The Moran model with selection revisited

Sandra Kluth

joint work with Ellen Baake

Faculty of Technology Bielefeld University

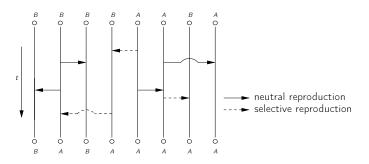
April 2, 2013

Outline

- 1) Moran model with selection and fixation probabilities
- 2) Connection to particle representation
 - labelled Moran model
 - defining events
 - simulation algorithm
- 3) Common ancestor type process

Moran model with selection

- N individuals
- Set of types: $S = \{A, B\}$
- Individuals of type A reproduce at rate 1 + s, individuals of type B at rate 1
 Decomposition into neutral (types A and B, rate 1) and selective (just type A, rate s) reproductions (Krone/Neuhauser 1997)



Moran model with selection

• $Z_t :=$ number of individuals of type A at time t, birth-death process with birth rates $\lambda_i = (1+s)i\frac{N-i}{N}$ and death rates $\mu_i = (N-i)\frac{i}{N}$

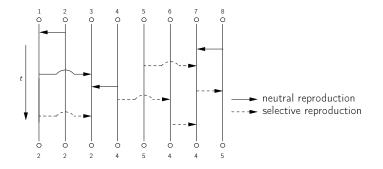
•
$$T_k := \min\{t \mid Z_t = k\}$$

• Fixation probability:

$$h_i := \mathbb{P}(T_N < T_0 \mid Z_0 = i) = \frac{\sum_{j=N-i}^{N-1} (1+s)^j}{\sum_{j=0}^{N-1} (1+s)^j}$$

Labelled Moran model

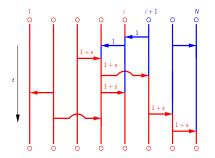
- *N* individuals, each characterised by label $i \in \{1, ..., N\}$
- Offspring inherit parent's label
- Neutral arrows at rate 1/N (between every pair of labels), selective arrows at rate s/N (emanating from label i, pointing to label j > i)
- Spatial structure at time 0: Label *i* occupies position *i*



Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

•
$$\mathbb{P}(I \leq i) = h_i$$



Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

•
$$\mathbb{P}(I \leq i) = h_i$$

• $\eta_i := \mathbb{P}(I = i) = (1 + s)^{N-i} \eta_N$
with $\eta_N := \mathbb{P}(I = N) = \frac{1}{\sum_{j=0}^{N-1} (1+s)^j}$

Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

•
$$\mathbb{P}(l \leq i) = h_i$$

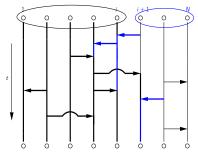
• $\eta_i := \mathbb{P}(l = i) = (1 + s)^{N-i} \eta_N$
with $\eta_N := \mathbb{P}(l = N) = \frac{1}{\sum_{i=0}^{N-1} (1+s)^i}$

Based on particle number representation \rightarrow decode particle representation

Particle representation behind $\eta_i = (1 + s)^{N-i} \eta_N$

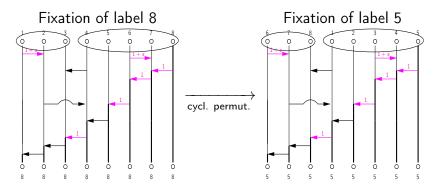
New descendants of labels in S, $S \subseteq \{1, ..., N\}$: Descendants that increase the number of inidividuals in S.

New descendants of labels in $\{i + 1, \ldots, N\}$:



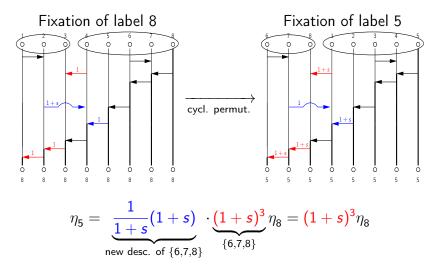
Particle representation behind $\eta_i = (1 + s)^{N-i} \eta_N$

N = 8, i = 5:



Particle representation behind $\eta_i = (1 + s)^{N-i} \eta_N$

N = 8, i = 5:

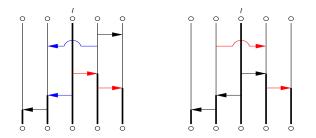


Definition

Let I = i.

Defining events:

Arrows emanating from labels $\{1, \ldots, i\}$ and pointing to individuals with labels $\{i + 1, \ldots, N\}$ that are not new descendants of $\{i + 1, \ldots, N\}$.



Selective defining events

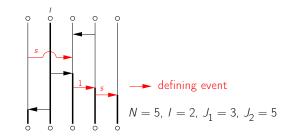
Y := number of selective defining events

•
$$\mathbb{P}(Y = n, l = i) = \binom{N-i}{n} s^n \eta_N$$

• $\mathbb{P}(Y = n) = \sum_{i=1}^{N-n} \mathbb{P}(l = i, Y = n) = \binom{N}{n+1} s^n \eta_N$
• $h_i = \mathbb{P}(l \le i) = \sum_{n=0}^{N-1} \mathbb{P}(l \le i \mid Y = n) \mathbb{P}(Y = n)$
 $= \sum_{n=0}^{N-1} \left[\binom{N}{n+1} - \binom{N-i}{n+1} \right] s^n \eta_N$

Targets of selective defining events

Let Y = n. Define J_1, \ldots, J_n with $J_1 < \cdots < J_n$ as the (random) positions that are hit by selective defining events



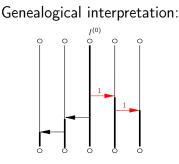
• $\mathbb{P}(I = i, J_1 = j_1, \dots, J_n = j_n \mid Y = n) = \frac{1}{\binom{N}{n+1}}$

A simulation algorithm

Aim: Generate (I, J_1, \ldots, J_n)

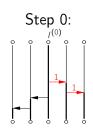
Generate Y. If Y = n stop after step n.

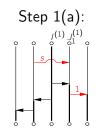
Step 0: Generate $U^{(0)} \sim \mathcal{U}_{\{1,\dots,N\}}$. Set $I^{(0)} := U^{(0)}$.

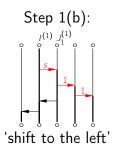


A simulation algorithm

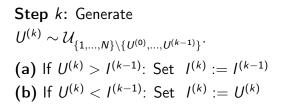
Step 1: Generate $U^{(1)} \sim U_{\{1,...,N\}\setminus U^{(0)}}$ independently of $U^{(0)}$. (a) If $U^{(1)} > I^{(0)}$: Set $I^{(1)} := I^{(0)}$, $J_1^{(1)} := U^{(1)}$ (b) If $U^{(1)} < I^{(0)}$: Set $I^{(1)} := U^{(1)}$, $J_1^{(1)} := I^{(0)}$

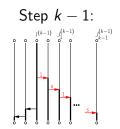


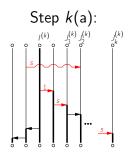


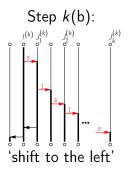


A simulation algorithm

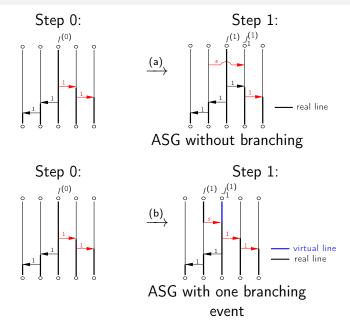








Relation to the ancestral selection graph



Genealogical interpretation

$$\begin{split} h_i &= \mathbb{P}(I \leq i | Y = 0) \mathbb{P}(Y \geq 0) \\ &+ \sum_{n \geq 1} \left[\mathbb{P}(I \leq i | Y = n) - \mathbb{P}(I \leq i | Y = n - 1) \right] \mathbb{P}(Y \geq n) \\ &= \mathbb{P}(I^{(0)} \leq i) + \sum_{n \geq 1} \left[\mathbb{P}(I^{(n)} \leq i) - \mathbb{P}(I^{(n-1)} \leq i) \right] \mathbb{P}(Y \geq n) \\ &= \mathbb{P}(I^{(0)} \leq i) + \sum_{n \geq 1} \mathbb{P}(I^{(n)} \leq i, I^{(n-1)} > i) \mathbb{P}(Y \geq n) \end{split}$$

Decomposition according to first step in which the ancestor has a label in $\{1, \ldots, i\}$.

Diffusion limit under weak selection (Ns $\xrightarrow{N \to \infty} \sigma$)

•
$$h_i \xrightarrow{\frac{i}{N} \to x} h(x) = \frac{1 - e^{-\sigma x}}{1 - e^{-\sigma}}$$

Diffusion limit under weak selection (Ns $\xrightarrow{N \to \infty} \sigma$)

•
$$h_i \xrightarrow{i_N \to x} h(x) = \frac{1 - e^{-\sigma x}}{1 - e^{-\sigma}}$$

• $a_n := \lim_{N \to \infty} \mathbb{P}(Y \ge n)$
• $1 - a_1 = \lim_{N \to \infty} \mathbb{P}(Y = 0) = \frac{\sigma}{\exp(\sigma) - 1}$
• $a_n - a_{n+1} = \lim_{N \to \infty} \mathbb{P}(Y = n) = \frac{\sigma}{n+1}(a_{n-1} - a_n)$

Diffusion limit under weak selection (Ns $\xrightarrow{N \to \infty} \sigma$)

•
$$h_i \xrightarrow{i_N \to x} h(x) = \frac{1-e^{-\sigma x}}{1-e^{-\sigma}}$$

• $a_n := \lim_{N \to \infty} \mathbb{P}(Y \ge n)$
• $1 - a_1 = \lim_{N \to \infty} \mathbb{P}(Y = 0) = \frac{\sigma}{\exp(\sigma) - 1}$
• $a_n - a_{n+1} = \lim_{N \to \infty} \mathbb{P}(Y = n) = \frac{\sigma}{n+1}(a_{n-1} - a_n)$
• $h_i = \mathbb{P}(I^{(0)} \le i) + \sum_{n \ge 1} \mathbb{P}(I^{(n)} \le i, I^{(n-1)} > i)\mathbb{P}(Y \ge n)$
 $\frac{i_N \to x}{N} h(x) = x + \sum_{n \ge 1} x(1-x)^n a_n$
 $= \frac{1}{\exp(\sigma) - 1} \sum_{n \ge 1} \frac{1}{n!} (1 - (1-x)^n) \sigma^n$

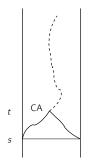
Common ancestor type process

Moran model with mutation and selection:

- N individuals
- Set of types: $S = \{A, B\}$
- Individuals of type A reproduce at rate 1 + s, individuals of type B at rate 1
- mutations: $i \xrightarrow{u\nu_j} j$, $i, j \in S$ here:
 - *u* general mutation rate with $Nu \xrightarrow{N \to \infty} \theta$
 - ν_j probability of mutations to type j ($\nu_A + \nu_B = 1$)
- Stationary density $\pi_X(x) = C(1-x)^{\theta\nu_B-1}x^{\theta\nu_A-1}\exp(\sigma x)$ (Wright's formula)

Common ancestor type process

- Population is stationary
- Common ancestor at time t: Unique individual (at time t) that is ancestral to the whole population at some time s > t
- I_t = type of common ancestor at time t $(I_t)_{t\geq 0}$ common ancestor type process



Stationary type distribution $\alpha = (\alpha_i)_{i \in S}$?

Taylor (2007)

- $(I_t, X_t)_{t \ge 0}$ with states (i, x), $i \in S$, $x \in [0, 1]$
- h(x) := conditional probability that the common ancestor at time t is of type A, given that the frequency of type-A individuals at time t is x (h(0) = 0, h(1) = 1)
- Stationary distribution:

$$\pi_{T}(0, x) = h(x) \pi_{X}(x)$$

 $\pi_{T}(1, x) = (1 - h(x)) \pi_{X}(x)$

 \Rightarrow Stationary type distribution $\alpha_i = \int_0^1 \pi_T(i, x) dx$

Fearnhead (2002)

$$h(x) = x + x \sum_{n \ge 1} a_n (1-x)^n$$

Recursion of Fearnhead's coefficients a_n , $n \ge 0$:

$$(n + \theta \nu_1) a_n - (n + \sigma + \theta) a_{n-1} + \sigma a_{n-2} = 0, \quad n \ge 2$$

with initial values $a_0 = 1$ and

$$a_{1} = \frac{\sigma}{1 + \theta \nu_{1}} (1 - \tilde{x}), \text{ where } \tilde{x} = \frac{\int_{0}^{1} p^{\theta \nu_{0} + 1} (1 - p)^{\theta \nu_{1}} \exp(\sigma p) dp}{\int_{0}^{1} p^{\theta \nu_{0}} (1 - p)^{\theta \nu_{1}} \exp(\sigma p) dp}$$

Thank you for your attention!