A time reversal duality for branching processes and applications J

M. Davila Felipe, joint work with A. Lambert

LPMA, Paris 6 - SMILE, CIRB Collége de France

Ecole de Printemps, Aussois, April 2014

"R MANEGE

RDMath IdF

¥ fledeFrance

Miraine Davila Felipe A time reversal duality for branching processes 1/16



Outline

© Introduction
© Time reversal for birth-death processes
© Generalization for splitting trees
© Ingredients of the proof
© Bibliography
RDMath IdF

¥ fledeFrance

Miraine Davila Felipe A time reversal duality for branching processes 2 /16



Introduction

Birth-death (BD) process

Individuals

@ have i.i.d. life durations ~ Exp(d)

life duration ~Exp(d)
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A finite sequence of i.i.d BD trees (71,...,7n)
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Introduction

Random forests

Forest F:

A finite sequence of i.i.d BD trees (71,...,7n) J
Forest F™:

A sequence of i.i.d. BD trees stopped at the first tree that survives up until time T J

For any forest F, the population size process is denoted by,

(& (F),t=>0)
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F* := Supercritical (b, d) I
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F* := Supercritical (b, d) F* := Subcritical (d, b)
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Time reversal for birth-death processes

Time-reversal duality

Fix b > d
F* := Supercritical (b, d) F* := Subcritical (d, b)

[Athreya and Ney 1972]

A supercritical BD process conditioned to die out is a subcritical BD process, obtained by
swapping birth and death rates.
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v

Theorem

We have the following identity in distribution,

(r-e(F),0<t<T) £ (¢ (F),0<e<T)

v
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Application to epidemiology

Conditional on the reduced tree: applications in epidemiology

We want to characterize the population size process conditional on the coalescence times
between individuals at present time T.
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Application to epidemiology

Conditional on the reduced tree: applications in epidemiology

When we return the time, thanks to the duality property, coalescence times become life
durations
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Application to epidemiology

Conditional on the reduced tree: applications in epidemiology

Idea:

The population size process conditional on the coalescence times to be t1, ..., tg, 4,
backward in time, is that of a sum of N BD trees, each conditioned on dying out before
t; for 1 < i < N, plus an additional tree conditioned on surviving up until time T.
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Generalization for splitting trees

Splitting trees

Individuals
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Generalization for splitting trees

Splitting trees

Individuals
}__ | } @ have i.i.d. life durations with
t | . general distribution
‘ I """ ! @ reproduce at constant rate b during
their life
______________ @ behave independently from one
-------- another
0

A splitting tree is characterized by a o-finite measure I on (0, o) satisfying
f(o Oo)(l A r)I1(dr) < oo (the lifespan measure).

We consider I1 finite with mass b: individuals give birth at rate b and have life durations

distributed as IM(-)/b.
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Generalization for splitting trees

Time reversal duality for splitting trees

Define for I:
o The Laplace exponent: ¥(\) := A — [~ (1—e ™) N(dr), A >0
@ 1) the largest root of 1

@ A new measure ﬁ(dr) =e "N(dr)
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@ 1) the largest root of 1
o A new measure M(dr) := e~ 1(dr)

The scale function W:
The unique continuous function W : [0, +00) — [0, +00), characterized by its Laplace
transform,

+o00 1

—Ax
e TW(x) = —, A>n
[ ewe) = 5
° v
RDMath IdF

¥ fledeFrance

Miraine Davila Felipe A time reversal duality for branching processes 9 /16




Generalization for splitting trees

Time reversal duality for splitting trees

Define for IM:

o The Laplace exponent: ¥(\) := A — [~ (1—e ™) N(dr), A >0
@ 1) the largest root of 1

o A new measure M(dr) := e " 1(dr)

The scale function W:

The unique continuous function W : [0, +00) — [0, +00), characterized by its Laplace

transform,

+oo 1

—Ax
e W(x) = ——=, A>n

[ e wer =

0 y
Define:

= 1 5= 1
w(T) W(T)
Miraine Davila Felipe A time reversal duality for branching processes 9 /16



Generalization for splitting trees

Time reversal duality for splitting trees

Forest FP:

A sequence of i.i.d. splitting trees (T1,...,Tn,, Tn,+1) L Np, where,

»: a geometric random variable with P(N, = k) = (1 — p)*p, k > 0
- T1,...7Tn,: are conditioned on extinction before T

- Tnp+1: is conditionned on survival up until time T
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A sequence of i.i.d. splitting trees (T1,...,Tn,, Tn,+1) L Np, where,
- Np: a geometric random variable with P(N, = k) = (1 — p)“p, k >0
- T1,...7Tn,: are conditioned on extinction before T

- Tnp+1: is conditionned on survival up until time T

2 T

~ FP, but lifetimes of the ancestors have a specific distribution (T, L), # from M(-)/b

Claim

]-'j = a sequence of i.i.d. splitting trees (L, 1) stopped at the first tree having survived
up to time T.

]?-7- = a sequence of i.i.d. splitting trees (T, ﬁ) stopped at the first tree having survived
up to time T.
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Generalization for splitting trees

Time reversal duality for splitting trees

Claim

]-'j’_ = a sequence of i.i.d. splitting trees (L, 1) stopped at the first tree having survived
up to time T.

]-'¥ = a sequence of i.i.d. splitting trees (T, ﬁ) stopped at the first tree having survived
up to time T.

Theorem

If the measure I is supercritical (i.e. m:= [° rM(dr) > 1) then,

(6(7)0ce<7)

IES

(¢r-e(F1),0<e<T)
In particular, if N is subcritical, then,

-4

(e (F]),0<t<T) = (&(F7),0<t<T)

. . . . n
and actually in this case 1 = T since they have both density ﬁdr.
m
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Ingredients of the proof

The jumping chronological contour process

Example of a finite splitting tree and its contour process®
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Ingredients of the proof

The contour of splitting trees is a Lévy process

Let Y be a a finite variation Lévy process with Lévy measure N and drift -1.

0. 0. 04

Theorem [Lambert 2010]

Conditional on the lifespan of the ancestor to be x, the contour of 7{™), is distributed as
Y, started at x A T, reflected below T and killed upon hitting 0.

The contour of T, conditional on extinction, has the law of Y started at x, conditioned
on, and killed upon hitting 0.
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Ingredients of the proof

Time reversal duality for spectrally positive Lévy processes

Theorem [Bertoin 1992]

The excursion measure has the following property of invariance under time reversal:
under Py (-’fY(T;)_ = u) the reverted excursion, (—Y(r,_¢)—,0 < t < 70) has the same
distribution that (Y;,0 < t < 70) under P, (-|70 < 400).
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Ingredients of the proof

Time reversal duality for splitting trees

Define for a Lévy measure [1:
o The Laplace exponent: §(X) := A — [ (1 — e M) N(dr), A>0
o 7 the largest root of 1
o A new measure M(dr) := e~ " TI(dr)

o 7o =€ {t>0:Y: € A} the first hitting time of the real Borel set A
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Undershoot and overshoot

2 T

Lifetimes of the ancestors have a specific distribution, different from I(-)/b:

The undershoot and overshoot at 0 of an excursion starting at 0 and conditional on
To" < +00, are distributed as follows,

e"'ﬁ(r)dr

: Overshoot Overshoot (L): ~ I
N m

Undershoot

\\\ Undershoot (T): ~ M

mA1
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