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Λ n-coalescent

1 Π(n) = (Π
(n)
t , t ≥ 0) is a continuous time càdlàg Markov process taking values in Pn, the set

of partitions of {1, 2, · · · , n}.
2 Π

(n)
0 = {{1}, · · · , {n}}.

3 The process evolues by merging the blocks. The mechanism is determined by a measure Λ
(to precise in the next slide).

n = 5,Π
(5)
0 = {{1}, · · · , {5}}, Π

(5)
s1 = {{1, 2}, {3}, {4}, {5}}, Π

(5)
s2 = {{1, 2}, {3}, {4, 5}},

Π
(5)
s3 = {{1, 2, 3, 4, 5}}.
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The measure Λ

If the processus Π(n) has b blocks at some time, then each k-tuple (2 ≤ k ≤ b) of blocks merge
independently into a big block at rate :

λb,k =

∫ 1

0
xk (1− x)b−k x−2Λ(dx),

where Λ is a finite measure on [0, 1]. Throughout this talk, Λ is assumed to be a probability
measure.

In other words, one needs to wait an exponential time with parameter gb :=
∑b

k=2

(b
k

)
λb,k , and

then each k-tuple of blocks merge together with probability

λb,k

gb
.

So the measure Λ describes completely the behavior.
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Arising of Λ n-coalescent from biology

Given a large number population, we pick randomly a sample of n individuals and look at the
genealogical tree of this sample. The larger the total population number, the more generations to
backward to have coalescences for this sample. If the population number is very large and the
time between two successive generations is well scaled, and also the variance of the number of
descendants of one individual is controlled, the genealogical tree will tend to Λ n-coalescent.
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Kingman n-coalescents

Λ = δ0 : Kingman n-coalescent. λb,2 = 1, λb,k = 0 for k 6= 2. Only binary coalescences can
happen.

This coalescent is the one mostly used by biologists.
Anton’s comment :
Kingman n-coalescent is to model the genealogical tree of an n-sample of a large population by
scaling many generations. In particular, the variance of the number of descendants of one
individual should be small.
While the Brownian motion is obtained through normalized sums of many i.i.d random variables
with small variances.
Hence Kingman coalescent is an analog of Brownian motion.
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Bolthausen-Sznitman n-coalescent

Λ =Lebesgue measure : Bolthausen-Sznitman n-coalescent.

This process is related to Neveu CSBP (Bertoin and Le Gall, 1999), to random recursive trees
(Goldschmidt and Martin, 2005), to spin glass theory in physics (Bolthausen and Sznitman,
1998), etc.
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Beta(2 − α, α) n-coalescent with 1 < α < 2

Λ(dx) = x1−α(1−x)α−1dx
Γ(α)Γ(2−α)

= Beta(2− α, α) measure with 1 < α < 2 : Beta(2− α, α)

n-coalescent.

This coalescent is related to Alpha stable branching process ( Birkner et al, 2005), to supercritical
Galton-Waltson processes (Schweinsberg, 2003), etc.
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coalescents with dust

∫ 1
0 x−1Λ(dx) < +∞ : coalescents with dust.

Anton’s comment : Λ n-coalescent with no mass on 0, such as Bolthausen-Sznitman
n-coalescent, Beta(2− α, α) n-coalescent and also coalescents with dust, could be used to model
the genealogical tree of a n-sample when the variance of the number of descendants of one
individual is large.
Hence Λ coalescents with no mass on 0 is an analog of Lévy process which takes into account the
variables with large variances.
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Why call the measure Λ ?

Thanks to Prof Anton Wakolbinger for this anecdote !

Lévy −−−−−−− > L−−−−−−− > Λ.
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Biological motivation : Distinction of branches

The red branches are external branches and the blue branches are internal branches.

The external branch length of individual i , denoted by T
(n)
i , is one way to measure the genetic

diversity of the population(Rauch and Bar-Yam, 2004).

Question : What’s the value of T
(n)
1 for any Λ ?
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External branch length in Bolthausen-Sznitman n-coalescent

Λ =Lebesgue measure.

Freund and Möhle (2009) :

ln nT
(n)
1

(d)→ Exp(1).

Remark that

ln n =

∫ 1

1/n
x−1Λ(dx).
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External branch length in Beta(2 − α, α) n-coalescent

Λ = Beta(2− α, α) measure with 1 < α < 2.

Dhersin, Freund, Siri-Jégousse, Y (2013) :

nα−1T
(n)
1

(d)→ T ,

where T has density function 1
(α−1)Γ(α)

(1 + x
αΓ(α)

)
− α
α−1
−1

1x≥0.

Remark that

nα−1 = (α− 1)Γ(2− α)Γ(α)

∫ 1

1/n
x−1Λ(dx).
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External branch length in coalescents with dust

∫ 1
0 x−1Λ(dx) < +∞.

Möhle (2010) : ∫ 1

0
x−1Λ(dx)T

(n)
1

(d)→ Exp(1).

Remark that

lim
n→+∞

∫ 1
1/n x−1Λ(dx)∫ 1
0 x−1Λ(dx)

= 1.
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External branch length in Kingman n-coalescent

Λ = δ0. λb,2 = 1, λb,k = 0 for k 6= 2. Only binary coalescences can happen.

Caliebe et al (2007) :

nT
(n)
1

(d)→ T ,

where T has density function 8
(2+x)3 1x≥0.

Remark that the Beta(2− α, α) measure converges weakly to Λ = δ0 when α→ 2. Since nα−1

is equivalent to
∫ 1

1/n x−1 x1−α(1−x)α−1

Γ(α)Γ(2−α)
dx and nα−1 → n, we can consider informally n as being

equivalent to
∫ 1

1/n x−1Λ(dx) (not true, but I like it...)
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Condition (*)

Question : Is the normalization factor
∫ 1

1/n x−1Λ(dx) universal ?

Answer : at least for those satisfying condition (*). Define µ(Λ,n) =
∫ 1

1/n x−1Λ(dx),

Π(Λ,n) = Π(n), T
(Λ,n)
i = T

(n)
i , g (Λ,n) = gn.

Condition (*) : lim
n→+∞

g (Λ,n)

nµ(Λ,n)
= 0.

Theorem

(Y, 2013) If the condition (*) is satisfied, then

µ(Λ,n)T
(Λ,n)
1

(d)→ Exp(1).
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Coalescents satisfying (∗)

1
∫ 1

0 x−1Λ(dx) < +∞.
2 Λ has a bounded density function f (x) for x ∈ [0, t] with 0 < t ≤ 1. This class includes the

Bolthausen-Sznitman n-coalescent.

3 Λ has a density function f (x) = p(− ln x)q for x ∈ [0, t] with 0 < t ≤ 1, q > 0, p > 0.
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A characterization of condition (*)

Proposition

The following two assertions are equivalent :
(1) : Λ satisfies condition (*) ;
(2) : Λ({0}) = 0 and there exists a càglàd (limit from right, continuous from left) function
g : [0, 1]→ [0, 1], continuous on 0 with g(0) = 0 and a constant C > 0, such that

µ(Λ,n) = Cexp(

∫ 1

1/n

g(x)

x
dx)(1− g(1/n)).

Remark that if limx→0+ g(x) = α− 1 with 1 < α < 2, then it looks like a Beta(2− α, α)
coalescent. So this class of coalescents are ”next to and below” the Beta(2− α, α) coalescents.
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A remark leading to measure division construction

The definition of µ(Λ,n) concerns only the measure Λ1[1/n,1]. Does it mean that Λ1[0,1/n) is

negligible in the construction of Π(n) as n→ +∞ ? How to evaluate the importance of each
measure ?
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Tool 1/2 : Fineness of partitions

Let ξn = {A1, · · · ,A|ξn|}, χn = {B1, · · · ,B|χn|} be two partitions of {1, 2, · · · , n}. We say that
ξn is finer than χn, denoted by ξn � χn, if each Bi is a union of some blocks in ξn.
Examples :
1 :

ξ5 = {A1 = {1, 2},A2 = {3},A3 = {4},A4 = {5}}
�χ5 = {B1 = {1, 2},B2 = {3},B3 = {4, 5}}.

2 :

ξ5 = {A1 = {1, 2},A2 = {3, 4},A3 = {5}}
! �χ5 = {B1 = {1, 2},B2 = {3},B3 = {4, 5}}.
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Tool 2/2 : Restriction by the smallest element

(a) Π(Λ,5) (b) A restriction by the smallest element of Π(Λ,5) from
ξ5 = {{1}, · · · , {5}} to χ5 = {{1, 2}, {3, 5}, {4}}

Let ξn � χn and sA
i (resp. sB

i ) be the smallest element in Ai (resp. Bi ). We define the stochastic

process Π̃(Λ,χn), called the restriction by the smallest element of Π(Λ,ξn) from ξn to χn :

Π̃(Λ,χn)(0) = χn ;

For any t ≥ 0, if Π(Λ,ξn)(t) = {Di}1≤i≤|Π(Λ,ξn)|(t), where Di denotes a block, then

Π̃(Λ,χn)(t) = {
⋃

sB
j ∈Di

Bj}1≤i≤|Π(Λ,ξn)|(t).

(A block is represented by its smallest element.)
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Equivalence in distribution

Lemma

Π̃(Λ,χn) (d)
= Π(Λ,χn).
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Measure division construction of Π(Λ,n)

Let Λ1,Λ2 be two measures such that Λ = Λ1 + Λ2.
Step 0 : Get a realization or a path Π of Π(Λ1,n) :

Set a new process Π
(Λ,n)
1,2 = Π.
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Measure division construction of Π(Λ,n)

Step 1 : Let t1, t2, · · · be the coalescent times after t0 of the given path of Π
(Λ,n)
1,2 (if there is no

collision after t0, we set ti = +∞, i ≥ 1). Within [t0, t1), Π
(Λ,n)
1,2 is constant. Then we run an

independent Λ2 coalescent with initial value Π
(Λ,n)
1,2 (t0) from time t0.

If the Λ2 coalescent has no collision on [t0, t1), we pass to [t1, t2). Similarly, we construct

another independent Λ2 coalescent with initial value Π
(Λ,n)
1,2 (t1) from time t1, and so on.

Otherwise, we go to the next step.
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Measure division construction of Π(Λ,n)

Step 2 : If finally within [ti−1, ti ), the related independent Λ2 coalescent has its first collision at

time t∗ and its value at t∗ is ξ. We set the new (Π
(Λ,n)
1,2 (t))t≥t∗ as the restriction by the smallest

element of previous (Π
(Λ,n)
1,2 (t))t≥t∗ from previous Π

(Λ,n)
1,2 (t∗) to ξ. Then we go to step 1 taking t∗

as the new starting time.

In this case, the related Λ2 coalescent with initial value {{1}, {2}, {3}, {4}, {5}} gets a
coalescence at time t∗ and ξ = {{1, 2}, {3, 5}, {4}}.
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Equivalence in distribution

Theorem

Π
(Λ,n)
1,2

(d)
= Π(Λ,n).

Advantages :

One can take Λ1 = 0 and Λ2 = Λ. In this case, in step 0, we take a path of n parallel lineages.

we call Λ1 the noise measure, Λ2 the main measure. If Λ1 is ”small”, then Π(Λ1,n) almost
looks like n parallel lineages at small times. Then the behaviors of Π(Λ2,n) is very close to

that of Π
(Λ,n)
1,2 . For Π(Λ2,n), we often have many results known.
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Proof of the theorem :Part 1/2

Control of the noise measure :

Lemma

Assume that Λ satisfies condition (∗) and Λ1 = Λ1[0,1/n). Then for any t > 0, 0 < ε ≤ 1, we have

P(|Π(Λ1,n)|(
t

µ(Λ,n)
) ≤ n − nε) = o(n−1).

Notice that conditional on {|Π(Λ1,n)|( t
µ(Λ,n) ) > n− nε}, we have lost at most nε individuals. Then

we have at most 2nε singletons and each of them is involved in a collision somewhere before
t

µ(Λ,n) . Using the exchangeability of individuals, P({1} ∈ Π(Λ1,n)( t
µ(Λ,n) )) > 1− 2ε.

So in this case, (Π(Λ1,n)(s), 0 ≤ s ≤ t

µ(Λ1,n) ) is very close to n parallele lineages.
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Proof of the theorem :Part 2

Property of the main measure :

Lemma

Assume that Λ satisfies condition (∗) and Λ2 = Λ1[1/n,1]. Then for any t > 0, we have

lim
n→+∞

P(T
(Λ2,n)
1 ≥

t

µ(Λ,n)
)→ e−t .
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Some related results

Assume that Λ satisfies condition (∗) and
∫ 1

0 x−1Λ(dx) = +∞. Define L
(Λ,n)
ext as the total external

branch length and L(Λ,n) the total branch length.
Then

Proposition

µ(Λ,n)L
(Λ,n)
ext

n

P→ 1,

µ(Λ,n)L(Λ,n)

n

P→ 1,
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Thank you for your attention !
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