The Seed Bank Model

Joint work with J. Blath, N. Kurt and D. Spanò

RTG1845 Berlin Mathematical School Technische Universität Berlin UNAM

05-04-2013

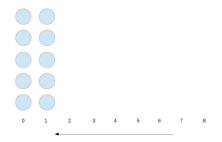
Adrián González Casanova

Content

- 1 Introduction
- $2\,$ On the ancestral process of long-range seed bank models
- 3 Application to Biology

On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00

The Wright-Fisher Model



Description

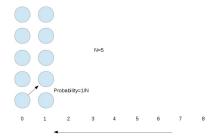
► A generation consists of N individuals. Each individual in generation i selects a parent uniformly in the generation i - 1.

Adrián González Casanova

Introduction ••••••• On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Classical Models

The Wright-Fisher Model



Description

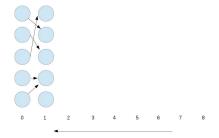
► A generation consists of N individuals. Each individual in generation i selects a parent uniformly in the generation i - 1.

Adrián González Casanova

Introduction ••••••• On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Classical Models

The Wright-Fisher Model



Description

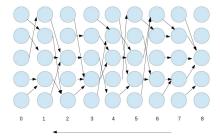
► A generation consists of N individuals. Each individual in generation i selects a parent uniformly in the generation i - 1.

Adrián González Casanova

Introduction ••••••• On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Classical Models

The Wright-Fisher Model



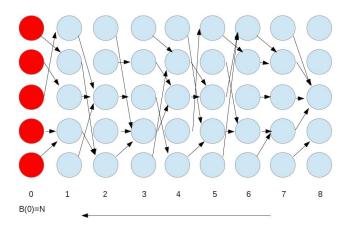
Description

► A generation consists of N individuals. Each individual in generation i selects a parent uniformly in the generation i - 1.

Adrián González Casanova

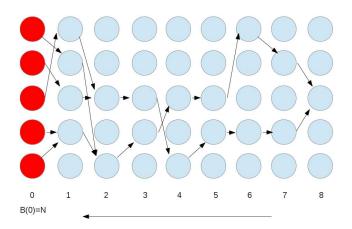
On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Classical Models

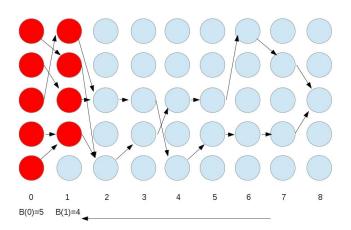


On the ancestral process of long-range seed bank models 00 00000000 Application to biology

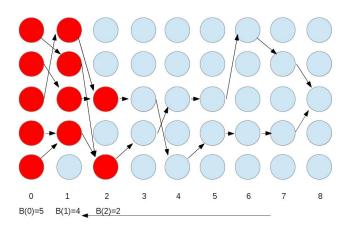
Classical Models



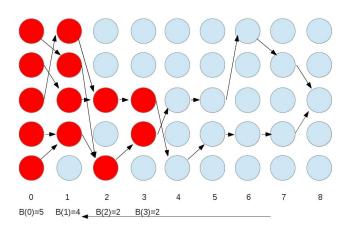
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



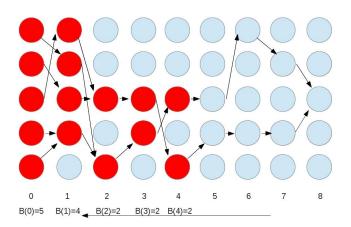
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



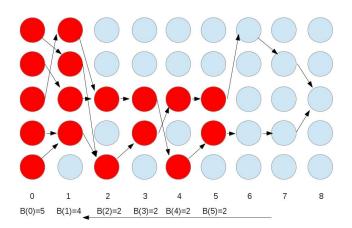
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



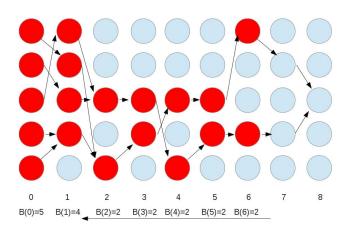
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



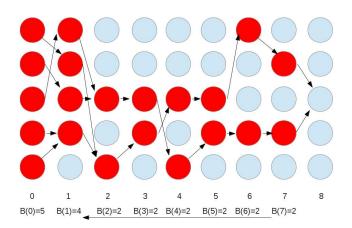
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



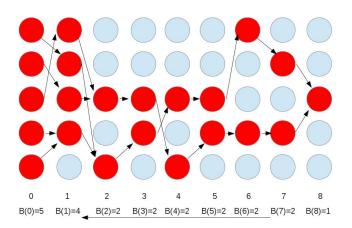
On the ancestral process of long-range seed bank models 00 00000000 Application to biology



On the ancestral process of long-range seed bank models 00 00000000 Application to biology



On the ancestral process of long-range seed bank models 00 00000000 Application to biology



Introduction 000000 000	
Classical Models	

Fix a sample of size n. Let the number of individuals go to infinity. Measure the time in terms of the number of individuals per generation.

 $B^N([Nt]) \Rightarrow K(t)$

Classical Models

On the ancestral process of long-range seed bank models 00 0000000 Application to biology

(The block counting process of) The Kingman coalescent

Description

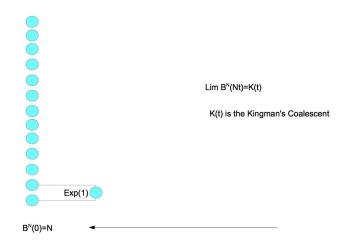
Each pair of blocks coalesce at rate 1, independently of the others.

Adrián González Casanova

Classical Models

On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00

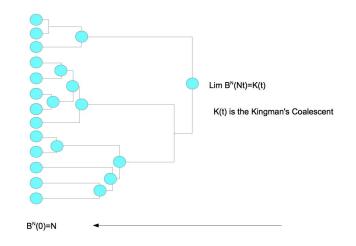
(The block counting process of) The Kingman coalescent



Classical Models

On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00

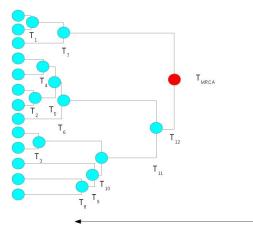
(The block counting process of) The Kingman coalescent



Classical Models

On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Time to the most recent common ancestor



Classical Models

On the ancestral process of long-range seed bank models 00 00000000 Application to biology

Time to the most recent common ancestor

$$E[T_{MRCA}] = \sum_{i=1}^{n-1} E[T_i] = \sum_{i=1}^{n-1} \frac{1}{\binom{n+1-i}{2}} = \sum_{u=2}^{n} \frac{2}{u(u-1)} = 2\left(1 - \frac{1}{n}\right)$$

Adrián González Casanova

Introduction •••• The Seed Bank Model On the ancestral process of long-range seed bank models 00 00000000 Application to biology

The work of Kaj, Krone and Lascoux (2001)

The seed bank model introduced by Kaj, Krone and Lascoux is a generalization of the Wright-Fisher model. Its biological motivation are species that reproduce using seeds. (Like a cactus.) Introduction •••• The Seed Bank Model On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00

The work of Kaj, Krone and Lascoux (2001)

- The seed bank model introduced by Kaj, Krone and Lascoux is a generalization of the Wright-Fisher model. Its biological motivation are species that reproduce using seeds. (Like a cactus.)
- ▶ Dynamics: Let μ be a bounded measure on \mathbb{N} . Each individual selects its parent independently by the following 2 steps:
 - **()** Select the generation of the parent by performing a μ distributed jump.
 - Select a parent uniformly among the members of the selected generation.
- Problem: We lose the Markov property.

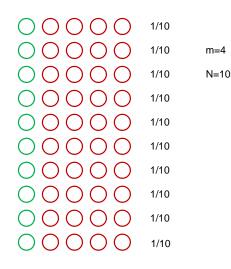
Introduction		
000000 000		
The Seed Bank Model		

 \bigcirc Ο \bigcirc Ο \bigcirc Ο \bigcirc О \bigcirc

m=4

N=10

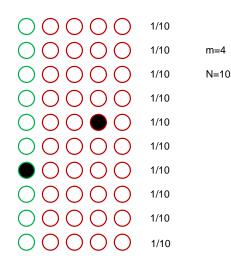
On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00



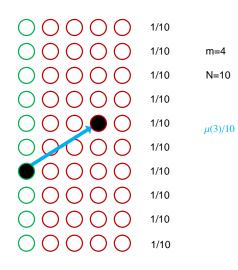
On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00

1/10 1/10 m=4 1/10 N=10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 ()

On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00



On the ancestral process of long-range seed bank models 00 00000000 Application to biology 00 00



On the ancestral process of long-range seed bank models 00 00000000 Application to biology

The work of Kaj, Krone and Lascoux (2001)

- The ancestral process can be described in terms of a finite state Markov Chain.
- Main result: The scaling limit is the Kingman coalescent, under a constant time change.
- Limitation: μ must be bounded.

The model

Application to biology

The seed bank model with long-range dependence

- What happens if we remove the boundedness condition of the jump measure µ in the seed bank model?
- Motivation.

Image: hour base of the state of t

The model

Application to biology

The seed bank model with long-range dependence

- Answer: It depends on μ .
- We say that $\mu \in \Gamma_{\alpha}$, if

$$\mu(\{n,...\}) = n^{-\alpha}L(n), \ \alpha > 0,$$

where L(n) is a slowly varying function.

 The qualitative behaviour of the model changes drastically depending on α.

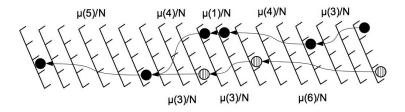
Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{\circ\circ\circ}}$

Application to biology 00 00

Construction of the Renewal Process

The ancestral line A(v) of an individual v is given by a renewal process with interarrival law μ and an additional uniform choice of an individual. The renewal times correspond to the generation of an ancestor. Ancestral lines of a sample of individuals are coupled renewal processes.



J. Blath, AGC, N. Kurt, D. Spanò (2011)

Let μ , N be fixed and let v, w denote two individuals living at time 0.

(a) If
$$\alpha > 1$$
, then $\mathbb{E}[T_{MRCA}] < \infty$

- (b) If $\alpha \in (1/2, 1)$, then $\mathbb{P}(A(v) \cap A(w) \neq \emptyset) = 1$ and $\mathbb{E}[T] = \infty$
- (c) If $\alpha \in (0, 1/2)$, then $\mathbb{P}(\mathcal{A}(v) \cap \mathcal{A}(w) \neq \emptyset) < 1$

Results

On the ancestral process of long-range seed bank models $\overset{\bigcirc}{\underset{0}{\overset{\bigcirc}{\overset{\bigcirc}{}}}}$

Application to biology 00 00

J. Blath, AGC, N. Kurt, D. Spanò (2011)

If $E_{\mu}[\nu] < \infty$ the block counting process induced by our model converges weakly to the Kingman coalescent (constantly time changed), i.e. $B_N(Nt) \Rightarrow K(\gamma(1)^2 t)$

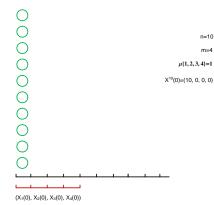
Results

On the ancestral process of long-range seed bank models ${}^{\bigcirc\circ}_{\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ}$

Application to biology

Ingredient 1: a Markov process

The configuration process in level 10



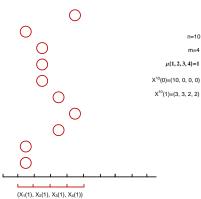
Results

On the ancestral process of long-range seed bank models ${}^{\bigcirc\circ}_{\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ}$

Application to biology

Ingredient 1: a Markov process

The configuration process in level 10



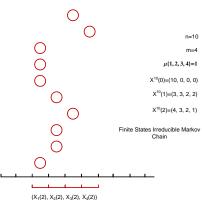
Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{\bigcirc \bigcirc}}$

Application to biology

Ingredient 1: a Markov process

The configuration process in level 10



Adrián González Casanova

Results

Application to biology

Ingredient 2: stationary distribution

Proof

Let X^n be the configuration process in level n.

• There exists a stationary distribution for X^n if and only if $E_{\mu}[X] < \infty$.

The stationary distribution is

$$\gamma = \mathsf{mult}\big(\frac{1}{E_{\mu}[X]}, \frac{\mu(i>1)}{E_{\mu}[X]}, \frac{\mu(i>2)}{E_{\mu}[X]}, \ldots\big)$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$P_{\gamma}(\{\text{ball 1 visits urn } k\}) = \frac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$P_{\gamma}(\{\text{ball 1 visits urn } k\}) = \frac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$P_{\gamma}(\{\text{ball 1 visits urn } k\}) = \frac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$P_{\gamma}(\{\text{ball 1 visits urn } k\}) = \frac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$P_{\gamma}(\{\text{ball 1 visits urn } k\}) = \frac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

On the ancestral process of long-range seed bank models ${\overset{\bigcirc}_{00000000}}$

Application to biology

Ingredient 2: stationary distribution

{ball 1 visits urn
$$k$$
} = { $X_k^1 = (1, 0, 0, ...)$ }

$$\mathcal{P}_{\gamma}(\{ ext{ball }1 ext{ visits urn }k\})=rac{1}{E_{\mu}[X]}$$

Adrián González Casanova

Results

Application to biology

Ingredient 3: coupling argument

Idea

If particles are always in the stationary distribution

$$P(\text{coalesce in generation } k) = \frac{1}{N(E_{\mu}[X])^2} = \frac{1}{N}\gamma(1)^2$$

Then consider an artificial system where particles are always in the stationary distribution and couple it with the ancestral process of the seed bank model.

Results

Application to biology

Ingredient 3: Coupling argument

The coupling is fast

Let τ be the first time particles labeled 1 in each system are in the same generation.

 $E[\tau] < \infty$

J. Blath, AGC, N. Kurt, D. Spanò (2011)

Let μ , N be fixed and let v, w denote two individuals living at time 0.

(a) If
$$\alpha > 1$$
, then $\mathbb{E}[T_{MRCA}] < \infty$

(b) If
$$\alpha \in (1/2, 1)$$
, then $\mathbb{P}(A(v) \cap A(w) \neq \emptyset) = 1$ and $\mathbb{E}[T] = \infty$

(c) If
$$\alpha \in (0, 1/2)$$
, then $\mathbb{P}(A(v) \cap A(w) \neq \emptyset) < 1$

Common ancestor will be close to the seed-mutation. Genetic drift will not cause fixation nor extinction.

On the ancestral process of long-range seed bank models oo oooooooo Application to biology ○● ○○

Azotobacter vinelandii

The seed effect is very important in evolution of bacteria.

On the ancestral process of long-range seed bank models 00 00000000 Application to biology ○● ○○

- The seed effect is very important in evolution of bacteria.
- Azotobacter vinelandii makes very big jumps. (endospores)

On the ancestral process of long-range seed bank models 00 00000000 Application to biology ○● ○○

- The seed effect is very important in evolution of bacteria.
- Azotobacter vinelandii makes very big jumps. (endospores)
- Azotobacter vinelandii has too many genes of Pseudomonas not to be a Pseudomonas and too less to be one.

On the ancestral process of long-range seed bank models 00 00000000 Application to biology ○● ○○

- The seed effect is very important in evolution of bacteria.
- Azotobacter vinelandii makes very big jumps. (endospores)
- Azotobacter vinelandii has too many genes of Pseudomonas not to be a Pseudomonas and too less to be one.
- Our model partially explains this phenomena.

On the ancestral process of long-range seed bank models 00 00000000 Application to biology ○● ○○

- The seed effect is very important in evolution of bacteria.
- Azotobacter vinelandii makes very big jumps. (endospores)
- Azotobacter vinelandii has too many genes of Pseudomonas not to be a Pseudomonas and too less to be one.
- Our model partially explains this phenomena.
- Challenges.

References

- Kaj, I., Krone, S., Lascoux, M. 2001. Coalescent theory for seed bank models. J. Appl. Prob. 38:285-300
- J. Blath, A. González Casanova, N. Kurt and D. Spanó. On the ancestral process of long-range seed bank models. To appear in J. of Appl. Prob.

