Patterns and processes

Bayesian models for macroevolutionary studies

Nicolas Lartillot, Raphael Poujol, Frederic Delsuc

October 2011

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution

October 2011 1 / 37

Variation of the substitution rate among lineages

0.1 subs per site

concatenation of 13 nuclear genes, 38 placentals

Variation of the substitution rate among lineages

0.1 subs per site

concatenation of 13 nuclear genes, 38 placentals

Estimating divergence times: the relaxed clock model

きと くきとう きのの

Estimating divergence times: the relaxed clock model

sequence alignment

Sampling posterior density by MCMC parameter vector: $\theta = (\nu, r, t, Q)$

 $p(D \mid r, t, Q) p(r \mid t, \nu) p(t) p(\nu) p(Q)$

(Thorne et al 1998, Lepage et al 2007, Rannala and Yang 2007)

Divergence times and substitution rates

carnivores chiropteres perissodactyls cetartiodactyls eulipotyphlans rodents lagomorphs primates afrotherians xenarthrans marsupials monotremes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シッペー

Correlating rates and life-history traits

- correcting for phylogenetic inertia (independent contrasts)
- adaptation to trait/rate correlations (Welch 2011).
- sequential method: error propagation
- no feedback of rate variations on life-history evolution

Coupling life-history and substitution rate variations

Joint estimation (Bayesian MCMC)

divergence times, covariances, rates, and life-history evolution (Lartillot and Poujol, 2011, Molecular Biology and Evolution)

Introduction

Generalization

substitution parameters

- rate of synonymous substitution
- non-synonymous / synonymous ratio
- equilibrium GC

codon model (Goldman Yang, Muse Gaut 1994)

life-history traits

- sexual maturity
- mass
- maximum lifespan
- metabolic rate

Priors

- uniform or birth death on divergence times
- fossil calibrations (Springer et al, 2003, Benton 2009)

Data

- nuclear data: 16 genes in 73 mammals
- nuclear data: 115 genes in 33 mammals
- mitochondrial data: cytochrome b in 100 mammals

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution

1. Nuclear data: correlates of synonymous rate

- strong correlations between life-history traits
- dS correlates negatively with body mass, gen. time and longevity
- R^2 : life-history variations explain ~ 35% of synonymous rate.
- partial correlations: longevity; generation time effect ?

Inferring divergence times and body size evolution

The evolution of body size

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のなの

Systematic trends

Cope's or Stanley's rule

- intra-lineage drive towards larger body size
- more frequent extinction of large-bodied mammals
- needs to be explicitely modeled (directed Brownian motion)
- possible impact in estimated divergence times (Welch 2008)
- connections with mass-dependent extinction (FitzJohn, 2010).

2. Mitochondrial data: correlates of dN/dS

- positive correlation between dN/dS and body size
- compatible with a nearly-neutral interpretation
- via negative correlation body size population size (N)
- (Ohta, 1972, Kimura, 1979, Popadin, 2007)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution

Radical-conservative amino-acid replacement model

(adapted from Livington and Barton, 1993)

 $\omega = K_r/K_c$

 $egin{aligned} Q_{ab} &= R_{ab} & ext{if } a o b ext{ conservative}, \ Q_{ab} &= R_{ab} \, \omega & ext{if } a o b ext{ radical}. \end{aligned}$

• *R_{ab}*: a general time reversible 20x20 process.

conservative = conserving volume and/or polarity (and/or charge)

Mitochondrial data K_r/K_c (volume + polarity)

- positive correlation between K_r/K_c and body size
- similar to that observed for dN/dS (but higher R^2)
- charge: no significant effect
- polarity + volume : strongest correlation (highest R²)

Reconstructed variations of K_r/K_c

0.66 1.2 1.

3. Nuclear genes GC*

- no correlation between dN/dS and body size
- negative correlation between GC* and body size
- positive correlation between GC* and number of chromosomes

Biased gene conversion (BGC) during meiosis

adapted from Duret and Galtier 2009

- mismatches in heteroduplex sometimes repaired
- mutation biased towards AT
- repair pathways have evolved a bias towards GC

< A

38 N

The population genetics of GC biased gene conversion

- mismatches in heteroduplex repaired towards GC
- overtransmission of GC compared to AT allele in heterozygotes
- equivalent to positive selection in favor of GC
- apparent selection coefficient: b (strength of the bias)
- *b* proportional to local recombination rate $(b = b_0 r)$.

Biased gene conversion explains variations of GC*

Negative correlation GC* / body size

• larger animals = smaller population = less efficient selection

イロト イヨト イヨト イヨト

- 2

• also less efficient BGC (lower GC*)

Biased gene conversion explains variations of GC*

Positive correlation *GC*^{*} / chromosome number

- conversion bias proportional to recombination rate
- $\bullet \sim 1$ recombination event per chromosome arm per meiosis
- recombination rate inversely proportional to chromosome size
- stronger gene conversion bias in more fragmented karyotypes

Population-genetics derivation

Fixation probability

neutral case

$$p_0 = \frac{1}{2N}$$

general case

$$p=\frac{2s}{1-e^{-4Ns}}$$

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution

Population-genetics derivation

Fixation probability for biased gene conversion

neutral case

general case

$$p_0 = \frac{1}{2N}$$

$$p=\frac{2b}{1-e^{-4Nb}}$$

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution

Population-genetics derivation

Scaled fixation probability P

$$P = p/p_0 = 2Np = \frac{4Nb}{1 - e^{-4Nb}} = \frac{B}{1 - e^{-B}}$$

with B = 4Nb the *scaled* selection coefficient.

Scaled fixation probability as a function of S = B = 4Nb

- neutral case *S* = 0: *P* = 1
- deleterious *S* < 0: *P* < 1</p>
- advantageous S > 0: P > 1

A mechanistic phylogenetic covariance model

$$\begin{pmatrix} - & \mu_{AC} & \mu_{AG} & \mu_{AT} \\ \mu_{CA} & - & \mu_{CG} & \mu_{CT} \\ \mu_{GA} & \mu_{GC} & - & \mu_{GT} \\ \mu_{TA} & \mu_{TC} & \mu_{TG} & - \end{pmatrix} + B \implies \begin{pmatrix} - & \mu_{AC} \frac{B}{1-e^{-B}} & \mu_{AG} \frac{B}{1-e^{-B}} & \mu_{AT} \\ \mu_{CA} \frac{-B}{1-e^{B}} & - & \mu_{CG} & \mu_{CT} \frac{-B}{1-e^{B}} \\ \mu_{GA} \frac{-B}{1-e^{B}} & \mu_{GC} & - & \mu_{GT} \frac{-B}{1-e^{B}} \\ \mu_{TA} & \mu_{TC} \frac{B}{1-e^{-B}} & \mu_{TG} \frac{B}{1-e^{-B}} & - \end{pmatrix}$$

Substitution rate (low mutation approx.)

Substitution rate = mutation rate x fixation probability

$$\rho = 2N\mu p_{fix} = \mu 2Np_{fix} = \mu P$$
$$= \mu \frac{B}{1 - e^{-B}}$$

A mechanistic phylogenetic covariance model

$$\begin{pmatrix} - & \mu_{AC} & \mu_{AG} & \mu_{AT} \\ \mu_{CA} & - & \mu_{CG} & \mu_{CT} \\ \mu_{GA} & \mu_{CC} & - & \mu_{GT} \\ \mu_{TA} & \mu_{TC} & \mu_{TG} & - \end{pmatrix} + B \implies \begin{pmatrix} - & \mu_{AC} \frac{B}{1-e^{-B}} & \mu_{AG} \frac{B}{1-e^{-B}} & \mu_{AT} \\ \mu_{CA} \frac{-B}{1-e^{B}} & - & \mu_{CG} & \mu_{CT} \frac{-B}{1-e^{B}} \\ \mu_{GA} \frac{-B}{1-e^{B}} & \mu_{GC} & - & \mu_{GT} \frac{-B}{1-e^{B}} \\ \mu_{TA} & \mu_{TC} \frac{B}{1-e^{-B}} & \mu_{TG} \frac{B}{1-e^{-B}} & - \end{pmatrix}$$

 $B = 4N_e b$

- only 4-fold degenerate third codon positions
- modeling joint variations of *B*, body mass (*M*) and karyotype (2*n*)
- modeling variations among genes (local recombination rates)

Life-history and karyotypic covariates of BGC Predicted allometric scaling of $B = 4N_eb$

$$egin{array}{rcl} N_e &\sim& M^{\gamma_M},\,(\gamma_M<0)\ b &=& b_0r\ r &\sim& 2n \end{array}$$

therefore,
$$B \sim M^{\gamma_M} 2n^{\gamma_n}, (\gamma_M < 0, \gamma_n = 1).$$

Estimated scaling coefficients and mutation bias ($\lambda = AT^*/GC^*$)

 $\begin{array}{cccc} \gamma_{M} & \gamma_{n} & \lambda \\ \\ \hline & \gamma_{3 \ \text{taxa 17 genes}} & -0.11^{**} \ (-0.19, -0.03) & 1.28^{**} \ (\ 0.54, \ 2.03) & 1.38 \ (1.27, \ 1.50) \\ 33 \ \text{taxa 115 genes} & -0.28^{*} \ (-0.52, -0.01) & 0.21 \ (-1.20, \ 1.56) & 2.09 \ (2.04, \ 2.14) \\ \end{array}$

A history of biased gene conversion in placentals

- BGC above the nearly neutral threshold (B > 1) in some taxa
- significant force, deleterious effects (Galtier et al 2009, Berglund et al 2009)

Perspectives on biased gene conversion

BGC and recombination landscapes

- joint reconstruction of GC* and genome rearrangements
- teasing out population size, recombination rate, and repair bias
- modeling overdispersion due to recombination hotspots turnover

understanding the (mal)adaptive value of BGC

- population genetics models (modifier theory)
- is there a selective regulation (buffering) of BGC intensity?

Conclusions

- integrative approach for correlating substitution patterns and quantitative traits
- can yield mechanistic insights about causes of molecular evolution
- potential source of information for reconstructing evolution of life-history, population size, karyotype, and genetic systems

Perspectives

- further into mechanistic modeling (dN/dS, BGC)
- including data about body size of fossil taxa
- modeling bursts (punctuated equilibria) and trends (Cope's rule)
- including diversification models (as priors on divergence times)
- modeling trait-dependent speciation and extinction
- modeling correlation with discrete characters

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Acknowledgments

- Raphael Poujol
- Nicole Uwimana
- Frédéric Delsuc
- Nicolas Rodrigue
- Hervé Philippe
- many others...

Software availability (coevol)

www.phylobayes.org

Perspectives

A mechanistic phylogenetic covariance model

$$\begin{pmatrix} - & \mu_{AC} & \mu_{AG} & \mu_{AT} \\ \mu_{CA} & - & \mu_{CG} & \mu_{CT} \\ \mu_{GA} & \mu_{GC} & - & \mu_{GT} \\ \mu_{TA} & \mu_{TC} & \mu_{TG} & - \end{pmatrix} + B \implies \begin{pmatrix} - & \mu_{AC} \frac{B}{1-e^{-B}} & \mu_{AG} \frac{B}{1-e^{-B}} & \mu_{AT} \\ \mu_{CA} \frac{-B}{1-e^{B}} & - & \mu_{CG} & \mu_{CT} \frac{-B}{1-e^{B}} \\ \mu_{GA} \frac{-B}{1-e^{-B}} & \mu_{GC} & - & \mu_{GT} \frac{-B}{1-e^{B}} \\ \mu_{TA} & \mu_{TC} \frac{B}{1-e^{-B}} & \mu_{TG} \frac{B}{1-e^{-B}} & - \end{pmatrix}$$

 $B = 4N_e b$

- only 4-fold degenerate third codon positions
- substitution rate = mutation rate × fixation prob. (depends on *B*)
- modeling joint variations of B, body mass (M) and karyotype (2n)
- modeling variations among genes (local recombination rates)

Perspectives

Life-history and karyotypic covariates of BGC Predicted allometric scaling of $B = 4N_eb$

$$egin{array}{rcl} N_{e} &\sim& M^{\gamma_{M}},\,(\gamma_{M}<0)\ b &=& b_{0}r\ r &\sim& 2n \end{array}$$

therefore,
$$B \sim M^{\gamma_M} 2n^{\gamma_n}, (\gamma_M < 0, \gamma_n = 1).$$

Estimated scaling coefficients and mutation bias ($\lambda = AT^*/GC^*$)

 $\begin{array}{cccc} \gamma_{M} & \gamma_{n} & \lambda \\ \\ \hline & \gamma_{3 \ \text{taxa 17 genes}} & -0.11^{**} \ (-0.19, -0.03) & 1.28^{**} \ (\ 0.54, \ 2.03) & 1.38 \ (1.27, \ 1.50) \\ 33 \ \text{taxa 115 genes} & -0.28^{*} \ (-0.52, \ -0.01) & 0.21 \ (-1.20, \ 1.56) & 2.09 \ (2.04, \ 2.14) \\ \end{array}$

Estimated regression and Cope's trend parameters

Fossil calibrations

- on dates (8 lower bounds, 5 upper bounds, Springer et al, 2003)
- on ancestral body sizes:
 - placental ancestor: $\ln m \sim N(4.5, 2)$ (5 g to 2 kg) (Alroy, 1996)
 - ancestor of carnivores (< 2kg), cetartios (< 2kg) (Kemp, 2006)
 - ancestor of primates (< 1kg), perissos (< 20kg) (Kemp, 2006)

The evolution of body size (with trend)

500

The evolution of body size (without trend)

Impact on divergence dates

Age of placentals

Absence of correlation between dN/dS and body-size

Possible cause

- interference between purifying selection and biased gene conversion
- biased gene conversion can promote fixation of deleterious alleles (Galtier et al 2009, Berglund et al 2009)

Alternative interpretations of K_r/K_c

- nearly neutral interpretation (population size effect)
- more adaptative substitutions in larger and long living animals
- adaptive and nearly-neutral substitutions differentially sensitive to mutation rate or to generation-time
- perspective: making correlations with mitochondrial polymorphism

The evolution of body size

Cow Whale ancestor

500