# The Moran model with selection revisited 

Sandra Kluth<br>joint work with Ellen Baake

Faculty of Technology<br>Bielefeld University

April 2, 2013

## Outline

1) Moran model with selection and fixation probabilities
2) Connection to particle representation

- labelled Moran model
- defining events
- simulation algorithm

3) Common ancestor type process

## Moran model with selection

- $N$ individuals
- Set of types: $S=\{A, B\}$
- Individuals of type $A$ reproduce at rate $1+s$, individuals of type $B$ at rate 1
Decomposition into neutral (types $A$ and $B$, rate 1) and selective (just type $A$, rate $s$ ) reproductions (Krone/ Neuhauser 1997)



## Moran model with selection

- $Z_{t}:=$ number of individuals of type $A$ at time $t$, birth-death process with birth rates $\lambda_{i}=(1+s) i \frac{N-i}{N}$ and death rates $\mu_{i}=(N-i) \frac{i}{N}$
- $T_{k}:=\min \left\{t \mid Z_{t}=k\right\}$
- Fixation probability:

$$
h_{i}:=\mathbb{P}\left(T_{N}<T_{0} \mid Z_{0}=i\right)=\frac{\sum_{j=N-i}^{N-1}(1+s)^{j}}{\sum_{j=0}^{N-1}(1+s)^{j}}
$$

## Labelled Moran model

- $N$ individuals, each characterised by label $i \in\{1, \ldots, N\}$
- Offspring inherit parent's label
- Neutral arrows at rate $1 / N$ (between every pair of labels), selective arrows at rate $s / N$ (emanating from label $i$, pointing to label $j>i$ )
- Spatial structure at time 0: Label $i$ occupies position $i$



## Ancestors and fixation probabilities

$I:=$ label that becomes fixed/ancestor

- $\mathbb{P}(I \leq i)=h_{i}$



## Ancestors and fixation probabilities

$I:=$ label that becomes fixed/ancestor

- $\mathbb{P}(I \leq i)=h_{i}$
- $\eta_{i}:=\mathbb{P}(I=i)=(1+s)^{N-i} \eta_{N}$
with $\eta_{N}:=\mathbb{P}(I=N)=\frac{1}{\sum_{j=0}^{N-1}(1+s)^{j}}$


## Ancestors and fixation probabilities

$I:=$ label that becomes fixed/ancestor

- $\mathbb{P}(I \leq i)=h_{i}$
- $\eta_{i}:=\mathbb{P}(I=i)=(1+s)^{N-i} \eta_{N}$
with $\eta_{N}:=\mathbb{P}(I=N)=\frac{1}{\sum_{j=0}^{N-1}(1+s)^{j}}$

Based on particle number representation $\rightarrow$ decode particle representation

## Particle representation behind $\eta_{i}=(1+s)^{N-i} \eta_{N}$

New descendants of labels in $\mathcal{S}, \mathcal{S} \subseteq\{1, \ldots, N\}$ :
Descendants that increase the number of inidividuals in $\mathcal{S}$.
New descendants of labels in $\{i+1, \ldots, N\}$ :


## Particle representation behind $\eta_{i}=(1+s)^{N-i} \eta_{N}$

$$
N=8, i=5:
$$

Fixation of label 8


Fixation of label 5


## Particle representation behind $\eta_{i}=(1+s)^{N-i} \eta_{N}$

$$
N=8, i=5:
$$

Fixation of label 8


Fixation of label 5


$$
\eta_{5}=\underbrace{\frac{1}{1+s}(1+s)}_{\text {new desc. of }\{6,7,8\}} \cdot \underbrace{(1+s)^{3}}_{\{6,7,8\}} \eta_{8}=(1+s)^{3} \eta_{8}
$$

## Definition

Let $I=i$.
Defining events:
Arrows emanating from labels $\{1, \ldots, i\}$ and pointing to individuals with labels $\{i+1, \ldots, N\}$ that are not new descendants of $\{i+1, \ldots, N\}$.

defining event

## Selective defining events

$Y:=$ number of selective defining events

$$
\begin{aligned}
& \text { - } \mathbb{P}(Y=n, I=i)=\binom{N-i}{n} s^{n} \eta_{N} \\
& \text { - } \mathbb{P}(Y=n)=\sum_{i=1}^{N-n} \mathbb{P}(I=i, Y=n)=\binom{N}{n+1} s^{n} \eta_{N}
\end{aligned}
$$

- $h_{i}=\mathbb{P}(I \leq i)=\sum_{n=0}^{N-1} \mathbb{P}(I \leq i \mid Y=n) \mathbb{P}(Y=n)$

$$
=\sum_{n=0}^{N-1}\left[\binom{N}{n+1}-\binom{N-i}{n+1}\right] s^{n} \eta_{N}
$$

## Targets of selective defining events

Let $Y=n$. Define $J_{1}, \ldots, J_{n}$ with $J_{1}<\cdots<J_{n}$ as the (random) positions that are hit by selective defining events


- $\mathbb{P}\left(I=i, J_{1}=j_{1}, \ldots, J_{n}=j_{n} \mid Y=n\right)=\frac{1}{(n+1)}$


## A simulation algorithm

Aim:
Generate $\left(I, J_{1}, \ldots, J_{n}\right)$

Generate $Y$. If $Y=n$ stop after step $n$.
Step 0: Generate $U^{(0)} \sim \mathcal{U}_{\{1, \ldots, N\}}$. Set $I^{(0)}:=U^{(0)}$.

Genealogical interpretation:


## A simulation algorithm

Step 1: Generate $U^{(1)} \sim \mathcal{U}_{\{1, \ldots, N\} \backslash U^{(0)}}$ independently of $U^{(0)}$.
(a) If $U^{(1)}>I^{(0)}$ :

Set $I^{(1)}:=I^{(0)}, J_{1}^{(1)}:=U^{(1)}$
(b) If $U^{(1)}<I^{(0)}$ :

Set $I^{(1)}:=U^{(1)}, J_{1}^{(1)}:=I^{(0)}$
Step 0:


Step 1(b):


## A simulation algorithm

Step $k$ : Generate
$U^{(k)} \sim \mathcal{U}_{\{1, \ldots, N\} \backslash\left\{U^{(0)}, \ldots, U^{(k-1)}\right\}}$.
(a) If $U^{(k)}>I^{(k-1)}:$ Set $I^{(k)}:=I^{(k-1)}$
(b) If $U^{(k)}<I^{(k-1)}$ : Set $I^{(k)}:=U^{(k)}$

Step $k-1$ :


Step $k(a)$ :


Step k(b):

'shift to the left'

## Relation to the ancestral selection graph

Step 0:


Step 0:



ASG without branching
Step 1:

ASG with one branching

## Genealogical interpretation

$$
\begin{aligned}
h_{i}= & \mathbb{P}(I \leq i \mid Y=0) \mathbb{P}(Y \geq 0) \\
& +\sum_{n \geq 1}[\mathbb{P}(I \leq i \mid Y=n)-\mathbb{P}(I \leq i \mid Y=n-1)] \mathbb{P}(Y \geq n) \\
= & \mathbb{P}\left(l^{(0)} \leq i\right)+\sum_{n \geq 1}\left[\mathbb{P}\left(l^{(n)} \leq i\right)-\mathbb{P}\left(l^{(n-1)} \leq i\right)\right] \mathbb{P}(Y \geq n) \\
= & \mathbb{P}\left(l^{(0)} \leq i\right)+\sum_{n \geq 1} \mathbb{P}\left(l^{(n)} \leq i, l^{(n-1)}>i\right) \mathbb{P}(Y \geq n)
\end{aligned}
$$

Decomposition according to first step in which the ancestor has a label in $\{1, \ldots, i\}$.

Diffusion limit under weak selection ( $N s \xrightarrow{N \rightarrow \infty} \sigma$ )

- $h_{i} \xrightarrow{\frac{i}{N} \rightarrow x} h(x)=\frac{1-e^{-\sigma x}}{1-e^{-\sigma}}$


## Diffusion limit under weak selection ( $N s \xrightarrow{N \rightarrow \infty} \sigma$ )

- $h_{i} \xrightarrow{\frac{i}{N} \rightarrow x} h(x)=\frac{1-e^{-\sigma x}}{1-e^{-\sigma}}$
- $a_{n}:=\lim _{N \rightarrow \infty} \mathbb{P}(Y \geq n)$
- $1-a_{1}=\lim _{N \rightarrow \infty} \mathbb{P}(Y=0)=\frac{\sigma}{\exp (\sigma)-1}$
- $a_{n}-a_{n+1}=\lim _{N \rightarrow \infty} \mathbb{P}(Y=n)=\frac{\sigma}{n+1}\left(a_{n-1}-a_{n}\right)$


## Diffusion limit under weak selection ( $N s \xrightarrow{N \rightarrow \infty} \sigma$ )

- $h_{i} \xrightarrow{\frac{i}{N} \rightarrow x} h(x)=\frac{1-e^{-\sigma x}}{1-e^{-\sigma}}$
- $a_{n}:=\lim _{N \rightarrow \infty} \mathbb{P}(Y \geq n)$
- $1-a_{1}=\lim _{N \rightarrow \infty} \mathbb{P}(Y=0)=\frac{\sigma}{\exp (\sigma)-1}$
- $a_{n}-a_{n+1}=\lim _{N \rightarrow \infty} \mathbb{P}(Y=n)=\frac{\sigma}{n+1}\left(a_{n-1}-a_{n}\right)$
- $h_{i}=\mathbb{P}\left(I^{(0)} \leq i\right)+\sum_{n \geq 1} \mathbb{P}\left(I^{(n)} \leq i, I^{(n-1)}>i\right) \mathbb{P}(Y \geq n)$
$\xrightarrow{\frac{i}{N} \rightarrow x} h(x)=x+\sum_{n \geq 1} x(1-x)^{n} a_{n}$
$=\frac{1}{\exp (\sigma)-1} \sum_{n \geq 1} \frac{1}{n!}\left(1-(1-x)^{n}\right) \sigma^{n}$


## Common ancestor type process

Moran model with mutation and selection:

- $N$ individuals
- Set of types: $S=\{A, B\}$
- Individuals of type $A$ reproduce at rate $1+s$, individuals of type $B$ at rate 1
- mutations: $i \xrightarrow{u \nu_{j}} j, i, j \in S$ here:
- $u$ general mutation rate with $N u \xrightarrow{N \rightarrow \infty} \theta$
- $\nu_{j}$ probability of mutations to type $j\left(\nu_{A}+\nu_{B}=1\right)$
- Stationary density $\pi_{X}(x)=C(1-x)^{\theta \nu_{B}-1} x^{\theta \nu_{A}-1} \exp (\sigma x)$ (Wright's formula)


## Common ancestor type process

- Population is stationary
- Common ancestor at time $t$ : Unique individual (at time $t$ ) that is ancestral to the whole population at some time $s>t$
- $I_{t}=$ type of common ancestor at time $t$ $\left(I_{t}\right)_{t \geq 0}$ common ancestor type process

Stationary type distribution $\alpha=\left(\alpha_{i}\right)_{i \in S}$ ?

## Taylor (2007)

- $\left(I_{t}, X_{t}\right)_{t \geqslant 0}$ with states $(i, x), i \in S, x \in[0,1]$
- $h(x):=$ conditional probability that the common ancestor at time $t$ is of type $A$, given that the frequency of type- $A$ individuals at time $t$ is $x(h(0)=0, h(1)=1)$
- Stationary distribution:

$$
\begin{aligned}
& \pi_{T}(0, x)=h(x) \pi_{X}(x) \\
& \pi_{T}(1, x)=(1-h(x)) \pi_{X}(x)
\end{aligned}
$$

$\Rightarrow$ Stationary type distribution $\alpha_{i}=\int_{0}^{1} \pi_{T}(i, x) d x$

## Fearnhead (2002)

$$
h(x)=x+x \sum_{n \geq 1} a_{n}(1-x)^{n}
$$

Recursion of Fearnhead's coefficients $a_{n}, n \geq 0$ :

$$
\left(n+\theta \nu_{1}\right) a_{n}-(n+\sigma+\theta) a_{n-1}+\sigma a_{n-2}=0, \quad n \geqslant 2,
$$

with initial values $a_{0}=1$ and
$a_{1}=\frac{\sigma}{1+\theta \nu_{1}}(1-\tilde{x})$, where $\tilde{x}=\frac{\int_{0}^{1} p^{\theta \nu_{0}+1}(1-p)^{\theta \nu_{1}} \exp (\sigma p) d p}{\int_{0}^{1} p^{\theta \nu_{0}}(1-p)^{\theta \nu_{1}} \exp (\sigma p) d p}$

Thank you for your attention!

