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Moran model with selection

N individuals

Set of types: S = {A,B}

Individuals of type A reproduce at rate 1 + s, individuals
of type B at rate 1
Decomposition into neutral (types A and B , rate 1) and
selective (just type A, rate s) reproductions (Krone/
Neuhauser 1997)
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Moran model with selection

Zt := number of individuals of type A at time t,

birth-death process with birth rates λi = (1 + s)i N−i
N

and
death rates µi = (N − i) i

N

Tk := min{t | Zt = k}

Fixation probability:

hi := P(TN < T0 | Z0 = i) =
∑N−1

j=N−i
(1+s)j

∑N−1
j=0

(1+s)j



Labelled Moran model

N individuals, each characterised by label i ∈ {1, . . . ,N}

Offspring inherit parent’s label

Neutral arrows at rate 1/N (between every pair of labels),
selective arrows at rate s/N (emanating from label i ,
pointing to label j > i)

Spatial structure at time 0: Label i occupies position i
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Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

P(I ≤ i) = hi
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Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

P(I ≤ i) = hi

ηi := P(I = i) = (1 + s)N−iηN

with ηN := P(I = N) = 1
∑N−1

j=0
(1+s)j



Ancestors and fixation probabilities

I := label that becomes fixed/ancestor

P(I ≤ i) = hi

ηi := P(I = i) = (1 + s)N−iηN

with ηN := P(I = N) = 1
∑N−1

j=0
(1+s)j

Based on particle number representation → decode particle
representation



Particle representation behind ηi = (1 + s)N−iηN

New descendants of labels in S, S ⊆ {1, . . . ,N}:

Descendants that increase the number of inidividuals in S.

New descendants of labels in {i + 1, . . . ,N}:
i1 i + 1 N
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Particle representation behind ηi = (1 + s)N−iηN

N = 8, i = 5 :

Fixation of label 8
1 2 3 4 5 6 7 8

8 8 888888
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Particle representation behind ηi = (1 + s)N−iηN

N = 8, i = 5 :

Fixation of label 8
1 2 3 4 5 6 7 8

8 8 888888

1 + s

1
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1

1

−−−−−−−→
cycl. permut.

Fixation of label 5
1 2 3 4

5 5 5 5 5 5 5 5
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η5 =
1

1 + s
(1 + s)

︸ ︷︷ ︸

new desc. of {6,7,8}

· (1 + s)3
︸ ︷︷ ︸

{6,7,8}

η8 = (1 + s)3η8



Definition

Let I = i .

Defining events:
Arrows emanating from labels {1, . . . , i} and pointing to
individuals with labels {i + 1, . . . ,N} that are not new
descendants of {i + 1, . . . ,N}.
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Selective defining events

Y := number of selective defining events

P(Y = n, I = i) =
(
N−i

n

)
snηN

P(Y = n) =
∑N−n

i=1 P(I = i ,Y = n) =
(

N

n+1

)
snηN

hi = P(I ≤ i) =
∑N−1

n=0 P(I ≤ i | Y = n)P(Y = n)

=
∑N−1

n=0

[
(

N

n+1

)
−
(
N−i

n+1

)
]

snηN



Targets of selective defining events

Let Y = n. Define J1, . . . , Jn with J1 < · · · < Jn as the
(random) positions that are hit by selective defining events
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2
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P(I = i , J1 = j1, . . . , Jn = jn | Y = n) = 1

( N
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A simulation algorithm

Aim:
Generate (I , J1, . . . , Jn)

Generate Y . If Y = n stop after step n.

Step 0: Generate U(0) ∼ U{1,...,N}. Set I (0) := U(0).

Genealogical interpretation:
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A simulation algorithm

Step 1: Generate U(1) ∼ U
{1,...,N}\U(0) inde-

pendently of U(0).

(a) If U(1) > I (0):

Set I (1) := I (0), J
(1)
1 := U(1)

(b) If U(1) < I (0):

Set I (1) := U(1), J
(1)
1 := I (0)

Step 0:
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‘shift to the left’



A simulation algorithm

Step k: Generate

U(k) ∼ U
{1,...,N}\{U(0),...,U(k−1)}

.

(a) If U(k) > I (k−1): Set I (k) := I (k−1)

(b) If U(k) < I (k−1): Set I (k) := U(k)

Step k − 1:
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J
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Step k(b):
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‘shift to the left’



Relation to the ancestral selection graph

Step 0:
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Genealogical interpretation

hi = P(I ≤ i |Y = 0)P(Y ≥ 0)

+
∑

n≥1

[P(I ≤ i |Y = n)− P(I ≤ i |Y = n − 1)]P(Y ≥ n)

= P(I (0) ≤ i) +
∑

n≥1

[
P(I (n) ≤ i)− P(I (n−1) ≤ i)

]
P(Y ≥ n)

= P(I (0) ≤ i) +
∑

n≥1

P(I (n) ≤ i , I (n−1) > i)P(Y ≥ n)

Decomposition according to first step in which the ancestor
has a label in {1, . . . , i}.



Diffusion limit under weak selection (Ns
N→∞
−−−→ σ)

hi

i
N
→x

−−−→ h(x) = 1−e−σx

1−e−σ



Diffusion limit under weak selection (Ns
N→∞
−−−→ σ)

hi

i
N
→x

−−−→ h(x) = 1−e−σx

1−e−σ

an := limN→∞ P(Y ≥ n)

1 − a1 = limN→∞ P(Y = 0) = σ
exp(σ)−1

an − an+1 = limN→∞ P(Y = n) = σ
n+1(an−1 − an)



Diffusion limit under weak selection (Ns
N→∞
−−−→ σ)

hi

i
N
→x

−−−→ h(x) = 1−e−σx

1−e−σ

an := limN→∞ P(Y ≥ n)

1 − a1 = limN→∞ P(Y = 0) = σ
exp(σ)−1

an − an+1 = limN→∞ P(Y = n) = σ
n+1(an−1 − an)

hi = P(I (0) ≤ i) +
∑

n≥1 P(I
(n) ≤ i , I (n−1) > i)P(Y ≥ n)

i
N
→x

−−−→ h(x) = x +
∑

n≥1 x(1 − x)nan

= 1
exp(σ)−1

∑

n≥1
1
n!(1 − (1 − x)n)σn



Common ancestor type process

Moran model with mutation and selection:

N individuals

Set of types: S = {A,B}

Individuals of type A reproduce at rate 1 + s, individuals
of type B at rate 1

mutations: i
uν

j
−→ j , i , j ∈ S

here:

u general mutation rate with Nu
N→∞
−−−−→ θ

νj probability of mutations to type j (νA + νB = 1)

Stationary density πX (x) = C (1 − x)θνB−1xθνA−1 exp(σx)
(Wright’s formula)



Common ancestor type process

Population is stationary

Common ancestor at time t:
Unique individual (at time t) that is
ancestral to the whole population at
some time s > t

It = type of common ancestor at time t

(It)t≥0 common ancestor type process

t

s

CA

Stationary type distribution α = (αi)i∈S?



Taylor (2007)

(It ,Xt)t>0 with states (i , x), i ∈ S , x ∈ [0, 1]

h(x) := conditional probability that the common ancestor
at time t is of type A, given that the frequency of type-A
individuals at time t is x (h(0) = 0, h(1) = 1)

Stationary distribution:

πT (0, x) = h (x) πX (x)

πT (1, x) = (1 − h (x)) πX (x)

⇒ Stationary type distribution αi =
∫ 1

0
πT (i , x)dx



Fearnhead (2002)

h(x) = x + x
∑

n≥1

an(1 − x)n

Recursion of Fearnhead’s coefficients an, n ≥ 0:

(n + θν1) an − (n + σ + θ) an−1 + σan−2 = 0, n > 2,

with initial values a0 = 1 and

a1 =
σ

1 + θν1

(1−x̃),where x̃ =

∫ 1

0
pθν0+1 (1 − p)θν1 exp(σp)dp

∫ 1

0
pθν0 (1 − p)θν1 exp(σp)dp



Thank you for your attention!


