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Motivation and model
[ ]

Motivation

o Consider a population of diploid individuals
@ One gene, two alleles.

@ In a long-time scale, conditionally to the surviving of the population,
which allele will remain?

@ Can we observe a long-time coexistence of the two alleles?

Understand the quasi-stationary behavior of a diploid population.
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Motivation and model
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Model

2 alleles, A and a. Genotypes: AA, Aa and aa.

3-type birth-and-death process:

Zt:(Ztl,th,Z?).

Population size N = Z1 4+ 72 + 73,
271 + 72 = Al —number of alleles A,
273 + 72 = A2 —number of alleles a.

Proportion of allele A:

27t 4 72

X
2N
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Motivation and model
oe

Birth-and-death rates

@ Logistic model:
d'(Z) = (dy + c.1Z* + cnZ% + 51 2°) 7}

@ Diploid Mendelian reproduction:

b 22 2
bl(Z):% (Zl)2+zlz2+( 4)
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Motivation and model
o

Change of scale

@ Rescaling the size of individuals: ZX = Z/K € (Z4)3/K, K — 40
@ 2 birth and natural death scalings:

@ First scaling:
bk =5

1

df =46

1

K _
KC"j—O[

@ Second scaling:
b =K + i

d"K = ")/K + 51'

Kck

i = Qi
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Deterministic limit
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Deterministic limit in the first scaling

From Collet, P., Méléard, S., Metz, J.A.J. (2012), convergence toward a
deterministic limit (Z¢)¢>o0, if ZOK — Zp.

dz} 1S9 00

&, = b0 (2e) — db2(2y)
28 = p20(2,) — d>%(Zy)
dz3

22— p3o(2,) — dB(Z,).

4z} 2} — (2})? dY;
Y, = 7t o— L= Y, Vt>0 ifa=0.
t AN dt t =5 e

— Yt Yoe t.

Zl = Yoe O + (2§ — Yp)elB-o)
32 = —2Ype % 4 (22 + 2Yp)eld-0t
z,f? = Yoe % + (2§ — Yp)elA-0t.
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Deterministic limit
o

Hardy-Weinberg equilibrium
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Figure : Convergence of the sequence of processes YK towards the deterministic
function t — Ype °t. Each curve corresponds to a different value of K. In this
figure, 5 =10, 6§ =20, a = 0.
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Diffusion limit
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Second scaling and hypotheses

New scaling:
b =K + Bi
d"K =K +6;
K _ Qi
Cij = 7

Hypotheses: There exists a constant C such that for all K € N,
K K\ 2
K (Yo /No ) <,

E <(N5<)2) <C.
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Diffusion limit
o

Population size and Hardy-Weinberg deviation

Under these hypotheses:

@ There exists a constant C; such that for all K, sup E ((NtK)2> < G,
£>0

@ Forall t >0, YtK converges in L' toward 0 when K — oc.

Sufficient confitions on «j in the cooperation case.
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Diffusion limit
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Convergence toward a diffusion process

o The sequence of processes ((ALK, A2K)) _ “is tight.

@ This sequence converges toward a diffusion (A', A?) such that in the
neutral case:

4 AL A Al + A2
dAl = AlezA}dB}Jr ’yAl A2d82 (,@—5—a t;r f)A}dt
t t
4 AL A2 At + A
dA? = A11A2A§d3t1— 27A1 A2d33+<5—5—a t2 f)A’fdt
t t
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Diffusion limit
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Comparison with the haploid case 1

Diploid population:

AL+ A2
=\ A2A1d81 +4/27 AAAdeZ‘ (,@—5—a " f)A}dt

AL A2 At + A
2 1 2 2
ArdBE =\ |24 A%dBtJr(ﬂ—a_a ! t>Atdt

dA? =
Haploid Lotka-Volterra diffusion (Cattiaux, P., Méléard, S. (2009)):

dHf = \/2yH}dB} + (B — 6 — a(H} + HZ))H; dt

dH? = \/2yHZ2dB? + (B — § — a(H} + H?))H?dt
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Diffusion limit
o

Comparison with the haploid case 2

Diploid population:
dN; = (8 — 6 — aN;)Nedt + \/2yN,dB}

dX; = Mdlgf'
Ni

Haploid population (Cattiaux, P., Méléard, S. (2009)):

dN! = (8 — 0 — aNMNPdt + /2y NP dW}

29X[ (1 — X

dW?2.
NE

dXxf =
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Diffusion limit
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A change of variables

F <arccos 2X; — 1)>

s [y t (arccos 2X; — 1)> '

S = (S, S?) satisfies
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Diffusion coefficient

( w+%ln (sm( 2arctan< 2)))

_ (/3 5o ((51) (52)2)) (51)21(52)2
if St > 0

w + Zln (sin (\/§ (arctan (S—f) + w)))

wn

2

_ (5_5_ oy ((51)2 n (52)2» (s1) 1(52)2
if ST <0.




Quasi-stationary behavior
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52
B. (§1(N, X), S*(N, X))
<
N\
[N
2
\\0 arccos(2X—1)
~ v
A.
51
0={N=0} A={X=1}

Figure : Definition space D for S.
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ionary behavior

Absorption: properties

Theorem
(1) Forall x € D, Pyx(To < 00) =1 and there exists A > 0 such that
supxEx(e*0) < 400 (Cattiaux et al. 2009).

(if) Forallx € D\ O, P,(TaATg < Tp) =1.
@ True for the Brownian motion.
@ Girsanov Theorem on D, = Py(Ta, A Tg, < Tg) =1
@ Monotone convergence Theorem to conclude.

(iii) For all x € D\ 8D, Py(Ta < Tg) > 0, and Py(Tg < Tg) > 0.
@ In the neutral case, P,(Tg < Tgy) = 1/2 for all

X € Ben(n/2vz)-
@ Markov property to conclude.
@ Girsanov Theorem in the non-neutral case.
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Quasi-stationary behavior
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Quasi-stationary behavior

Theorem
(Cattiaux, P. and Méléard, S. (2009))
(i) There exists a unique distribution v; on D\ D such that
lim P(S; € E|Top > t) =n(E) ¥xe D\aD.

(/i) There exists a unique distribution v on D \ 0 such that
lim P(S; € E|To > t) =v(E) Vx €D\ aD.
(o]
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Quasi-stationary behavior
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Figure : Distribution of the proportion X; of allele A in a neutral case, knowing
that N; # 0. In this figure, 5; =1 = §;, and oy = 0.1 for all /, j.
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Quasi-stationary behavior
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Probability distribution
77197
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Figure : Distribution of the proportion X; of allele A in an overdominance case,
knowing that N; # 0. In this figure, 5; = 1, §; = 0, « is symmetric,
Qi = 0.1= 13 for all i, and Q12 = Qip3 = 0.
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Quasi-stationary behavior
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Perspectives

@ Which are the exact conditions for coexistence of the two alleles?
@ 3-dimensional numerical results.

@ More alleles.
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Quasi-stationary behavior
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