 7, (z) of {Z;} occurs at rate J, (x) /g (x,y).
Killing time when process at y for the last time.

(73i) Ay smallest eigenvalue # 0 of G. a = uy 1 —G (u1) = My
_ 1 - -
G()=-G(a) +G()=—A-+G(),
kill sample paths of {z;} governed by G at constant death rate d = ;.

1 ()
uy ()

pla;t,y) = p(x;t,y).

p(zt,y) = eMp(xit,y) : tpd of {Z,} governed by G : {z,} conditioned on
never hitting boundaries {0, 1} (Q—process of {z:}).

Altul_(y)e—)\lt uy (z) v (y) u1 (y) vi () (13)

plzity) ~e .
ur (@) Jo ut (y) v () dy fo uy (y) v (y) dy

Limit law of Q—process {Z;} is norm. product of u; and v;.



SUPER-H, SUB-H or none:

(i) a>0st —G(a) =c>0(ae>0<%< a>0in I, possibly with a(0) or
a (1) equal 0). « super-harmonic (or excessive) function for G—process.
Rate A (z) := —£(c) =: —d(x) satisfies A () < 0 : ONLY Kkilling at rate
d(x).

(17) @« > 0 s.t. —G () = ¢ < 0. a sub-harmonic function for G—process.

BD at rate A (z) =: b(z) : G—diffusing mother particle lives Exp(1) random

time. When mother dies — M (z) particles (M (z) L1+A A(z)), A(X(x))
geometric RV on {0,1,2,...} mean A(z). M (z) > 1 independent daughter
G—particles start afresh. If A () =: b(z) bounded above

A@) = A" (u(x) = 1) = Npa (),

where \* = sup ¢ A(z) and 1 < p(x) < 2. M (z) € {1,2} (binary BD
rate \).

EXAMPLE:  is neutralWF, o = exp (0x) = G WF with selection (tran-
sient), ONLY branching at rate A (z) = b(z) = G (o) Ja = oz (1 — z) /2.

(77i) a s.t. —G («) has no specific sign — killing and branching. A (z) =
b(z)—d(x) b(x) and d(x) are birth (branching) and death (killing) compo-
nents of A (z).

10



e )\ (z) bounded below A\, = —inf,cpo11 A (x) > 0.

M) = A (@) — 1),

where p () > 0. Branching occurs at rate .. M (z) particles (where M (z) L

A (p(x))and A (p (x)) is a geom. distributed random variable on {0, 1,2, ...}.
e A\ = G () /a bounded above and below.

Ax) = A" (e (2) = 1) = A" (p2 (x) — po (2)) ,

where \* = sup,cpq|A(2)] and 0 < p(z) < 2. M (z) € {0,2}(binary
branching).

e « super-harm for G = = 1/a > 0 is sub-harm for G. Results from

GG (8) = —a'G (a) thus — G (a) >0 = —G(8) <0.

2 The Wright-Fisher and Moran examples
Neutral WF: Cannings reproduction law. 1st-generation random offspring
#S VN — (VN (1) y ey UN (N))

N!. N-N

P (VN = kN) — —HnN:l kn' ,

ky| = N. (14)

11



Condition N independent Poisson r.v.s on summing to N. Same if condi-
tioned Compound Poisson (ID).

N, (n) : offspring # of n individuals at generation r € Ny corresponding to
(say) allele A;. MC:

P (Moo () = K| N ) =) = ) (%) (1- %)N .

n = [Nz] with # € (0,1). Dynamics of scaled process z; := Ny (n) /N,

teR,

dry = /oy (1 — zy)dwy, x9 = . (15)
Time measured in units of N. If Moran vy :=random perm(2,0, 1, .., 1) time
scale N2,

Non-neutral cases

rivam=e10-0-(2) (o (3)) (o (5)”

where py (x) : x € (0,1) — (0,1)

state-dependent prob. (# identity ) : Diffusion approximation in terms of
ry == Nivg (n) /N, t € Ry under suitable conditions.

12



epy(2)=(1—mn)z+m N (l—2)

(71,5, m2,n) small (N-dependent) mutation prob. from A, to A; (respectively
Ay to Ay) (N -myn, N -manN) v (u1,u3) — WF model with mutations.

o ([E) _ (]_—I—SLN)I'
PN 1+81’NZL‘+827N (]_—ZE)

where s;y >0: N-s;y — o0, >0,7=1,2,— WF model with selective

N—oo

drift oz (1 — ), 0 1= 01 — 0.

3 The WF-Karlin model: randomized fitness

3.1 Karlin model: small population case

Disorder is the simplest possible: replace constant selection intensities (s1 v, S2.v)

at each generation r by the random iid sequence <3Y])V, 3&{,) . Conditions
) ) 7‘21

(C)
N -E(s;n) N O >0,1=1,2

N-E(siy) — p;>0,i=1,2

N—oo

13



N-E(sinson) = Hap

all moment terms higher than 2 : o (1/N).

Diffusion approximation of x; := Nyyy (n) /N, t € Ry

f@)=c(—a)y—pa] and g(0) = /o (1 —2) + pa® (L —2)*  (16)

n = 01_‘72"‘#2_Ml,zzj\}if})oNE((l_SZ,N) (81,8 — s2,n))

po= =2, = lim NE((siy = san)’) > 0.

1

Drift also : f () =z (1 — x) {”y—i—p (5 —x)} (17)

V=71~ Yo, With v, =05 — /2,0 = 1,2,
- f has 2 contributions: one involving ~, the other one p. Latter one intro-
duces a stabilizing drift towards 1/2.

- ¢? (v) has 2 contributions: binomial sampling and within generation selec-
tion variance. If p is not large compared to 1 (small population size case)
both terms contribute equally likely. Selective advantage of allele A; over
allele As : vy > 7,.

v; = 0; — it;/2 = involve 2nd-order moment of the s; 5, not only means o;.

14



_ v g
Additive functionals. ¢’ (y) = e I,
1 1+4
r=+1+4/p>1andr; = %—i_/p,i: 1,2.

Normalized scale function (Boundaries exit). Process small population size

transient

z) — ¢ (0 1 [* i 1.2y
o () 90()__/ (y—rl)lm(l—y—h) 1+.0'rdy’
0

(x —r)e (1 —2—1) " (18)

speed dens.: m ()

E (r,) = 2 (2) / m () o (1) — o ()] dy+2a0 (2) / ) e () — o (0)] dy

. d
Symmetric case. suppose sy n = Sa Ny = 01 = 02, [l = [y and
N =ty — pyo and p=2 (MQ - M1,2) :
Thus v =0 and

f(x)=px(l—1x) (%—x) and g% (z) =z (1 — z) + p2? (1 — )

15



Expected time to absorption:

o, [Tlog((1—y) /y)
E(Tx)_z/o Ty -y (19)

Vo, E(1,) \ p: fluctuations in differential selection intensities tend to de-
crease the expected fixation time (despite presence of the competing drift to-

ward 1/2).

3.2 The large population case p > 1

DIFF with g (z) = /pz (1 — ) ; f () =2 (1 — 2) {’y—!—p(%—x)]. (20)

Drop binomial sampling contribution to variance term g2 (z) in (16) (small
under the large population case assumption). Change of variable y;, =

Tt dx
0 z(l—z)

= log (ﬁ—’;t) + It6 calculus

dy, = ~ydt + /pdw,, Gaussian (21)

1 1
.t —
Pt = iy (1)

_z 2
ei%mf(bg(?l(iy)ﬂz)fryg . (22)

16



v >0 (< 0): mass of law of z; accumulates near y =1 (y = 0).

v =0, law of x; forms 2 symmetric peaks about bothy =1and y =0ast T,
but without reaching boundaries.

Both boundaries are natural (—G and —G* of Karlin diffusion no longer have
a discrete spectrum). From (22), Ve > 0

P(wt€(1—5,1)|x0::p)t—> Lif ~

NV

P(mt€(0,6)|x0:x)t—> 1if v
P(xt€(1—5,1)|x0:x)t—> 1/2if ~
P(xt€(0,€)|a:0:a:)t—> 1/2if ~

I
o o o o

At boundaries, quasi-fixation (or quasi-extinction) occurs. The limits do not
depend on initial condition .

Randomly varying selection: quasi-fization of allele Ay possessing selective
advantage v, > 74 over As (v > 0) occurs with prob. 1, regardless what
its initial frequency is and no matter on how large fluctuations in selection
intensities really are.

17



p(z;t,y) increasingly concentrates near o = 1 stochast. locally stable [KL].
If v = 0 (no selective advantage), quasi-abs. at both endpoints of I occurs
equally likely, whatever x.

1
(9%¢") (z)

The symmetric (NEUTRAL) case. 7 = 0. {z;} oscillate back and forth
between the boundaries, i.0.: substantial amount of time spent in their neigh-
borhood. Process 0—recurrent. (20) is:

speed d. Karlin: m (z) = =z (1— x)_%_l . (23)

1
dxy = pxy (1 — ) (5 — xt) dt + /pxy (1 — ) dwy (24)

with stabilizing drift toward 1/2.
Let ¢ > 0 small. Let © € I. = [¢,1 —¢]. Boundaries inaccessible, so work

on I rather than on I and force {e,1 — ¢} abs. Let 7, ;. = T, A T, 1. first
exit time of I,.

PBS: Estimate P (7,1 < T5.) as € — 0, together with E (7,1.).

log (=
P (rane < 7o) = 02 (2) = (1 - %) . (25)

18



Independently of p:

og( 1=z
o lfx <% P(ry1-c <Tup.) -~ s(1- : g(log€)> slightly less than 1/2 cor-

recting term of order —1/loge. If e = 1/(2N) and x = 1/N, quasi-fix. prob.
at 1 — ¢ of mutant is:
1 log (+ 1
L (v) ~ , (26)
2 log (%) log N

elfx> 1 P11 <7Tup) -~ : (1 - lof(;x”’)) slightly greater than 1/2.

Expected exit time of I.
B (ror) ~ —[og()
Quantifies how inaccessible natural boundaries are. E(T,1.) \, p.

e Empirical average of heterozygosity. Expect it should be close to 0, {z;}
spending substantial amount of time near boundaries.

1

speed dens.: m (z) = (=)

19



Ergodic Chacon-Ornstein ratio theorem for 0—recurrent processes

¢t fot 225 (1 — ) Ly e(e1—)ds 2 f;_e dx 1

=1 ft 1 ds t—_>)oo f1*5 1 dr a:0 —log (6)
0 tzs€(e,1—¢) c z(1-2)

(27)

tends to 0 when ¢ — 0, independently of p.

Ratio: conditional empirical average of {x,;} —heterozygosity given remains
inside (£,1 —¢). Process spends most of the time close to 0 and 1 where
heterozygosity vanishes = empirical average of heterozygosity— 0 as € — 0.

e Particle spends substantial amount of time near boundaries: time to move
from € to 1 — ¢ large. (22) with x <y and vy =0 .

Green potential function neutral Kimura model:

o (@, y) = / e Mp (z;t,y) dt.
0

Tyy < 00 a.s.: first time {x;} hits y starting from z

E (e—ATx,y) — M e~ V2022 (28)

ax (v, y)

d scale - 2
= Toy = bS1/2, S1/2 stable law, b "=" 20, = % [log (fﬁ_ym

20



e r =c and y = 1 — ¢, scale parameter is

b= 2—: {log (1 _5>r ~ 2 flog (1/2)] — oo.

£ e—0 P

Takes a long time to move from ¢ to 1 — ¢ and back, but move occurs with

prob. 1.

__r 4o
2 [log (1/e)2 =% e=0 71

LTI 1 i S
25c2 atey o M

telling how small first return time to x = 1/2 is.

4 A related model due to Kimura

Counsider Ito-Karlin diffusion model

fx)=2(1-2) [wp(%—x)] and g (z) = v/pz (1 — ).

rato 1
Mﬁétﬁ@a—yyuﬂdﬁwuawmhmzx (29)

fg g (xs) o dw, Stratonovitch integral. Stratonovitch form of It6-Karlin

Strato

de, " ="yr, (1 — ;) dt + /pz, (1 — z) o dwy, xo = . (30)

21



Kimura: dx; 1o v (1 —ap) dt + /pxy (1 — ) dwy, xp = . (31)

Why? Continuous-time deterministic evolution equation for A; gene fre-
quency driven by fitness o:

dxy = oy (1 — ) dt.

Selection differential odt random — modelled by some dw; with E (dw,) =
vdt and o? (dw;) = pdt. Then we get (31).

Kimura model (31) # its Karlin counterpart defined in (20).

4.1 The symmetric case (Kimura martingale of neu-
trality)

v = 0. (31) is Kimura martingale dz; = \/px; (1 — 2;) dwy.

Again 2 natural boundaries; process 0—recurrent. For driftless Kimura model,
solution to KFE [Kimura]

L (@ =)' (b fos(2i=)))

p(zit,y) = V2l (y(1— y))s/26

Density (32) converges more rapidly than its Karlin version (22) to quasi-abs.
states {0,1}. Based on (32), [Kimura and Tuckwell|

(32)

22



P(xt6(0,5)|$0:$)t—> 1—x
P(mt€(1—5,1)|x0:x)t—> x

—00

with limiting quantities depending on the initial condition.

Scale of Kimura diffusion ¢ (x) = z. Speed measure density is m (z) =
1
pa?(1—z)*"

PBS: Let 741, = Ty ATu1—c first exit time of I.. Estimate prob. P (7,1-. < Ty)
as € — 0, together with B (7, 1.), for Kimura martingale.

Scale function «. (z) = % (with ¢ () = x), satisfying a. (¢) = 0 and

a. (1 —¢) =1, gives

P(rp1-c <Tpe)=ac(x)= (33)

independently of p.

Result very # from the Karlin one close to 1/2 : origin of this difference — at-
tracting drift to 1/2 in Karlin model (24), not present in Kimura martingale.

e o(x) = E(7,5.) expected exit time of I.. Solves —Ga (z) = 1 where
G=222(1-2) 02 and a(e) =a(l—¢) = 0.

23



0 (@) =E(r,1) == (h(e) = () 3)
h(x)=2zxlogz+2(1 —x)log(l —z)—log(z(1—2x)). (35)

Expected time diverges like —% log (), smaller than % [log ()]? obtained pre-
viously for Karlin . Kimura model hits the boundaries of 1. in a shorter time.
E (7,,1.) again a decreasing function of p.

e Empirical average measure of heterozygosity for the Kimura martingale x;
as in (31) with v = 0. Speed measure is here

1

) A

By ergodic Chacon-Ornstein ratio theorem

1—¢ 1
t_l t2 s 1 — dg 1x e, l—e d 2 € T\l—x daj
fo T (1 — 25) Ly e(1-0)ds R J (1-2) ~ —2loge  (36)

t 1—
0 Jo Leseea-o)ds e [ e

which — 0 as € — 0, but much faster than in (27). Kimura martingale spends
much more time close to boundaries than Karlin process.

24



4.2 Non-symmetric Kimura model with a drift

Consider the full Kimura model (31) with v # 0.

Natural boundaries. {0,1} always natural boundaries for the Kimura
model with drift.

When v # 0, no known solution of KBE for tpd associated to (31). For
Kimura model with drift, [Tuckwell]

Pz, €(0,e) |zg=2) —

t—o00
(Lify < —p/2; Brify=—p/2; 1=z if p/2 >~ > —p/2 and 0 if v > p/2)

and
Pxie(l—¢el)|zg=2) —

t—o00

(Lifvy>p/2; Lify=p/2; zif p/2>~ > —p/2 and 0if v < —p/2),

Nonneutral Kimura model: 3 a non-null prob. that an allele gets quasi-
fized (quasi-extinct) even if its selective differential v is negative (positive),
depending on the wnitial allele frequency. This differential simply needs to be
larger (smaller) than —p/2 (respectively p/2).

25



From Karlin to Kimura using appropriate Doob transform.

)] 9= v -0

Karlin : f(z) = 2 (1 — z) [’y—i—p(%—x

Let a(z) = g(z) " =p V4 (x (1) G = fo, + 14%0?

1.¢g 3 1
G _ _f2 _ = 12 - /l'
a 2fg g9+ 199

Transformed version of Karlin model (20) using « (z) .

G—G()=a'G(a) :é(~)+%-
Log (@) =2 (1—a),

: rs o (ZL’) 2 /

f = = -3
drift f — f(z) = f (z) + o)’ (z) = f(z) = 599
switching from Karlin model (20) to Kimura one. Affine creating-annihilating

paths rate function
Ga 1 p
A(z) —7(93) =-3 (7—Z> + yx. (37)

Rate A bounded above and below. A (z) = A (u (z) — 1) with
2| <1 _ 1(r20) (1- x)l('y<0)>

p . 1l
N=L+r S0 y@)=2-

26



Transformed process is BD: a diffusing Kimura Eve particle (started in x)
lives a random exponential time with constant rate A,. When Eve dies, gives
birth to a spatially dependent random # M (x) of particles (with mean p (x)).
If M (x) # 0, M (x) independent daughter particles start afresh where Eve
died; move along a Kimura diffusion and reproduce, independently and so
on... If M (x) =0, process stops in 1st generation. BD with binary scission

M (z)=0wp. po=1-—p(z)/2
M(z)=1wp. pp=0
M (z) =2 w.p. po = p(z) /2
with ps () > po (z) for all z iff |y| < p/4.

Modifying Karlin model z, using a (z) = g ()™ "%, the law p (z;t,y) of z; is
transformed into
a(y)

ﬁ(ﬂf;t,y)zmp(ﬂf;t,y),
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explicitly known because so is p from (22). Branching rate also

Ay) =X (P2 (y) —po (y)) -

Not a positively regular BD [Asmussen-Hering], leading to global population
growth.

SUPPOSE itis: p,(z) := f;;T) (x;t,y) dy would be global expected # E(N; (z))
of Kimura particles alive at t in ;
0, () = G(p, () = N (2) P, (x) + G(p, (), o () = Loy ().

We have
P (z) = zet0/2e/8) (1—2) e_t(W/Q—p/S), SO

2 8

Suggests —A; could be global Malthus exponential rate of growth of the
global expected # of particles within the whole system.

1
—7logp (2) = A= (m + B) = -\ <0.
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[F TRUE: Conditional prob. presence density q (z;t,y) :=p(x;t,y) /p, (),

04 = —0,p, (2) /7, () -7+ G (@) = (d, (2) + M (y)) - T+ G (7).

d, (v) = —0,p, (x) /p, () < 0 rate at which mass removed to compensate
Ni(z)

creation of mass of BD process <(f§”)> t ;t > O) arising from splitting:
n=1

B ()05 (@ity)

p™ (x;t,y) : density at (¢,y) of nth alive particle in system, descending from

Eve started at z. g (z;t,y) would be average presence density at (¢,y) of
branching system of Kimura particles.

Would have d, (xr) — A; where \; should be largest negative eigenvalue of
—G. A\ would be effective generalized principal eigenvalue?
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0q =0 = q(a;t,y) — qo (y), where

_é*(qoo) = ()‘1 + A (y)) "Qooy OT _a* (qoo) =M\ Qoo

product form : G (y) = a (y) v1 ( // y) dy, (38)

would v; be the eigenfunction of —G* associated to \; < 0.

Similarly, should exist ¢, (z) s.t. =G (¢os) = Mo With ¢ () = us (z) /a (2)
with u; eigenfunction of —G associated to A\; < 0.

IF TRUE (Asmussen-Hering): et S M) g <§(n)> would be martingale

converging a.s. to nondegenerate r.v. W (z) s.t. E(W (z)) = ¢, (z). For
any a.e. continuous bounded measurable function v on [

Ni(z) f Y (z) Gy (z)dz
1t a.5: (0,1)
¢! Z¢<$t ) t—o00 W (z) f(01)qoo( r)dr

In particular, eM'N; (z) tcﬁf W(x),
—00

telling how fast global expected # of particles would grow within 1.
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This global picture does NOT hold: no positive (u; (z);v1 (y)) : =G (uq) =

Auy and —G* (vy) = Ay for Ay = — (% + g),

Eigenvectors exist but for some A. > A; . So criticality of G (-) + A not
valid : global AH approach fails. Rather criticality of G (-) + A.- Focus on a
local approach. Introduce

)\C:—g (1—4(%)2> >)\1:—§ (1+4%), (39)

with A\, < 0 iff || < p/2.

G () + A and G () + Ao are critical with ground states ¢, () > 0 and
G (y) > 0 = A, IS effective generalized principal eigenvalue.

oo () =277 (1 — )
T (W) =yr 2 (1—y) o (41)

/ oo (1) G () d = / 22 (1 —2) 2 dz = co.
(0,1) (0,1)

X
p

(40)
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Product criticality property does not hold (growth property under concern
is only local): take B a Borel subset of ; with closure B C _(I) [suitable choice
of B could typically be the interior of I.].

N, (z,B) =M1, (5?” ) local # of Kimura particles within B at ¢ given

n=1
—-B . . .1 .
Eve at 2. ¢, () and g2 (y) denote eigen-states with multiplicative constants

adjusted s.t. : [} Ei (2) - @2 (x)de = [,q% (x)de = 1. Local version of
Asmussen-Hering result:

Local supercriticality (growth). If A\. <0 (|y| < p/2):
VB, el ZNt(z) <§§")> 1p (%’gn)> martingale converging a.s. to a nonde-

generate r.v. Wp(z) s.t. E(Wp(z)) = EOBO (x) (Englander-Kyprianou, p.
84).

For any a.e. continuous bounded measurable function ¢ on I,

“Mf@”@) s (5) 25 Wy (o L B

fB (o (¥ d:c

In particular (¢ = 1), e*'N, (z, B) WB( ), (43)

clarifies how fast expected # of particles grows locally within B.
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—A: > 0 : local Malthus growth parameter of V; (x, B). Conventional wis-
dom: smaller than the global one —A, < —A\;.

Local subcriticality (extinction). If \. > 0 (|y| > p/2):
(2)
VB: P (N, (z,B)=0) I 1, unif. in . (44)

(17) x € B. 3 a constant vz > 0 s.t.

e [1 — P (N, (z, B) = 0)] I yBg_boBo (x), unif. in z. (45)

(#7i) ¥ ¢ bounded measurable function on I :

Ni(z)
B ;w(ﬁ")) 15 (#") | Ne(a, B) > 0| = 73" /B ()78 () dy.

(46)
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From (i) : |y| > p/2 = process ultimately extinct with prob. 1, locally for
each B. Subcritical regime: drift is so strong (+ affinity of Kimura particles
for the boundaries so large) that it pushes all the particles very close to either
boundaries, all ending up eventually outside B.

From (ii) : 1 — P (N (z,B)=0) = P(N;(z,B) >0) = P(T (x,B) > t) ,
T (x, B) local extinction time in B of the particle system descending from
Eve started at © € B. The # —\. < 0 is the usual local Malthus decay

parameter. From (ii), EOBO (x) reproductive value in demography.
(i74) with ¢ = 1 reads E [N; (x, B) | Ny (x, B) > 0] i v5 interprets vp.

If A\ =0 or |y| = p/2 local criticality: process gets ultimately locally extinct
with prob. 1 but at a smaller-1/t speed than in subcritical regime.
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5 Extreme reproduction events.

Extended Moran model (very productive guy). EMM is Cannings model
with reproduction law v (Moehle, H.):

DEF: My > 1 RV in {2,..., N} + offspring vector p : = (uy,...,uy) via
p, :=1forne{l,....N— My}, p, =0forne {N—-My+1,...,N -1},
and py = My. p, is # descendants at 0 of n-th individual. (My = 2 :
standard Moran model).

v = (vq,...,vy) = Random Perm. of p.

e Forward in time: N; = # of descendants of n out of N individuals at
t forward in time. N; (Vg = n), discrete-time MC on {0,..., N} and abs.

barriers {0, N} with Pl(jv) ;=P (Ng1 = j | Ny =14) [Moehle, H.]: hypergeo.

vy _ 1 N—=My\ (My—=1\] ... .
=gy (M5 ()] e

)

1 N-—-M N-—M
e ( , N) +< N)} ifj=i (47)
1 N —1

N - M My —1
p.<z.v>:_E[< N)( V- )] it >
O VAWETD) R
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e Backward in time: n—sub-sample of size n from [N] at ¢ = 0. Identify
2 individuals from [n] if share a CA one generation backward in time —
Ancestral backward process. :/EEN) = ng) (n) counts # of ancestors at t € N,

backward in time, ﬁs\éN) =n < N. DT Markov chain on {0,..., N}

. BIV) /s
N) AN sy Py (i)
P<%H_j““ _Q_J% ! 2. iijl'
i1,.-,05 ENp J
i1+..4+ij:i
v EMM, for i,j € {1,..., N}, (Moehle, H.) =
s BT
Y = LT g <

Y (%)

PN — U = (48)

SN e s
P =0ifj >,
Coalescence probability cy 1= 132“1V> =E[(My),] /(N(N—1)) and dy := IS?SJP
prob that 3 individuals chosen at random share a CA. For scaling limits,
important: (cy — 0 or not) (X — 0 or not) [Sagitov, Moehle].

CN
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(1) (occasional extreme events): My /N 20 (as N — o0) or

(1) (systematic extreme events): My /N LU (as N — o0) U non-degenerate

[0,1] —valued RV E (U) > 0. SCALING LIMITS (N — c0)?.

(i) If

o E[(My),]
k):=1 k
P = N ()
EMM in domain of attraction of CT A—coalescent: A prob. measure on [0, 1]
with moments: [, u*"2A (du) = ¢ (k). All continuous-time A—coalescents
can be produced in this way (Moehle, H.).
cy — 0 and o7 = Nprjey ([Na]) /N with 29 = « and 7 € R, CT Markov
process with state-space [0, 1].

exist Vk € {2,3, ...} = (49)

KBE: ¢ € C%([0,1]) — G () (z) = @xu — 1) 0% () +

41]\{0} [z (x+ (1 —2)u)+ (1 —2)Y(x (1l —u)) — ¢ (x)] i/\(du),

u?

pure jump process if A has no atom at {0} .

u(z,t) = Eg (zy) obeying dyu = G (u); u(x,0) =1 (x).
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Ty — Tg = /OT VA {0} 2, (1 — 24)dws+ (50)

/ <1v§xtu (1—zy) = lysa, uxL) N (ds x du x dv),
(0,7]%(0,1]x[0,1]

N Poisson measure on [0, 00) x (0, 1] x [0, 1] with intensity ds x A (du) x dv,
1w, If A(0) # 0 = Wright-Fisher diffusion has to be included. Clock-time

. . -1
7 in units of N, = ¢ .

Eldon and Wakeley model. Let v > 0. My mixture model
My = 2 with probability 1 — N™7 (Moran model)

My =2+ (N —2) V| with probability N7
V rwv. on [0,1]. ey — 0.
e v > 2 : Attraction basin of Kingman coalescent (i—g — 0).
e v < 2: Attraction basin of A—coalescent (2 — 0).

CN
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(i1) J/SZ(JIV) — E (U") > 0 EMM in domain of attraction of a DT A—coalescent
with A (du) = u?m (du) and 7 (du) law of U. cy — ¢ = E (U?) > 0 and:

(agm, te N) D (3, teN),

DT limiting A—coalescent

: 1
A_OQ _ ? i—j+1 PRVl ! : < g :
P (j B 1) /0 u (1—u) " 7m(du) if 1 <j<i (51)

]3[’;’ = /o (1 —w)"" (1 —u+iu) 7 (du) if j = 1. (52)

Example: choice of 77 7 uniform on [0, 1] =
2

. 1 N
P> = if 1 <j<iand P =
’ 2+ 1

o]

O (53)

Forward: z; is MC (with state-space [0,1]) driven by (U, V3),», L:

T =2+ Upr (1 —2) 1 (Vi < ay) — Ul (Vi > x4); 0 = . (54)

39



6 Discrete-time coalescent and forward pro-
cess.

(Ui, Vi)y>, mutually L sequences : Uy L (du) = 25 A (du) and V; < uniform
on [0,1]. 7 AC density f no atom at {0} .

T =2+ U1 (1 —2) 1 (Vigr < 2y) — Uyl (Vigr > 24) 5 o = 2.

If at ¢, x; close to say 1, 3 big chance (z;) that at ¢+ 1, it will even get closer
to 1 by a small move, but 3 always some small probability 1 — x; that x;
moves back abruptly in the bulk (by a big move of amplitude —U;12;) : the
whole process starts afresh.

e 1, martingale. The variance: 02 (z441 | 2 = ) = 02 (Upy1) (1 — 2) z.

e (if transient), x; eventually hits boundaries {0,1} but not in finite time:
Tz = Tz0 A\ Ty 18 00 with probability 1. Boundaries both abs. x; eventually
hit first the boundary {0} (respectively {1}) with probability 1 — x (respec-
tively x).

e e Cy([0,1]). With ¢ > 1

u(x,t) = Ezw (xt) = (Lt¢) (x) y U (ﬂ?,O) = ¢ (SL’)
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(Ly) () = Egt) (1) = (55)

1 1
a:/ w(x+(1—x)u)f(u)du+(1—x)/ Y (x —zu) f (u) du.
0 0
e ¢ (r) = ¥ monomial= (L) (x) degree k polynomial
[ (1) (@) = B[(1 = 0) 7 (1= U +k0)] = P
o Y (x) =a+bx, (L) (x) =1 (x), affine functions harmonic functions of L.

@ =2 [ () a7 [ () s wa
(56)

L integral Fredholm operator with kernel

11—z T —y x Yy—T
K(l’,y):p(flj,l,y): T f( T ) 1(0§y§x)+ 1—{L‘f(1—l'> 1(:1c<y<1)
(57)
that is: fo (y) dy. L acts on Banach space Cy ([0, 1]),
is bounded ||L|| = ps.
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e Forward adjoint generator L* acts M, ([0, 1])

(L*u><y>=/0y1fzf (ﬁ:j)wzw/yll;'zf('z;y)uuz)- (58)

L is not self-adjoint, nor normal.

e J speed measure p with density m satisfying (L*u) (y) = p.

e x; not reversible wr to speed measure m (y) dy :
m(z)p(z;Ly) #m(y)p(y; 1, ).

e Only moves to the left: [ (x) =P (... < zy < 1 < 1y = ) solves:

() = 1;x/0xf(mgy)l<y>dy.

[ (z) should tend to 1 as x — 0. Similar thing r (z) (only moves to the right
starting from x).

Would [ (x) and r (z) be strictly positive = z; would be transient : Vy > x
(resp. Yy < x), 3 prob> [ (x) > 0 (resp. > r(x) > 0) that z; with 2o = =
never visits a neighborhood of y.
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6.1 Special transient case (7‘(’ (du) = du): FREDHOLM

(Ly) () = Egt) (1)

dy-l——/ Y (y (59)

=/0 K (2,9) ¥ () dy

with K (z,y) = 1(0<y<ac) + ﬁl(m<y<1) =p (553 Ly).

K not TP, not bounded not continuous on [0, 1] 1 , nor f[o 12 K (x y) dzdy <
0.

L not compact.

If particle originally at x < 1/2 (z > 1/2), p. dens of further move to the
left (to the right) is (1 — z) /x (respectively z/ (1 —x)) with (1 —z) /z >
z/ (1 —z) (respectively /(1 —x) > (1 — ) /x) = x; is stoch. monotone.
3 Prob I(z) = (1 —2)e™® > 0 (resp. r(x) = xe"7*) > 0 ) that particle
always moves to the left (to the right) starting from x.
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Spectral properties: A € C. ¢ bounded funct. [0,1] satisfying ¢ (0)
¢ (1) = 0. Look for continuous solutions « of: (M — L)a = ¢ or, with z =
AL of

(I —zL)a = ze. (60)

z| < 1, a Liouville-Neumann converging power-series
2] ging
a(r) =Y ""L"(¢) (x).
n>0

Integrate linear differential system

A(z) = me a(y)dy = a=A". (I —zL)a = zc is also the linear differential
System

A’(:v)—zA(:c)(l— ! ):z'(c(x)—i— v A(l)) —

1—z

T

a () = ze(x) + 22 (1 - 22) (¢ (1 —2))"" // (y(1—y)) "cly)dy, (61)
1/2

an alternative representation to the Liouville-Neumann power-series. A =

27! = the domain |/\_1| < 1 complementary of the unit disk of C centered

at 0. Such \s are regular points of L for which (A\I — L)™' exists, is bounded
and is defined on the whole space Cj ([0, 1]) .
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e Re(z) > 1 and ¢ = 0. 3 Solutions (eigenstates):

a(z) o< (1—2x) (z(1—x))" ", (62)

Closed disk of C centered at (1/2,0) with radius 1/2 (which is: Re (A™") > 1)
= point spectrum of L. If X belongs to complementary of the latter disk to the
unit disk centered at 0 constitute the continuous spectrum where (A — L)™'
exists but is not defined on the whole space Cj ([0, 1]): the operator \I — L
is not surjective.

e Assume z = 1 and ¢ not identically 0.

a(z) = <1—2x>/1;<y<1—y>>1c<y>dy+
A1) (e —1)+4A(1/2) (1 —2z) + c(x),

A(1/2) and A (1) determined from the imposed values « (0) and « (1) of «
at the boundaries. « () solves: and so

—(L-DNa=cifxe(0,1);a=difx € {0,1} (63)

= a(z) =E, [Etzo c(xy) + d(:coo)] )
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Examples:

(1) Let € > 0, small and I. = (¢,1 —¢). Let ¢(y) = Lyer) and = € I.. a(x)
expected time till x; first exits out of the interval I, starting from x within

the interval. Putting o (¢) = a (1 — €) = 0 fixes the constants and we finally
find

— (1 —2¢)log c

=(1-22)1
(@) = (1 - 20) log —— S

~ —loge.
(77) (Green function). yo € (0,1) ; Is (yo) = [yo — 6,90 + 6] , = & Is (o) . Let

c(y) = Lyerswo)) (%) =t ary(y) (x) expected sojourn time spent by z; in
the interval s (yo), starting from x .

s (yo) (T) =/ g(z,y)dy.
I5(yo)
Green function:

g(z,90) = m(y)(l—x) ifyo <z
g(z,y0) = m(y)zif yo > .

Solution to (63) when d(0) =d (1) =0: a(z) = fol g(z,y)c(y)dy.
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k

Eigenpolynomials. ¢ (z) = 2 monomial of degree k > 1.

(L) (z) = (z+..+ 2"+ 22

E+1

= action of L on 2* does not change the degree of the polynomial image =
3 polynomials uy (z) of degree k such that, with Ay :=2/(k+1), k > 1

These values of A are particular (real and rational) values of the point spec-
trum of L [\, = Pg5, coincide with the diagonal terms of P*].

e i odd, uy (x) = z and

up () = (1= 22) (x (1 —2)* V7?2 k>3 (64)
with uy, anti-symmetric: uy (z) = —uy (1 — 2).
e i even, uys symmetric: ug (x) = ug (1 — x), with

p—1

sy (v) = x (1 _x)Z(aqm"'bq,p (z(1-2)7), p>1 (65)

q=1

for some sequences of real numbers (ag,, bq,,p)q:1 _p Which can be computed
recursively by iterated Euclidean division of ug, by x (1 — x).
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For all ¢ € Cy ([0, 1]), decompose ¢ (z) = 5, qug (z) =

(L) (1) = By (e) = 3 (Hil) o ().

>1

ADJOINT: v (y) = (y(1—y )7(“1)/2 eigenstates of L* associated to Ay :

(L) (y) = Mok (y) .o (y) = (y(1—9))"" = m(y), the speed measure
density.

Examples:

(¢) Dynamics of heterozygosity E, (2z; (1 —x;)) = 2 (%)t x (1 —x), which
tends to 0 exponentially fast as t — oc.

(71) Variance of heterozygosity

ol (2x, (1 — 1)) = 4E, [M (¢) + éu2 (iUt)] —4E; [u (xt)]Q

~as- [{(3)+ (su-0-3) (B) -eu-0 (3)]

Starts growing and then decays expon. to 0 at rate 2/3 when ¢t — oo.
Intermediate time t, > 1 at which they reach a maximum. ¢
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(¢it) In particular also, if ¢ (z) = 2™ and 2" = >__, cxntx (), then

n 2 t
t _ ny\ __
useful with DUALITY
E, (z]) = E, (z™), forall (n,t) e Ny, x € [0,1], (66)

we get the pgf E, (2™) of Z; started at Zp = n.
(1] B, (¢) =[] B, (27)

is the probability that ; = 1 (starting from Zy = n) or else that TMRCA
T, of Ty is < t. More generally

.= =[] Bt = 3 (2 ) ek [+ s ).

k=1
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Conditionnings. (i) Fixation (same with extinction)

_ )
prily) =P ly) = —p (1)
is (54) conditioned on exit eventually at 1. New process 7;.

l1—2z

(T0) @0 =B @) = 5" [ st [ @)

(L1) (z) = 1(no mass loss nor creation).

l1—=z

v 1 ! 1
E, (7)) = *dy + —— 2dy = = (22 +1).
(@1) /Oy y+1_x/xyy 5 (22 +1)
I, has additional drift: E, (7)) —2 =3 (1 — ).

(17) Q—process. us = x (1 — x) eigenv. of L associated to Ay = 2/3. T :

L1) () = 1, (no mass loss nor creation). z;, conditioned on never hitting
0

,1}. 7, has additional stab. drift towards 1/2: 1 (3 —z). m of Z; obeys

(Z*m> (y) =m(y)is: m(y) o (y(1—y) " = F is R+,
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Doob transforms. « > 0 solves
—(L—1Da=c,

for some ¢. If ¢ > 0 (¢ < 0) on (0,1), « is superharmonic (subharmonic).
Harmonic if ¢ = 0. L backward gen. of x;, define:

(Tv) () = ﬁL (o) ().

(L1) (z) — 1= ﬁL(a) () —1=—c/a=\(z)=

(T¢) (@) = (L¢) (@) + A (@) - ¥
(L) (@) = (1= (T1) (2)) ¢ (2) + (T0) (@) =

1—=x

¢ (2)+

W/ o (y) (4 (9) — o () dy

| e @ -v@yarg=

ra (z)
backward gen. of new stochastic process z;, noting (Zl) (x) = 1.

Depending on whether A > 0 (A < 0) on (0,1) obtained when « is subhar-
monic (superharmonic), the multiplicative term 1) — X (z) -1 accounts either
for branching or for killing of Z;. L = L when ¢ = 0 (in the harmonic case).
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Deviation from neutrality (drifts):

Top1 = p(2¢) + Uppr (1= p(20)) 1 (Vigr < 20) — Upgap (20) 1 (Vi > 24),

x — p(z) invertible T [0,1] — I € [0,1]. x; no longer a martingale:
E (21 |2 =) = 5 (x+p(2)). 02—, (201) = 0* (Up) [(1 = 2) 2 + (p () — )] .

P (y) p
F=i—wne - | 1_—p()<dz>/ 1() (d2).

bz
pt (?J) 1—p'( 71
-y

speed d. obeys: m' (y) =p~* (y) (

Small mutations: p(z) =7 (1 —2)+ (1 —m)x

mo—1 T —1

m(y) ocyt=m?* (1 —y)u-m7.

Both exponents «; < —1 m not integrable (z; with mutations not ergodic).
Small selection: p(z) =(1+s1)x/ (1 +s12+s2(1 —x)), s =5 —52>0.

1 —6s 10
—— (1 —y) e ™.
y(1—vy) (

Biased to the right (A; is eventually favored) not integrable.

m (y) o
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