Invariance principle for the marked coalescent point process

Cécile Delaporte

LPMA, Paris 6 - SMILE, CIRB Collège de France

1er avril 2013

Individuals

- behave independently from one another,
- have i.i.d. life durations (with general distribution),
- give birth at constant rate during their lifetime.

Individuals

- behave independently from one another,
- have i.i.d. life durations (with general distribution),
- give birth at constant rate during their lifetime.

Individuals

- behave independently from one another,
- have i.i.d. life durations (with general distribution),
- give birth at constant rate during their lifetime.

Individuals

- behave independently from one another,
- have i.i.d. life durations (with general distribution),
- give birth at constant rate during their lifetime.

A splitting tree is characterized by a σ -finite measure Λ on $(0, \infty)$ satisfying $\int_{(0,\infty)} (1 \wedge r) \Lambda(dr) < \infty$ (the *lifespan measure*).

Example : if Λ is finite with mass b, individuals give birth at rate b and have life durations distributed as $\Lambda(\cdot)/b$.

Marked splitting trees

- Individuals carry clonally inherited types,
- Neutral mutations may happen along the birth events : every newborn is affected by a mutation with probability θ.

A marked splitting tree is characterized by its lifespan measure Λ and its mutation parameter θ .

The coalescent point process

From now on, we fix $\tau > 0$. The *coalescent point process* (CPP) characterizes the genealogy of the individuals alive at τ :

The coalescent point process

From now on, we fix $\tau > 0$. The *coalescent point process* (CPP) characterizes the genealogy of the individuals alive at τ :

The coalescent point process

From now on, we fix $\tau > 0$. The *coalescent point process* (CPP) characterizes the genealogy of the individuals alive at τ :

Mode

The marked coalescent point process

The marked coalescent point process characterizes the genealogy of the individuals alive at τ , enriched with the history of the mutations that appeared over time :

Goal : getting asymptotic results for the marked coalescent point process when the population size is large and mutations rare.

- Consider :
 - ${\mathbb T}$ a splitting tree with lifespan measure $\Lambda,$
 - \mathbb{T}^{τ} its truncation up to level τ
 - Z a finite variation Lévy process with Lévy measure Λ and drift -1.

Theorem (A. Lambert '10)

Conditional on the first individual of \mathbb{T} to have life span x, the contour of \mathbb{T}^{τ} is distributed as Z, starting at $x \wedge \tau$, reflected below τ and killed upon hitting 0.

Generalization to marked splitting trees

Generalization to marked splitting trees

Rescaling the populations

Let $(\mathbb{T}_n)_{n\geq 1}$ be a sequence of marked splitting trees :

$$\mathbb{T}_n \text{ has } \begin{cases} \text{ lifespan measure } \Lambda_n \\ \text{ mutation parameter } \theta_n \end{cases}$$

Consider the rescaled marked splitting trees $\tilde{\mathbb{T}}_n$ obtained from \mathbb{T}_n by rescaling the branch lengths by a factor $\frac{1}{n}$.

Convergence assumptions

Let $(d_n)_{n\geq 1}$ be a sequence of positive real numbers, and Z_n be a finite variation Lévy process with Lévy measure Λ_n and drift -1. Define

$$\tilde{Z}_n := \left(\frac{1}{n}Z_n(d_n t)\right)_{t\geq 0}$$

The Lévy process \tilde{Z}_n has drift $-\frac{d_n}{n}$ and Lévy measure $d_n \Lambda_n(n \cdot)$.

Contour of
$$\mathbb{T}_n \iff Z_n$$

Contour of $\widetilde{\mathbb{T}}_n \iff \widetilde{Z}_n$

Convergence assumptions

Condition the population of $\tilde{\mathbb{T}}_n$ on having I_n individuals alive at τ , where $I_n \underset{n \to \infty}{\sim} \frac{d_n}{n}$.

Assumption A As $n \to \infty$, $\tilde{Z}_n = \left(\frac{1}{n}Z_n(d_n t)\right)_{t\geq 0}$ converges in distribution towards a Lévy process Z with infinite variation. Remark : $\frac{d_n}{n} \to \infty$. Assumption B As $n \to \infty$, $\frac{d_n}{n}\theta_n$ converges to some finite real number θ .

Marked coalescent point process of the rescaled population

For $j \in \{1, ..., I_n\}$ we define $\sigma_n^{(j)}$ as follows :

Marked coalescent point process of the rescaled population

For $j \in \{1, ..., I_n\}$ we define $\sigma_n^{(j)}$ as follows :

Marked coalescent point process of the rescaled population Define the random point measure :

Figure: A graphical representation of Σ_n

The marked CPP of $\tilde{\mathbb{T}}_{n}^{\tau}$, the marked splitting tree $\tilde{\mathbb{T}}_{n}^{\tau}$, and its contour process :

The marked CPP of $\tilde{\mathbb{T}}_n^{\tau}$, the marked splitting tree $\tilde{\mathbb{T}}_n^{\tau}$, and its contour process :

The marked CPP of $\tilde{\mathbb{T}}_n^{\tau}$, the marked splitting tree $\tilde{\mathbb{T}}_n^{\tau}$, and its contour process :

 \rightarrow The r.v. $(\sigma_n^{(i)})_{1 < i \leq I_n}$ are i.i.d.

The marked CPP of $\tilde{\mathbb{T}}_n^{\tau}$, the marked splitting tree $\tilde{\mathbb{T}}_n^{\tau}$, and its contour process :

and the set of its marked jump times.

Conditional on $e_n^{(i)}(\zeta -) = x$, the reversed excursion $(\tau - e_n^{(i)}((\zeta - t) -), 0 \le t < \zeta)$ is distributed as $\tilde{Z}_n(t)$ starting at x, hitting 0 before (τ, ∞) and killed when hitting 0.

Define H_n the ladder height process of \tilde{Z}_n : $H_n = \bar{Z}_n \circ L_n^{-1}$, where L_n is a local time at 0 of $\bar{Z}_n - \tilde{Z}_n$, and L_n^{-1} its inverse.

Define H_n the ladder height process of \tilde{Z}_n : $H_n = \bar{Z}_n \circ L_n^{-1}$, where L_n is a local time at 0 of $\bar{Z}_n - \tilde{Z}_n$, and L_n^{-1} its inverse.

We mark the jumps of H_n in accordance with the marks of \tilde{Z}_n , and denote by H_n^{M} the counting process of these marks.

 (H_n, H_n^{M}) is a (possibly killed) bivariate subordinator. We call it the *marked ladder height process*.

How to characterize the law of $\sigma_n^{(i)}$ (for a fixed *i*) ?

The law of $\sigma_n^{(i)}$ can be described from

- the image of the jump times of H_n^{M} by H_n ,
- and $H_n(L_n(T_0)-)$ (the terminal value of H_n in the picture).

Convergence of the marked LHP

Under assumptions A and B :

Lemma

the sequence of bivariate subordinators (H_n, H_n^M) converges weakly in law to a (possibly killed) subordinator (H, H^M) , where

- H and H^M are independent,
- H is the ladder height process of Z,
- H^{M} is a Poisson process with parameter θ .

Recall the definition of the random point measure Σ_n :

$$\Sigma_n = \sum_{1 < i \le I_n} \delta_{\{\frac{in}{d_n}, \sigma_n^{(i)}\}}$$

Figure: A graphical representation of Σ_n

Define

- (Θ_i) : the jump times of an indep. Poisson process with parameter θ
 J := inf{i ≥ 0, Θ_i > L(T₀)}
- $\sigma = \{(H(\Theta_0), 1), \dots, (H(\Theta_{J-1}), 1), (H(L(T_0)-), 0)\}$

Figure: A graphical representation of σ

Define

- (Θ_i) : the jump times of an indep. Poisson process with parameter θ
 J := inf{i ≥ 0, Θ_i > L(T₀)}
- $\sigma = \{(H(\Theta_0), 1), \dots, (H(\Theta_{J-1}), 1), (H(L(T_0)-), 0)\}$

Theorem

As $n\to\infty,\,(\Sigma_n)$ converges in distribution towards a Poisson point measure with intensity

$$Leb|_{[0,1]} \cdot N(\sigma \in \cdot, \sup \epsilon < \tau),$$

where N is the excursion measure of Z away from 0.

The Brownian case

 \mathbb{T}_n is a critical branching process such that :

 $\mathbb{T}_n \text{ has } \begin{cases} \text{ exponential lifespan measure } \Lambda_n(\mathrm{d}r) = e^{-r} \mathbb{1}_{r \ge 0} \mathrm{d}r \\ \text{ mutation parameter } \theta_n = \frac{\beta}{n} \text{ for some } \beta \in [0, 1]. \end{cases}$

•
$$\tilde{Z}_n \Rightarrow B$$
 (*B* the standard Brownian motion) (Ass. A)
• $\frac{d_n}{n} \Rightarrow \theta = \frac{\beta}{2}$ (Ass. B)

The ladder height process of B is H(t) = 2t.

The Brownian case

The limiting Poisson point measure $\boldsymbol{\Sigma}$ has intensity

$$\mathsf{Leb}|_{[0,1]} \,\cdot\, \mathit{N}(\Theta|_{[0, \sup \epsilon]} \in \,\cdot\,, \,\sup \epsilon < au),$$

where Θ is an independent Poisson process with parameter β and $\Theta|_{[0,T]}$ denotes its restriction to [0, T].

The Brownian case

The limiting Poisson point measure Σ has intensity

$$\mathsf{Leb}|_{[0,1]} \cdot \mathsf{N}(\Theta|_{[0, \sup \epsilon]} \in \cdot, \sup \epsilon < \tau),$$

where Θ is an independent Poisson process with parameter β and $\Theta|_{[0,T]}$ denotes its restriction to [0, T].

Figure: A graphical representation of $\boldsymbol{\Sigma}$