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Model

Splitting trees (without mutations)

Individuals

behave independently from
one another,

have i.i.d. life durations
(with general distribution),

give birth at constant rate
during their lifetime.

A splitting tree is characterized by a σ-finite measure Λ on (0,∞) satisfying∫
(0,∞)

(1 ∧ r)Λ(dr) <∞ (the lifespan measure).

Example : if Λ is finite with mass b, individuals give birth at rate b and have life

durations distributed as Λ(·)/b.
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Model

Marked splitting trees

Individuals carry clonally
inherited types,

Neutral mutations may happen
along the birth events :
every newborn is affected by a
mutation with probability θ.

A marked splitting tree is characterized by its lifespan measure Λ and its
mutation parameter θ.
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Model

The coalescent point process

From now on, we fix τ > 0. The coalescent point process (CPP)
characterizes the genealogy of the individuals alive at τ :
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Model

The marked coalescent point process

The marked coalescent point process characterizes the genealogy of the
individuals alive at τ , enriched with the history of the mutations that
appeared over time :

Goal : getting asymptotic results for the marked coalescent point process
when the population size is large and mutations rare.
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Exploiting the contour of splitting trees

Contour of a splitting tree (without mutations)

Figure: Example of a finite splitting tree and its contour process.
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Exploiting the contour of splitting trees

Contour of a splitting tree (without mutations)
Consider :

T a splitting tree with lifespan measure Λ,

Tτ its truncation up to level τ

Z a finite variation Lévy process with Lévy measure Λ and drift −1.

Theorem (A. Lambert ’10)

Conditional on the first individual of T to have life span x, the contour of
Tτ is distributed as Z , starting at x ∧ τ , reflected below τ and killed upon
hitting 0.
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Exploiting the contour of splitting trees

Generalization to marked splitting trees

Figure: Example of a finite marked splitting tree and its contour process.
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Assumptions

Rescaling the populations

Let (Tn)n≥1 be a sequence of marked splitting trees :

Tn has

{
lifespan measure Λn

mutation parameter θn.

Consider the rescaled marked splitting trees T̃n obtained from Tn by
rescaling the branch lengths by a factor 1

n .
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Assumptions

Convergence assumptions

Let (dn)n≥1 be a sequence of positive real numbers, and
Zn be a finite variation Lévy process with Lévy measure Λn and drift −1.

Define

Z̃n :=
(1

n
Zn(dnt)

)
t≥0

.

The Lévy process Z̃n has drift −dn
n and Lévy measure dnΛn(n · ).

Contour of Tn ↔ Zn

Contour of T̃n ↔ Z̃n
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Assumptions

Convergence assumptions

Condition the population of T̃n on having In individuals alive at τ , where
In ∼

n→∞
dn
n .

Assumption A

As n→∞, Z̃n =
(

1
nZn(dnt)

)
t≥0

converges in distribution towards a Lévy

process Z with infinite variation.

Remark : dn
n →∞.

Assumption B

As n→∞, dn
n θn converges to some finite real number θ.
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Marked coalescent point process of T̃n

Marked coalescent point process of the rescaled population

For j ∈ {1, ..., In} we define σ
(j)
n as follows :

σ
(j)
n = {(m

(j)
0 , 0), (m

(j)
1 , 1)}
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Marked coalescent point process of T̃n

Marked coalescent point process of the rescaled population
Define the random point measure :

Σn =
∑

1<i≤In

δ{ in
dn
,σ

(i)
n }

Figure: A graphical representation of Σn
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Distribution of σ
(i)
n

How to characterize the law of (σ
(i)
n )1<i≤In ?

The marked CPP of T̃τn , the marked splitting tree T̃τn , and its contour process :
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Distribution of σ
(i)
n

How to characterize the law of (σ
(i)
n )1<i≤In ?

The marked CPP of T̃τn , the marked splitting tree T̃τn , and its contour process :

→ The r.v. (σ
(i)
n )1<i≤In are i.i.d.

→ For fixed i :
σ

(i)
n = {(m

(i)
0 , 0), (m

(i)
0 , 1), (m

(i)
1 , 1)} can be described from

the future infimum of the i-th excursion under τ of the contour process,
and the set of its marked jump times.
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Distribution of σ
(i)
n

How to characterize the law of σ
(i)
n (for a fixed i) ?

Conditional on e
(i)
n (ζ−) = x , the reversed excursion

(τ − e
(i)
n ((ζ − t)−), 0 ≤ t < ζ) is distributed as Z̃n(t) starting at x ,

hitting 0 before (τ,∞) and killed when hitting 0.
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Distribution of σ
(i)
n

How to characterize the law of σ
(i)
n (for a fixed i) ?

Define Hn the ladder height process of Z̃n : Hn = Z̄n ◦ L−1
n ,

where Ln is a local time at 0 of Z̄n − Z̃n, and L−1
n its inverse.
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(i)
n (for a fixed i) ?

Define Hn the ladder height process of Z̃n : Hn = Z̄n ◦ L−1
n ,

where Ln is a local time at 0 of Z̄n − Z̃n, and L−1
n its inverse.

We mark the jumps of Hn in accordance with the marks of Z̃n, and denote
by Hm

n the counting process of these marks.
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Distribution of σ
(i)
n

How to characterize the law of σ
(i)
n (for a fixed i) ?

(Hn,H
m
n ) is a (possibly killed) bivariate subordinator.

We call it the marked ladder height process.
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Distribution of σ
(i)
n

How to characterize the law of σ
(i)
n (for a fixed i) ?

The law of σ
(i)
n can be described from

the image of the jump times of Hm
n by Hn,

and Hn(Ln(T0)−) (the terminal value of Hn in the picture).
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Invariance principle for the marked CPP

Convergence of the marked LHP

Under assumptions A and B :

Lemma

the sequence of bivariate subordinators (Hn,H
m
n ) converges weakly in law

to a (possibly killed) subordinator (H,Hm), where

H and Hm are independent,

H is the ladder height process of Z ,

Hm is a Poisson process with parameter θ.
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Invariance principle for the marked CPP

Recall the definition of the random point measure Σn :

Σn =
∑

1<i≤In

δ{ in
dn
,σ

(i)
n }

Figure: A graphical representation of Σn
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Invariance principle for the marked CPP

Define

(Θi ) : the jump times of an indep. Poisson process with parameter θ

J := inf{i ≥ 0, Θi > L(T0)}
σ = {(H(Θ0), 1), . . . , (H(ΘJ−1), 1), (H(L(T0)−), 0)}

Figure: A graphical representation of σ
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Invariance principle for the marked CPP

Define

(Θi ) : the jump times of an indep. Poisson process with parameter θ

J := inf{i ≥ 0, Θi > L(T0)}
σ = {(H(Θ0), 1), . . . , (H(ΘJ−1), 1), (H(L(T0)−), 0)}

Theorem

As n→∞, (Σn) converges in distribution towards a Poisson point
measure with intensity

Leb|[0,1] · N(σ ∈ · , sup ε < τ),

where N is the excursion measure of Z away from 0.
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Invariance principle for the marked CPP

The Brownian case

Tn is a critical branching process such that :

Tn has

{
exponential lifespan measure Λn(dr) = e−r1r≥0dr

mutation parameter θn = β
n for some β ∈ [0, 1].

Z̃n ⇒ B (B the standard Brownian motion) (Ass. A)
dn
n ⇒ θ = β

2 (Ass. B)

The ladder height process of B is H(t) = 2t.
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Invariance principle for the marked CPP

The Brownian case

The limiting Poisson point measure Σ has intensity

Leb|[0,1] · N(Θ|[0,sup ε] ∈ · , sup ε < τ),

where Θ is an independent Poisson process with parameter β and Θ|[0,T ]

denotes its restriction to [0,T ].
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