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Finite Autocatalytic Branching Dynamics

o At time t > 0: Each of the extant individuals dies at rate

(total mass of population at time t)*, «a €]0,1].
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o At time t > 0: Each of the extant individuals dies at rate
(total mass of population at time t)*, «a €]0,1].

o At end of life: Individual leaves k € Ny offspring with probability py
(critical, finite 4t moments, variance o2 > 0)

@ During life: Individuals age = deterministic growth of genealogical
distances at speed 2

o At any time: Conditional on current population, all clocks
independent from each other.
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Finite Autocatalytic Branching Dynamics

o At time t > 0: Each of the extant individuals dies at rate
(total mass of population at time t)*, «a €]0,1].

o At end of life: Individual leaves k € Ny offspring with probability py
(critical, finite 4t moments, variance o2 > 0)

@ During life: Individuals age = deterministic growth of genealogical
distances at speed 2

o At any time: Conditional on current population, all clocks
independent from each other.

4 L

Construct nice process which models dynamics of ge-
nealogy and total mass for finite populations and large
population approximations ...
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Generalisation: y-Autocatalytic

Replace individual branching rate

(total mass)® ~~ ~(total mass)
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Generalisation: y-Autocatalytic

Replace individual branching rate
(total mass)® ~~ ~(total mass)

where

7eGY:={ge C(Ry,Ry):glio,00) >0,
x > xg(x) locally Lipschitz,
g(x) = O(x*) as x T o,
g(x) ~ x*as x| 0}.

X

[:<:> limy o gd _ ¢ > 0]
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Intro

Coding by Ultrametric Measure Spaces

@ At each time t € [0, 7ex), population represented by a non-empty set:

== Lexicographic names: <1,2,1,3> is 3" child of <1,2,1>
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@ At each time t € [0, 7ex), population represented by a non-empty set:

== Lexicographic names: <1,2,1,3> is 3" child of <1,2,1>
o Genealogical distances in Z; given by ultrametric r;:
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= r:(i,j) = length of shortest path [/, ] in genealogical tree
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Intro

Coding by Ultrametric Measure Spaces

@ At each time t € [0, 7ex), population represented by a non-empty set:

== Lexicographic names: <1,2,1,3> is 3" child of <1,2,1>
o Genealogical distances in Z; given by ultrametric r;:
(It7 rt)
= r:(i,j) = length of shortest path [/, ] in genealogical tree
o Weight of each individual in Z; given by p; = ZIGL we(7)d; :
(Ze, re, 12)

1 if t # death time of /
k—1 if t = death time of / and k offspring

= we(i) = {
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Intro

Coding by Ultrametric Measure Spaces

@ At each time t € [0, 7ex), population represented by a non-empty set:

== Lexicographic names: <1,2,1,3> is 3" child of <1,2,1>
o Genealogical distances in Z; given by ultrametric r;:

(Ze, re)

= r:(i,j) = length of shortest path [/, ] in genealogical tree
o Weight of each individual in Z; given by p; = ZIGL we(7)d; :

(In rt>,“t)

) 1 if t # death time of /
= (i) = "¢ 7 deathtime of ¢ |
k—1 if t = death time of / and k offspring
@ Identify populations with same distribution of genealogical distances:

[Utart»/it]
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Intro

Coding by Ultrametric Measure Spaces

@ At each time t € [0, 7ex), population represented by a non-empty set:

== Lexicographic names: <1,2,1,3> is 3" child of <1,2,1>
o Genealogical distances in Z; given by ultrametric r;:
(It7 rt)

= r:(i,j) = length of shortest path [/, ] in genealogical tree
o Weight of each individual in Z; given by p; = ZIGL we(7)d; :

(Ze, re, 12)
) 1 if t # death time of /
= (i) = " ¢ 7 death time of |
k—1 if t = death time of i and k offspring
@ Identify populations with same distribution of } ™" V' %t=ces:
Ultrametric
[Ut, re, pe] measure space!
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Measure Spaces

© Metric Measure Spaces
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
r=[X,r,u]: (X,r) Polish metric space,

i positive finite measure on B(X)

ﬁmpling measure’ j
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

ﬁmpling measure’ j
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M : ,U(X) =1, ﬁ B "
sampling measure j
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M;: u(X) =1, Usg: r ultrametric, § . =
sampling measure j
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M;: u(X) =1, Usg: r ultrametric, § . =
sampling measure j

First consider M ...
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M;: u(X) =1, Usg: r ultrametric, § . =
sampling measure j

First consider M ...

@ Distance matrix map:

R(Xar)7” : X" —>]D)n7
(Xla"'aXn) = (r(Xian))1§i<j§n
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M;: u(X) =1, Usg: r ultrametric, § . =
sampling measure j

First consider M ...

@ Distance matrix map:
R(Xr)n . X" — D7,
(Xla"'aXn) = (r(Xian))1§i<j§n
@ Distance matrix distributions:
yE — (R(X,r),n)*u(@n
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Metric Measure Spaces
Metric Measure Spaces

Metric measure spaces:
Mo = {x = [X,r, 1] : (X, r) Polish metric space,
1 positive finite measure on B(X)}

M;: u(X) =1, Usg: r ultrametric, § . =
sampling measure j

First consider M ...

@ Distance matrix map:
R(Xr)n . X" — D7,
(Xla"'aXn) = (r(Xian))1§i<j§n
@ Distance matrix distributions:
yE — (R(X,r),n)*#(@n

o Characterisation on My [Gromov,/Vershik 99] :

r=r &= =y ¥n>2
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
e C C Cp(D") separating for My (D")

My (C) separates points on My
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
e C C Cp(D") separating for My (D")

My (C) separates points on My

@ Gromov-weak topology: initial topology induced by Mg

——> Polish! [Greven/Pfaffelhuber/Winter 09]
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
e C C Cp(D") separating for My (D")

My (C) separates points on My

@ Gromov-weak topology: initial topology induced by Mg

——> Polish! [Greven/Pfaffelhuber/Winter 09]

@ Gromov-Prohorov metric:

dep(r,x') == inf dp ((©x)wpts (0x1)et’)
(SDX7‘PX’7Z)

——> complete!

[Greven/Pfaffelhuber/Winter 09]
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
e C C Cp(D") separating for My (D")

My (C) separates points on My

@ Gromov-weak topology: initial topology induced by Mg

——> Polish! [Greven/Pfaffelhuber/Winter 09]

@ Gromov-Prohorov metric:

dep(r,x') == inf dp ((©x)wpts (0x1)et’)
(SOX#PXUZ)

letel over all isometric embeddings

m :

(== complete ox X Z, ox : X' = Z
Ptaffelhuber/Wi . )

[Greven/Plaffelhuber/Winter 09] | into common metric space (Z, rz)
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Metric Measure Spaces

Polynomials, Topology and Metrisation on M

@ ®-polynomials ® : M; — R,
(x) == (g, v™).
e C C Cp(D") separating for My (D")

My (C) separates points on My

@ Gromov-weak topology: initial topology induced by Mg

——> Polish! [Greven/Pfaffelhuber/Winter 09]

[dp Prohorov metric J

V&
dep(r,r’) ;== inf )dp ((2x)wtts (x7)5t")

(px,pxr Z

@ Gromov-Prohorov metric:

letel over all isometric embeddings

m :

(== complete ox X Z, ox : X' = Z
Ptaffelhuber/Wi . )

[Greven/Plaffelhuber/Winter 09] | into common metric space (Z, rz)
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Metric Measure Spaces

Polar Decomposition

Now consider M. ...
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Metric Measure Spaces

Polar Decomposition

Now consider Mg ... each ¢ € Mg has two “separate” aspects:

@

> total mass (population size)
> distribution of distances (genealogy)

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Metric Measure Spaces
Polar Decomposition

Now consider Mg ... each ¢ € Mg has two “separate” aspects:

@

> total mass (population size)
> distribution of distances (genealogy)

@ Polar decomposition:

m;::N(X)v pi=—-u, f::[X”’?ﬁ]'
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Metric Measure Spaces
Polar Decomposition

Now consider Mg ... each ¢ € Mg has two “separate” aspects:

@

> total mass (population size)
> distribution of distances (genealogy)

@ Polar decomposition:

m;::N(X)v pi=—-u, f::[X”’?ﬁ]'

@ Bijection:
My — Ryo x My,
7T - ~
X — (m* 7).
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Metric Measure Spaces
Polar Decomposition

Now consider Mg ... each ¢ € Mg has two “separate” aspects:

@

> total mass (population size)
> distribution of distances (genealogy)

@ Polar decomposition:

m;::N(X)v pi=—-u, f::[X”’?ﬁ]'

@ Bijection:
My — Ryo x My,
7T - ~
X — (m* 7).

@ Inverse = skew product:

7 x,1) =x@1 = [X,r,xu].
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Metric Measure Spaces

The Space M

@ Polar Gromov-Prohorov metric on M5 q

docp(2,1') := deua @ dep(m(z), 7(x')) = [m* — m*| + dep (£, )
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Metric Measure Spaces
The Space M

@ Polar Gromov-Prohorov metric on M5 q
oGP (. 1') 1= deuat ® dap(m(x), (') = [m* — m* | + dep(i. )
e Completion of (Mxo, dygp) m—=> complete separable metric space:
(M7 dpGP) = (]R+ X Mla deucl 02 dGP) .

[Extend © to completion in obvious way.]
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Metric Measure Spaces
The Space M

@ Polar Gromov-Prohorov metric on M5 q
oGP (. 1') 1= deuat ® dap(m(x), (') = [m* — m* | + dep(i. )
e Completion of (Mxo, dygp) m—=> complete separable metric space:
(M7 dpGP) = (]R+ X Mla deucl 02 dGP) .

[Extend © to completion in obvious way.]

@ W-polynomials ¥ : M — R

W(r) i= WY (r) i= p(m*) " (%)
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Metric Measure Spaces
The Space M

@ Polar Gromov-Prohorov metric on M5 q
oGP (. 1') 1= deuat ® dap(m(x), (') = [m* — m* | + dep(i. )
e Completion of (Mxo, dygp) m—=> complete separable metric space:
(M7 dpGP) = (]R+ X Mla deucl 02 dGP) .

[Extend © to completion in obvious way.]

@ W-polynomials ¥ : M — R

W(r) i= WY (r) i= p(m*) " (%)

o If o CiC Cp(Ry) separates points on R
o C2 C Cp(D") separating on M;(D")

o (1 or Cp contains 1

My (Cy1,Ca) separates points on M.
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crete Process

© Discrete Process
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The Discrete Tree-Valued ACBP

Explicit construction from lexicographic representative process

> @@D(1))es0

Tree-valued a-autocatalytic branching process

# piecewise deterministic Markov process taking values in U #
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The Discrete Tree-Valued ACBP

Explicit construction from lexicographic representative process

> @@D(1))es0

Tree-valued a-autocatalytic branching process
# piecewise deterministic Markov process taking values in U #
Rescale:
@ time t ~ Nt

® mass [~ 7 p
e initial # of individuals O(1) ~ O(N)

> (WeM(1)ez0
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The Discrete Tree-Valued ACBP

Explicit construction from lexicographic representative process

> @@D(1))es0

Tree-valued a-autocatalytic branching process

# piecewise deterministic Markov process taking values in U #

Rescale:
o time t ~~ Nt
@ mass pi ~ %u
e initial # of individuals O(1) ~ O(N)

> (WeM(1)ez0

Effective state space:

1 n
N) _ - :
UM = {[U,r,p] elip=g ;:1 w,au,} U {n}
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Discrete Process

Properties

Generator:
Q((YJV) wN -Q (N) \UN + Q (¢ N)

grow bran
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Discrete Process
Properties

wN UM 5 R
defined as W but sampling w/o replacement

Generator: /

Q((YJV) wN _ Q(N) \UN -|—Q(a’N)\UN

grow bran

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Discrete Process
Properties

wN UM 5 R
defined as W but sampling w/o replacement

Generator: /

QeN) YN _ V) yN +Q(ouN)\I,/v

grow bran
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Discrete Process
Properties

wN UM 5 R
defined as W but sampling w/o replacement

Generator: /

QeN) YN _ V) yN +Q(oz,N)w/v

grow bran

o 1N solves the MGP for

(Q((x,N)’ .AI—IEUN)(CK7 C[}bc)) ;
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Discrete Process
Properties

wN UM 5 R
defined as W but sampling w/o replacement

Generator: /

QeN) YN _ V) yN +Q(ouN)\I,/v

grow bran

o 1N solves the MGP for
(Q((!,N)’ An\(uN)(CKv C;bc)) .

o U(@N) has sample paths in Dym[0, 00).
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Discrete Process
Properties

wN UM 5 R
defined as W but sampling w/o replacement

Generator: /

QeN) YN _ V) yN +Q(ouN)\I,/v

grow bran

o 1N solves the MGP for
(Q((!,N)’ An\(uN)(CKv C;bc)) .

o U(@N) has sample paths in Dym[0, 00).

o (>N is a Borel process.
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Discrete Process
Properties

[\UN UM SR J

defined as W but sampling w/o replacement

Generator: /

QeN) YN _ V) yN +Q(ouN)\I,/v

grow bran

o 1N solves the MGP for
(Q((!,N)’ An\(uN)(CKv C;bc)) .

o U(@N) has sample paths in Dym[0, 00).

o U(®N) is a Borel process.

o U(®N) js a strong Markov process.
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@ Tightness

atric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branchin,



Tightness
Tightness

From now on assume:
. (a, )
o limsupy_ . E {mu (0)} < 00

N— oo

o Jv e My(U): £ [ulM(0)] ="v
o v(Usg)=1

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Tightness
Tightness

From now on assume:
o limsupy_ . E [mu(a'm)(o)] < 00
o Jv e My(U): £ [ulM(0)] ="v
o y(Usp)=1

Proposition

(1) For each a €[0,1], R € N, { U(»N:R) - N € N} is tight.
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Tightness
Tightness

From now on assume:

o limsupy_ . E [mu(a'm)(o)] < 00
U(@N) stopped

when total mass

hits level 1/R

o Jv e My(U): £ [ulM(0)] ="v
o y(Usp)=1

Proposition

(1) For each a €[0,1], R € N, { U(»N:R) - N € N} is tight.
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Tightness
Tightness

From now on assume:

o limsupy_ . E [mu(a'm)(o)] < 00

U(@N) stopped
when total mass
hits level 1/R

o Jv e My(U): £ [ulM(0)] ="v
o y(Usp)=1

Proposition

(1) For each a €[0,1], R € N, { U(»N:R) - N € N} is tight.
(2) {U®N) ;N € N} is tight.
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Tightness
Tightness

From now on assume:

o limsupy_ . E [mu(a'm)(o)] < 00

U(@N) stopped
when total mass
hits level 1/R

o Jv e My(U): £ [ulM(0)] ="v
o v(Usg)=1

Proposition

(1) For each a €[0,1], R € N, { U(»N:R) - N € N} is tight.
(2) {U®N) ;N € N} is tight.

Proof:

(1) Jakubowski's tightness criterion

—> Verify: compact containment + weak tightness
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Tightness
Tightness

From now on assume:

o limsupy_ . E [mu(a'm)(o)] < 00

U(@N) stopped
when total mass
hits level 1/R

o Jv e My(U): £ [ulM(0)] ="v
o v(Usg)=1

Proposition

(1) For each a €[0,1], R € N, { U(»N:R) - N € N} is tight.
(2) {U®N) ;N € N} is tight.

Proof:

(1) Jakubowski's tightness criterion

—> Verify: compact containment + weak tightness

(2) Any limit process will never hit zero a
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a’m : N € N} satisfies compact containment condition in R.
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a'm) : N € N} satisfies compact containment condition in R.

(2) {{(eN) . N e N} satisfies compact containment condition in Us.
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a'm) : N € N} satisfies compact containment condition in R.

(2) {{>N): N € N} satisfies compact containment condition in Uy .

Proof:
(1) m™ s martingale + Doob inequality
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a'm) : N € N} satisfies compact containment condition in R.

(2) {{>N): N € N} satisfies compact containment condition in Uy .

Proof:
(1) m™ s martingale + Doob inequality

(2) Criterion based on relative compactness characterisation for Uy
[Criterion due to Greven/Pfaffelhuber/Winter 12].
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a'm) : N € N} satisfies compact containment condition in R.

(2) {{>N): N € N} satisfies compact containment condition in Uy .

Proof:
(1) m™ s martingale + Doob inequality

(2) Criterion based on relative compactness characterisation for Uy
[Criterion due to Greven/Pfaffelhuber/Winter 12].

o Relative proportion of subpopulations doesn’t grow too much in [0, T]
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Compact Containment Condition

Proposition

{(esN) - N € N} satisfies compact containment condition in U.

Proof: Show separately for polar coordinates < a

Proposition

(1) {mu(a'm) : N € N} satisfies compact containment condition in R.

(2) {{>N): N € N} satisfies compact containment condition in Uy .

Proof:
(1) m*" s martingale + Doob inequality

(2) Crif # ancestors at time t — € |actness characterisation for U;
[crig of population at time t nter 12]:

° Relativ%)portion of subpopulations doesn’t grow too much in [0, T]
o {S!M(t) : NeN}tight forevery 0 <e<t<T a
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Good vs bad genealogy
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Compact Containment for Genealogy
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Tightness

Compact Containment for Genealogy T s r e e
Proposition , of population at time t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.
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Tightness

Compact Containment for Genealogy T s r e e
Proposition , of population at time t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof:
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Tightness

Compact Containment for Genealogy T s r e e
Proposition , of population at time t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof:

Proposition ()

Forall 0<s<t<oo, e:=t—s,

IP’{SE(O’N)(t) € } = /oo Poiss(;’;> IED{ X©x)(s) € dx} .
0
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Tightness

Compact Containment for Genealogy T s r e e
Proposition of population at time t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof:

Feller's
branching
diffusion

IP’{SE(O’N)(t) € } = /oo Poiss(j:z> IED{ X©x)(s) € dx} .
0

Proposition ()

Forall 0<s<t<oo, e:=t—s,
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Tightness

Compact Containment for Genealogy e Y e
of population at time t

Proposition
For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof:

Feller's
branching
diffusion

Proposition ()
Forall 0<s<t<oo, e:=t—s,

IP’{SE(O’N)(t) € } = /oo Poiss(j:z> IED{ X©x)(s) € dx} .
0

Proof:
@ Decomposition into independent sub-populations
a

@ Convergence of total mass processes to Feller
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Tightness

Compact Containment for Genealogy T —
of population at time t

Proposition
For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof: Follows from Proposition (x)

Feller's
branching
diffusion

Forall 0<s<t<oo, e:=t—s,

IP’{SE(O’N)(t) € } = /oo Poiss(j:z> IED{ X©x)(s) € dx} .
0

Proof:
@ Decomposition into independent sub-populations
a

@ Convergence of total mass processes to Feller
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Tightness

Compact Containment for Genealogy 4 ancestors at time t — ¢
— of population at time ¢t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof: Follows from Proposition (%) and aj-az-coupling: random time

change o such that (@) (0,N)

#2°" = #2 "t

Feller's
branching
diffusion

Forall 0<s<t<oo, e:=t—s,
O e Y Nz [T poiss 22X (0,00)
IP’{SE (t) € } = /o Ponss(€02 IED{ X (s) € dx} .

Proof:
@ Decomposition into independent sub-populations
@ Convergence of total mass processes to Feller a

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Tightness

Compact Containment for Genealogy 4 ancestors at time t — ¢
— of population at time ¢t

For every 0 < t < oo and 0 < e < t, { S‘M(t) : N € N} is tight.

Proof: Follows from Proposition (%) and aj-az-coupling: random time
change o such that

(e ,N) (0,N)
# of individuals #1 (s)= #I (a(s))
= S@V(s+e) < SOV (o(s) + <) a

Feller's
branching
diffusion

Forall 0<s<t<oo, e:=t—s,
O () e YNz [T poiss 22X (0,00)
IP’{SE (t) € } = /o Ponss(€02 IED{ X (s) € dx} .

Proof:
@ Decomposition into independent sub-populations
@ Convergence of total mass processes to Feller a
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Continuous Processes

© Continuous Processes
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for
(QFV7 H(D(Cgbc))
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for

where (QFV7 I"Iq,(CgbC))

QVor? .= Qo) om? + Ql)em?
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for

where (QFV7 I"Iq,(CgbC))

QVon? .= Q) om? + Ql)em?

Qgﬁg&,d)""t = <2 Z %Qﬁ 1/"">

1<i<j<n ="
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for

where (QFV7 I"Iq,(CgbC))

QVor? .= Qo) om? + Ql)em?

Qg:g&,an@ = <2 Z %d), 1/”">

1<i<j<n = '

AIon =02 3 ({0 biy ™)~ (0"))

1<i<j<n
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for

where (QFV7 H¢(C§b6))

QFVepme .— Q(g?gevq)n,zé + Qgg:)¢n,¢

Q) oo = <2 Z iq&, substitute individual

gro o .
1<i<j<n W for j

AIon =02 3 ((goflig ")~ (0v"))

1<i<j<n
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

variance of
offspring
distribution

Let
o X(1:) .= geometric BM with diffusion coefficient o2

o UFV := tree-valued Fleming-Viot process with rate o2
> Takes values in Uy, unique solution of MGP for

where (QFV7 I"Iq,(CgbC))

QFVepme .— Q(g?gevq)n,zé + QSeO:)q)n#z’

Q) oo = <2 Z id% substitute individual

gro o .
1<i<j<n W for j

QIon =02 3 (60l ™)~ (0")

1<i<j<n

o X1 || YFV supported on same probability space
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

4=)(e) = XOH() @ 4V(r) , 0.
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

4=)(e) = XOH() @ 4V(r) , 0.

Generator QL) WYin @ (yy)
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

4=)(e) = XOH() @ 4V(r) , 0.

Generator QL) WYin @ (yy)

= $(m*) QO™ () + QWY (u)

grow
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

4=)(e) = XOH() @ 4V(r) , 0.

Generator QL) WYin @ (yy)
=y(m")Q Q) ¢"’¢(ﬁ) + Q(léio)wi/f;n@(u)

grow

:(A(lmw( ) one(a) + umt) ( Afene(@) + 2 en(a) )
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

Generator of | U(1)(¢) = XL)() @ UFV(t) , t>0.

geometric BM

= P(m NGO (8) + QW (u)
— (A0 ) o7 (@) -+ u(m) ( 9fEhore(@) + 2 ene(w) )
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

Generator of | U(1)(¢) = XL)() @ UFV(t) , t>0.

geometric BM

QL) Ywim o (1) Generator of

Fleming-Viot

= U N, O™ (@) + Q4 ()
— (A0 ) (@) + o) (| 9fRone(@) + 2Fere(@) )
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Continuous Processes

Tree-Valued Autocatalytic Branching Diffusions

Definition

Define tree-valued 1-autocatalytic branching diffusion by

Generator of | U(1)(¢) = XL)() @ UFV(t) , t>0.
geometric BM

QL) Ywim o (1) Generator of
Fleming-Viot

= P(m NGO (@) + QW (u)
— (A0 ) (@) + o) (| 9fRone(@) + 2Fere(@) )

The MGP for

(@0 nu(* G, Ct<))

is well-posed and (1> s the solution.
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Continuous Processes

Properties and Convergence
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Continuous Processes
Properties and Convergence

(1) 24 has sample paths in Cy[0, c0).
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) 4> is a Borel process.
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) Ut is a Borel process.

(3) U>0) is a strong Markov process.
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) Ut is a Borel process.

(3) U0 is a strong Markov process.

Proof: e properties of X(1:°) {(FV @ MGP well-posed a
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) Ut is a Borel process.

(3) U0 is a strong Markov process.

Proof: e properties of X(1:) §(FV o MGP well-f™~<ed 5
Invariance principle!
Theorem

Assume UM (0) = v such that v € M;(U). Then, on Dy[0, o),
¢((LN) N2220 ¢((1,00)
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) Ut is a Borel process.

(3) U0 is a strong Markov process.

Proof: e properties of X(1:) §(FV o MGP well-f™~<ed 5
Invariance principle!
Theorem

Assume UM (0) = v such that v € M;(U). Then, on Dy[0, o),
¢((LN) N2220 ¢((1,00)

Proof: e generator convergence o tightness of {{{tNV) : N € N} o limit
MGP well-posed a
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Continuous Processes
Properties and Convergence

(1) U®>°) has sample paths in Cy[0, 00).

(2) Ut is a Borel process.

(3) U0 is a strong Markov process.

Proof: e properties of X(1:) §(FV o MGP well-f™~<ed 5
Invariance principle!
Theorem

Assume UM (0) = v such that v € M;(U). Then, on Dy[0, o),
¢((LN) N2220 ¢((1,00)

Proof: e generator convergence o tightness of {{{tNV) : N € N} o limit
MGP well-posed a

Polar coordinates converge.
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Continuous Processes
The ~-Autocatalytic Case

Let v € G%. Replace individual branching rate

(total mass)® ~~ ~(total mass)
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Continuous Processes
The ~-Autocatalytic Case

Let v € G%. Replace individual branching rate

(total mass)® ~~ ~(total mass)

@ Results for a-autocatalytic true for v € G, in particular, for o = 1.

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Continuous Processes
The y-Autocatalytic Case

Let v € G%. Replace individual branching rate

(total mass)® ~~ ~(total mass)

@ Results for a-autocatalytic true for v € G, in particular, for o = 1.

@ Generator of tree-valued v-autocatalytic branching diffusion £((7:>°)

QUroIybind (i) = ( A () ) o™ (11)

o0 A~ mu oo ~
+op(m) | Qlelonem) + % Qi ome (i)

Skew product form!
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic
(total m branching diffusion

2 "
@ Results for a-autocatalyti F(m*)m " (m*) by, ticular, for o = 1.

o Generator of tree-valued ",/-aut%{atalytic branching diffusion £((7:>°)

QUroIybind (i) = ( AC) () ) o™ (11)

o0 A~ mu oo ~
+op(m) | Qlelonem) + % Qi ome (i)

Skew product form!
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic
(total m branching diffusion

2 "
@ Results for a-autocatalyti F(m*)m " (m*) by, ticular, for o = 1.

o Generator of tree-valued ",/-aut%{atalytic branching diffusion £((7:>°)

QUroIybind (i) = ( AC) () ) o™ (11)

o0 ~ mu oo ~
() | afene@ + 1) g@lons)

Skew product form!
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic

(total m branching diffusion = p——
2 " eming-Viot
@ Results for a-autocatalyti 2 (M )mE Y (m*) o ric resampling rate

o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

o0 A~ mu oo ~
+op(m) | Qlelonem) + % Qi ome (i)

Skew product form!
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic

(total m branching diffusion = p——
2 " eming-Viot
@ Results for a-autocatalyti 2 (M )mE Y (m*) o ric resampling rate

o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

o0 A~ mu oo ~
+op(m) | Qlelonem) + % Qi ome (i)

Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic
(total m branching diffusion

2 7
@ Results for a-autocatalyti SA(m)m " (m*) hartic

Fleming-Viot

resampling rate
o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

u
Lom) | agdene@y + ™) glgneg)
mu
Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.

o £[ 8020 | (4 (Seso | =
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic
(total m branching diffusion

2 7
@ Results for a-autocatalyti SA(m)m " (m*) hartic

Fleming-Viot

resampling rate
o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

u
Lom) | agdene@y + ™) glgneg)
mu
Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.

o £[ 8020 | (Do | =
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic
(total m branching diffusion

2 7
@ Results for a-autocatalyti SA(m)m " (m*) hartic

Fleming-Viot

resampling rate
o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

u
Lom) | agdene@y + ™) glgneg)
mu
Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.

o | 3029(e) | (@O e))o | -
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic

(total m branching diffusion = p——
2 " eming-Viot
@ Results for a-autocatalyti 2 (M )mE Y (m*) o ric resampling rate

o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

u
Lom) | agdene@y + ™) glgneg)
mu
Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.

o L {ﬁ('y’w)(t) ‘ (mu(%m)(s))szo] = distribution of FV process with
time-inhomogeneous resampling

t (v,00)
ate(mt )

g
mu(W=00)(t)
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Continuous Processes
The ~-Autocatalytic Case

Let v € G*. Replace individual Generator of
~-autocatalytic

(total m branching diffusion = p——
2 " eming-Viot
@ Results for a-autocatalyti 2 (M )mE Y (m*) o ric resampling rate

o Generator of tree-valued ",/-aut%{atalytic branching di{ now depends

|
QU yind(y) = ( AC20)(mt) ) o™ (4) on total mass!

u
Lom) | agdene@y + ™) glgneg)
mu
Skew product form!

e MGP for ( Q02 Ny(1Ce, Cgbc),6u> is well-posed.

o L {ﬁ('y’w)(t) ‘ (mu(%m)(s))szo] = distribution of FV process with
time-inhomogeneous resampling

t (v,00)
ate y(mt )

(o2
mu(%oo)(t)
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Skew Product MG

@ Skew Product MGPs
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Skew Product MG

y) Problem
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A)CbB(E)) . (B,D(B) CbB(E;)) operators.
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.

o v:E — R, , atleast locally bounded measurable.
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.

o v:E — R, , atleast locally bounded measurable.

@ (X, Y) stochastic process solving D, x ,[0, 00) MGP corresponding

to
(Lf))(xy) = (ANK) g(y) + F)(1(x) (Be)Y) ).
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.

o v:E — R, , atleast locally bounded measurable.

@ (X, Y) stochastic process solving D, x ,[0, 00) MGP corresponding

to
(L(f))(xy) = (ADK) g(v) + F()(1(x) (Ba)y) ).
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.

o v:E — R, , atleast locally bounded measurable.

@ (X, Y) stochastic process solving D, x ,[0, 00) MGP corresponding

to
(L)) (x,y) = (ADK) g(v) + F()( 1(x) (BR)Y) ).
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Skew Product MGPs

(Toy) Problem

Setting:
o (A, D(A) CbB(E1)) . (B,D(B) CbB(E;)) operators.

o v:E — R, , atleast locally bounded measurable.

@ (X, Y) stochastic process solving D, x ,[0, 00) MGP corresponding

to
(L(f))(xy) = (ADK) g(v) + F() () (Be)Y) )

Patric Karl Gléde Dynamics of Genealogical Trees for Autocatalytic Branching ...



Skew Product MGPs
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Skew Product MGPs
Uniqueness

Q (X, Y) unique solution of MGP for (L, D(L) = D(A)D(B))?
A Yes!
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Uniqueness

Q (X, Y) unique solution of MGP for (L, D(L) = D(A)D(B))?
A Yes!

From now on assume w.l.o.g.
(©,.A) = canonical space (Dg, xE,[0, ), B(DEg, x £,[0, 0))).
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A Yes!

From now on assume w.l.o.g.
(©,.A) = canonical space (Dg, xE,[0, ), B(DEg, x £,[0, 0))).

Consider setting above. Let (x, y) € E; X E.

The DE, xE,[0,00) MGP for (L, D(L), 6(«,y)) has unique solution.
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Skew Product MGPs
Uniqueness

Q (X, Y) unique solution of MGP for (L, D(L) = D(A)D(B))?
A Yes!

From now on assume w.l.o.g.
(©,.A) = canonical space (Dg, xE,[0, ), B(DEg, x £,[0, 0))).

Consider setting above. Let (x, y) € E; X E.

The DE, xE,[0,00) MGP for (L, D(L), 6(«,y)) has unique solution.

Proof: Key Idea =) If (X, Y) solves the skew product MGP, then

g(Y(t)) - /0 V(X(s))(Bg)(Y(s))ds

is a martingale conditional on X ... a
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Skew Product MGPs

Proof (1) — The Conditional MGP

Qs g(Y(t))— jg v(X(s))(Bg)(Y(s))ds martingale conditional on X?

A Yes!
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Skew Product MGPs

Proof (1) — The Conditional MGP

Qs g(Y(t)) — j;)t v(X(s))(Bg)(Y(s))ds martingale conditional on X?

A Yes!

Proposition

Assume setting from above and . ..

° (x,y) € £ x E.

o (X,Y)slv. Dg, xg,[0,00) MGP for (L, D(L),d(x,)) on (2, A,P).
Define:

o Py :=Po X1

@ Q(:|x) := regular version of P{-| X = x}.

@ Y solves MGP for ((y o x(t)B):>0, P(B), d,) under Q( - |x) for
Px-a.a. x.

e Fdd of Y under Q( - |x) uniquely determined by Y (0) = y.
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Skew Product MGPs

Proof (2) — Preservation of Martingale Property

Assume:
(2, A, F := (Ft)t>0,P) a filtered probability space.

o N = (N(t))t>0 a locally square integrable martingale.

@ M a family of locally square integrable martingales.
e MLN, thatis, (M, N)(t) =0, ass., forall t >0and M € M.

o FM = (FM)¢>o filtration such that F C F, for all t > 0.

o Each M € M is FM-adapted.

® M has predictable representation prop. on (Q, F21, FM, P|zum).
o Filis P|za-trivial.

® supg<s<; |N(s)| bounded, for each t > 0.

Define G; := F: V. F, G := (Gt)r>o0.

N is a martingale on (2,4, G, P).
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Skew Product MGPs

Proof (2) — Preservation of Martingale Property

Assume:
o (A, F :=(Ft)t>0,P) a filtered probability space.

o N = (N(t))t>0 a locally square integrable martingale.

Proposition: PRP satisfied if
> X solution of well-posed MGP for (A, D(A), dx) and

> M= {(f(X(t)) — fOtAf(X(s))ds)t20 :f e D(A)}
@ Each e M'is F] /~adapted.

o M has predictable representation prop. on (Q, F21, FM, P|zum).
o Filis P|za-trivial.
® supg<s<; |N(s)| bounded, for each t > 0.
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