A time reversal duality for branching processes and applications

M. Dávila Felipe, joint work with A. Lambert

LPMA, Paris 6 - SMILE, CIRB Collège de France

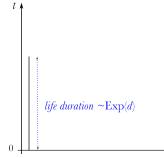
École de Printemps, Aussois, April 2014

ANR MANEGE

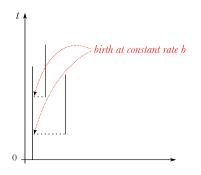
Outline

Introduction

- 2 Time reversal for birth-death processes
- 3 Generalization for splitting trees
- Ingredients of the proof
- 5 Bibliography



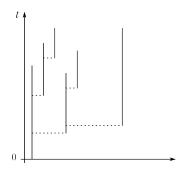
- have i.i.d. life durations $\sim \operatorname{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another



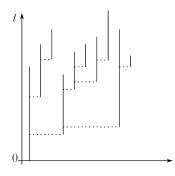
- have i.i.d. life durations $\sim \operatorname{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another

Introduction

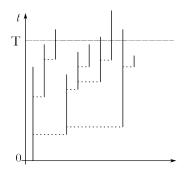
Birth-death (BD) process



- have i.i.d. life durations $\sim \operatorname{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another



- have i.i.d. life durations $\sim \operatorname{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another

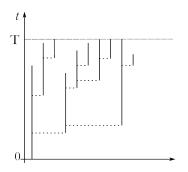


Individuals

- have i.i.d. life durations $\sim \operatorname{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another

We consider for a fixed time T:

 \mathcal{T} : the BD tree starting from one ancestor $\mathcal{T}^{(\mathcal{T})}$: the BD tree truncated up to time \mathcal{T} $(\xi_t(\mathcal{T}), t \ge 0)$: the population size process

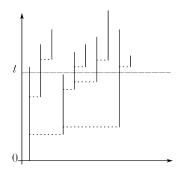


Individuals

- have i.i.d. life durations $\sim \text{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another

We consider for a fixed time T:

 \mathcal{T} : the BD tree starting from one ancestor $\mathcal{T}^{(T)}$: the BD tree truncated up to time T



Individuals

- have i.i.d. life durations $\sim \text{Exp}(d)$
- reproduce at constant rate *b* during their life
- behave independently from one another

We consider for a fixed time T:

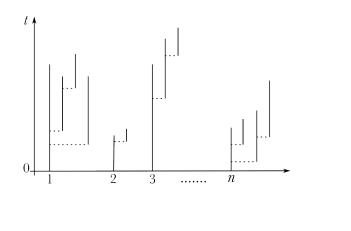
 \mathcal{T} : the BD tree starting from one ancestor $\mathcal{T}^{(\mathcal{T})}$: the BD tree truncated up to time $\mathcal{T}(\xi_t(\mathcal{T}), t \ge 0)$: the population size process

Forest \mathcal{F} :

A finite sequence of i.i.d BD trees $(\mathcal{T}_1, \ldots, \mathcal{T}_n)$

Forest \mathcal{F} :

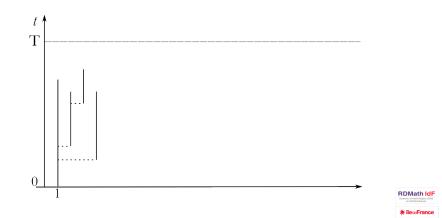
A finite sequence of i.i.d BD trees $(\mathcal{T}_1, \ldots, \mathcal{T}_n)$



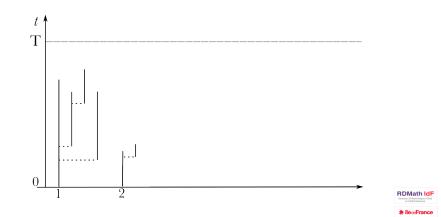
RDMath IdF

Forest \mathcal{F}^* :

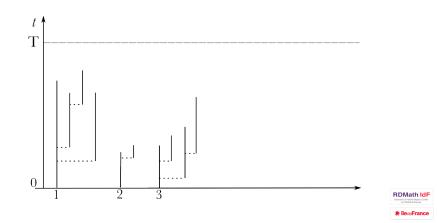
Forest \mathcal{F}^* :



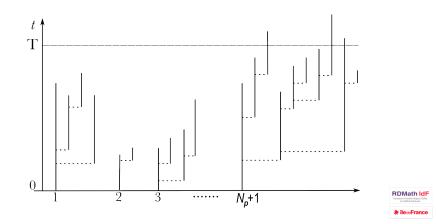
Forest \mathcal{F}^* :



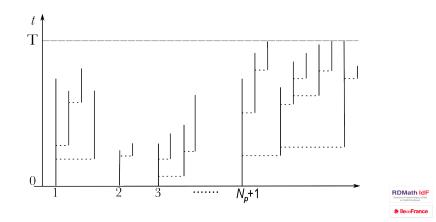
Forest \mathcal{F}^* :



Forest \mathcal{F}^* :



Forest \mathcal{F}^* :



Forest \mathcal{F} :

A finite sequence of i.i.d BD trees $(\mathcal{T}_1, \ldots, \mathcal{T}_n)$

Forest \mathcal{F}^* :

A sequence of i.i.d. BD trees stopped at the first tree that survives up until time ${\cal T}$

For any forest \mathcal{F} , the population size process is denoted by,

 $\left(\xi_{t}\left(\mathcal{F}
ight) ,t\geq0
ight)$

Fix $b \ge d$

 $\mathcal{F}^* := \mathsf{Supercritical}(b, d)$

Fix $b \ge d$

 $\mathcal{F}^* :=$ Supercritical (b, d)

$$\widetilde{\mathcal{F}}^* :=$$
Subcritical (d, b)

Fix $b \ge d$

 $\mathcal{F}^* := \mathsf{Supercritical}(b, d)$

$$\widetilde{\mathcal{F}}^* :=$$
Subcritical (d, b)

[Athreya and Ney 1972]

A supercritical BD process conditioned to die out is a subcritical BD process, obtained by swapping birth and death rates.

Fix $b \ge d$

 $\mathcal{F}^* := \mathsf{Supercritical}(b, d)$

$$\widetilde{\mathcal{F}}^* :=$$
Subcritical (d, b)

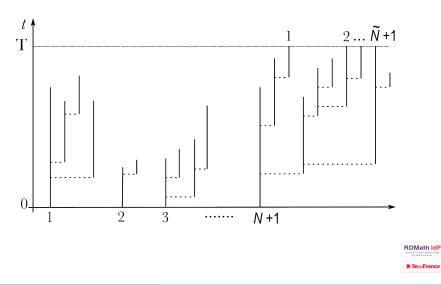
[Athreya and Ney 1972]

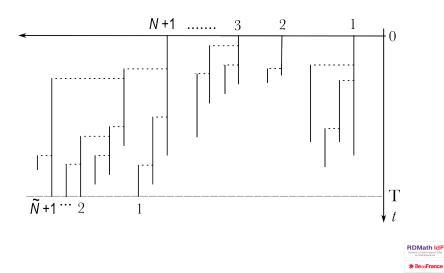
A supercritical BD process conditioned to die out is a subcritical BD process, obtained by swapping birth and death rates.

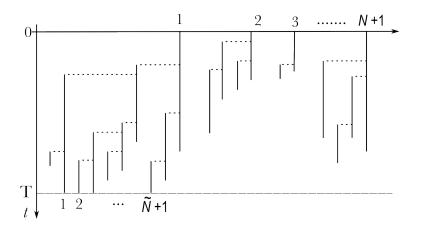
Theorem

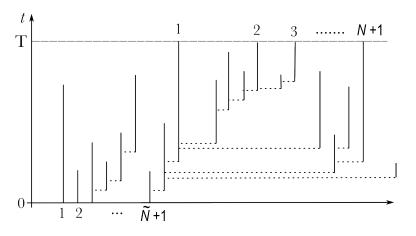
We have the following identity in distribution,

$$\left(\xi_{\mathcal{T}-t}\left(\mathcal{F}^{*}
ight) ,0\leq t\leq T
ight) \overset{d}{=}\left(\xi_{t}\left(\widetilde{\mathcal{F}}^{*}
ight) ,0\leq t\leq T
ight)$$









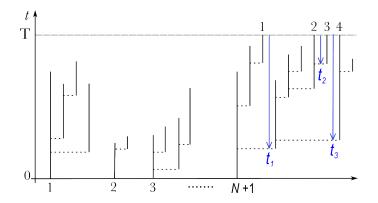
RDMathIdF Consider Christel Majour (2014) are Institutionations in the Christel Majour (2014) in

Conditional on the reduced tree: applications in epidemiology

We want to characterize the population size process conditional on the coalescence times between individuals at present time T.

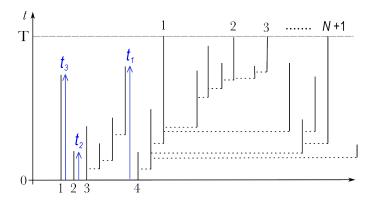
Conditional on the reduced tree: applications in epidemiology

We want to characterize the population size process conditional on the coalescence times between individuals at present time T.

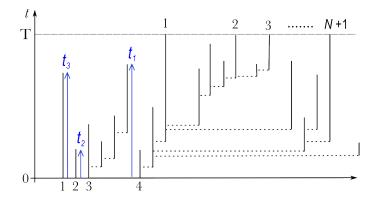


Conditional on the reduced tree: applications in epidemiology

When we return the time, thanks to the duality property, coalescence times become life durations



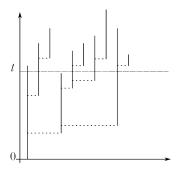
Conditional on the reduced tree: applications in epidemiology



Idea:

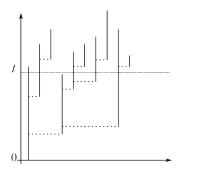
The population size process conditional on the coalescence times to be $t_1, \ldots, t_{\widetilde{N}+1}$, backward in time, is that of a sum of \widetilde{N} BD trees, each conditioned on dying out before t_i for $1 \le i \le \widetilde{N}$, plus an additional tree conditioned on surviving up until time T.

Splitting trees



- have i.i.d. life durations with general distribution
- reproduce at constant rate *b* during their life
- behave independently from one another

Splitting trees

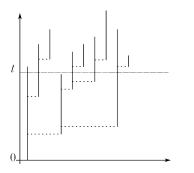


Individuals

- have i.i.d. life durations with general distribution
- reproduce at constant rate *b* during their life
- behave independently from one another

A splitting tree is characterized by a σ -finite measure Π on $(0, \infty)$ satisfying $\int_{(0,\infty)} (1 \wedge r) \Pi(dr) < \infty$ (the *lifespan measure*).

Splitting trees



Individuals

- have i.i.d. life durations with general distribution
- reproduce at constant rate *b* during their life
- behave independently from one another

A splitting tree is characterized by a σ -finite measure Π on $(0, \infty)$ satisfying $\int_{(0,\infty)} (1 \wedge r) \Pi(dr) < \infty$ (the *lifespan measure*).

We consider Π finite with mass *b*: individuals give birth at rate *b* and have life durations distributed as $\Pi(\cdot)/b$.

iledeFrance

Generalization for splitting trees

Time reversal duality for splitting trees

Define for Π :

- The Laplace exponent: $\psi(\lambda) := \lambda \int_0^\infty \left(1 \mathrm{e}^{-\lambda r}\right) \Pi(\mathrm{d} r), \ \lambda \ge 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$

Time reversal duality for splitting trees

Define for Π :

- The Laplace exponent: $\psi(\lambda) := \lambda \int_0^\infty \left(1 \mathrm{e}^{-\lambda r}\right) \Pi(\mathrm{d} r), \; \lambda \ge 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$

The scale function W:

The unique continuous function $W : [0, +\infty) \rightarrow [0, +\infty)$, characterized by its Laplace transform,

$$\int\limits_{0}^{+\infty} \mathrm{e}^{-\lambda x} W(x) = rac{1}{\psi(\lambda)}, \qquad \lambda > \eta$$

Time reversal duality for splitting trees

Define for Π :

- The Laplace exponent: $\psi(\lambda) := \lambda \int_0^\infty \left(1 \mathrm{e}^{-\lambda r}\right) \Pi(\mathrm{d} r), \; \lambda \ge 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$

The scale function W:

The unique continuous function $W : [0, +\infty) \rightarrow [0, +\infty)$, characterized by its Laplace transform,

$$\int\limits_{0}^{+\infty} \mathrm{e}^{-\lambda x} W(x) = rac{1}{\psi(\lambda)}, \qquad \lambda > \eta$$

Define:

$$\gamma = \frac{1}{W(T)}$$
 $\widetilde{\gamma} = \frac{1}{\widetilde{W}(T)}$

-,. ------

Forest \mathcal{F}^{p} :

A sequence of i.i.d. splitting trees $(\mathcal{T}_1, \dots, \mathcal{T}_{N_p}, \mathcal{T}_{N_{p+1}}) \perp N_p$, where,

- $N_{
 m
 ho}$: a geometric random variable with $\mathbb{P}(N_{
 m
 ho}=k)=(1-p)^k p$, $k\geq 0$
- $\mathcal{T}_1, \ldots \mathcal{T}_{N_{\boldsymbol{P}}}$: are conditioned on extinction before \mathcal{T}
- $\mathcal{T}_{N_{p+1}}$: is conditionned on survival up until time \mathcal{T}

Forest \mathcal{F}^{p} :

A sequence of i.i.d. splitting trees $(\mathcal{T}_1, \dots, \mathcal{T}_{N_p}, \mathcal{T}_{N_{p+1}}) \perp N_p$, where,

- N_{p} : a geometric random variable with $\mathbb{P}(N_{p} = k) = (1-p)^{k}p$, $k \geq 0$
- $\mathcal{T}_1, \ldots \mathcal{T}_{N_{\boldsymbol{P}}}$: are conditioned on extinction before T
- $\mathcal{T}_{N_{p+1}}$: is conditionned on survival up until time T

$\mathcal{F}^{p}_{\top}, \mathcal{F}^{p}_{\perp}$:

 $\sim \mathcal{F}^{p}$, but lifetimes of the ancestors have a specific distribution $(\top, \bot), \neq$ from $\Pi(\cdot)/b$

Forest \mathcal{F}^{p} :

A sequence of i.i.d. splitting trees $(\mathcal{T}_1, \dots, \mathcal{T}_{N_p}, \mathcal{T}_{N_{p+1}}) \perp N_p$, where,

- N_{p} : a geometric random variable with $\mathbb{P}(N_{p} = k) = (1-p)^{k}p$, $k \geq 0$
- $\mathcal{T}_1, \ldots \mathcal{T}_{N_{\boldsymbol{P}}}$: are conditioned on extinction before T
- $\mathcal{T}_{N_{p+1}}$: is conditionned on survival up until time T

$\mathcal{F}^{p}_{\top}, \mathcal{F}^{p}_{\perp}$:

 $\sim \mathcal{F}^{p}$, but lifetimes of the ancestors have a specific distribution (\top, \bot) , \neq from $\Pi(\cdot)/b$

Claim

 $\mathcal{F}_{\perp}^{\tilde{\gamma}}$ = a sequence of i.i.d. splitting trees (\perp, Π) stopped at the first tree having survived up to time *T*.

 $\widetilde{\mathcal{F}}_{\top}^{\gamma}$ = a sequence of i.i.d. splitting trees ($\top, \widetilde{\Pi}$) stopped at the first tree having survived up to time T.

Claim

 $\mathcal{F}_{\perp}^{\tilde{\gamma}}$ = a sequence of i.i.d. splitting trees (\perp , Π) stopped at the first tree having survived up to time T.

 $\widetilde{\mathcal{F}}_{\top}^{\gamma}$ = a sequence of i.i.d. splitting trees $(\top, \widetilde{\Pi})$ stopped at the first tree having survived up to time \mathcal{T} .

Theorem

If the measure Π is supercritical (i.e. $\mathit{m}:=\int_0^\infty r\Pi(\mathrm{d} r)>1)$ then,

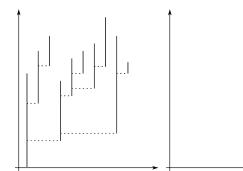
$$\left(\xi_{\mathcal{T}-t} \left(\mathcal{F}^{\widetilde{\gamma}}_{\perp}
ight), 0 \leq t \leq T
ight) \stackrel{d}{=} \left(\xi_t \left(\widetilde{\mathcal{F}}^{\gamma}_{\top}
ight), 0 \leq t \leq T
ight)$$

In particular, if Π is subcritical, then,

$$\left(\xi_{\mathcal{T}-t}\left(\mathcal{F}_{\perp}^{\gamma}
ight),0\leq t\leq T
ight)\overset{d}{=}\left(\xi_{t}\left(\mathcal{F}_{\top}^{\gamma}
ight),0\leq t\leq T
ight)$$

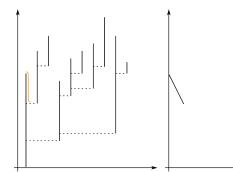
and actually in this case $\bot = \top$ since they have both density $\frac{\Pi(r)}{m} dr$.

The jumping chronological contour process



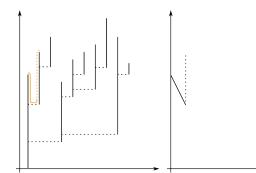
Example of a finite splitting tree and its contour process¹

The jumping chronological contour process



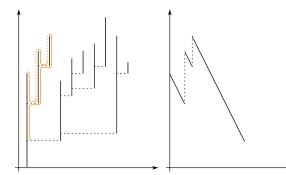
Example of a finite splitting tree and its contour process¹

The jumping chronological contour process



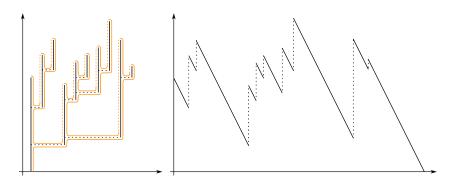
Example of a finite splitting tree and its contour process¹

The jumping chronological contour process



Example of a finite splitting tree and its contour process¹

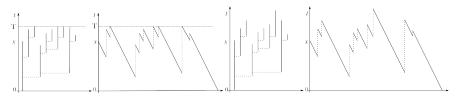
The jumping chronological contour process



Example of a finite splitting tree and its contour process¹

The contour of splitting trees is a Lévy process

Let Y be a a finite variation Lévy process with Lévy measure Π and drift -1.



Theorem [Lambert 2010]

Conditional on the lifespan of the ancestor to be x, the contour of $\mathcal{T}^{(\mathcal{T})}$, is distributed as Y, started at $x \wedge \mathcal{T}$, reflected below \mathcal{T} and killed upon hitting 0.

The contour of \mathcal{T} , conditional on extinction, has the law of Y started at x, conditioned on, and killed upon hitting 0.

Time reversal duality for spectrally positive Lévy processes

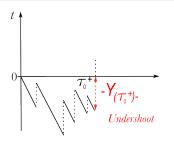
Theorem [Bertoin 1992]

The excursion measure has the following property of invariance under time reversal: under $\mathbb{P}_0\left(\cdot \middle| -Y_{(\tau_0^+)^-} = u\right)$ the reverted excursion, $\left(-Y_{(\tau_0^-t)^-}, 0 \le t < \tau_0\right)$ has the same distribution that $(Y_t, 0 \le t < \tau_0)$ under $\mathbb{P}_u\left(\cdot | \tau_0 < +\infty\right)$.

Time reversal duality for spectrally positive Lévy processes

Theorem [Bertoin 1992]

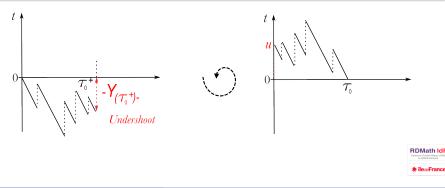
The excursion measure has the following property of invariance under time reversal: under $\mathbb{P}_0\left(\cdot \middle| -Y_{(\tau_0^+)^-} = u\right)$ the reverted excursion, $\left(-Y_{(\tau_0^-t)^-}, 0 \le t < \tau_0\right)$ has the same distribution that $(Y_t, 0 \le t < \tau_0)$ under $\mathbb{P}_u\left(\cdot \middle| \tau_0 < +\infty\right)$.



Time reversal duality for spectrally positive Lévy processes

Theorem [Bertoin 1992]

The excursion measure has the following property of invariance under time reversal: under $\mathbb{P}_0\left(\cdot \middle| -Y_{(\tau_0^+)^-} = u\right)$ the reverted excursion, $\left(-Y_{(\tau_0^-t)^-}, 0 \le t < \tau_0\right)$ has the same distribution that $(Y_t, 0 \le t < \tau_0)$ under $\mathbb{P}_u\left(\cdot \middle| \tau_0 < +\infty\right)$.



Define for a Lévy measure Π :

- The Laplace exponent: $\psi(\lambda) := \lambda \int_0^\infty (1 e^{-\lambda r}) \Pi(dr), \ \lambda \ge 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$
- $\tau_A = \in \{t \ge 0 : Y_t \in A\}$ the first hitting time of the real Borel set A

Define for a Lévy measure Π :

- The Laplace exponent: $\psi(\lambda) := \lambda \int_0^\infty \left(1 \mathrm{e}^{-\lambda r}\right) \mathsf{\Pi}(\mathrm{d} r), \; \lambda \ge 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$
- $au_A = \in \{t \ge 0 : Y_t \in A\}$ the first hitting time of the real Borel set A

The scale function W:

The unique continuous function $W:[0,+\infty) \to [0,+\infty)$, characterized by its Laplace transform,

$$\int\limits_{0}^{+\infty} \mathrm{e}^{-\lambda x} \mathcal{W}(x) = rac{1}{\psi(\lambda)}, \qquad \lambda > \eta$$

Time reversal duality for splitting trees

Define for a Lévy measure Π :

- The Laplace exponent: $\psi(\lambda):=\lambda-\int_0^\infty \left(1-{
 m e}^{-\lambda r}
 ight) \Pi({
 m d} r), \; \lambda\geq 0$
- η the largest root of ψ
- A new measure $\widetilde{\Pi}(\mathrm{d} r) := \mathrm{e}^{-\eta r} \Pi(\mathrm{d} r)$
- $\tau_A = \in \{t \ge 0 : Y_t \in A\}$ the first hitting time of the real Borel set A

The scale function W:

The unique continuous function $W : [0, +\infty) \rightarrow [0, +\infty)$, characterized by its Laplace transform,

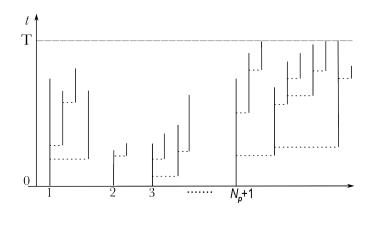
$$\int\limits_{0}^{+\infty} \mathrm{e}^{-\lambda x} W(x) = rac{1}{\psi(\lambda)}, \qquad \lambda > \eta$$

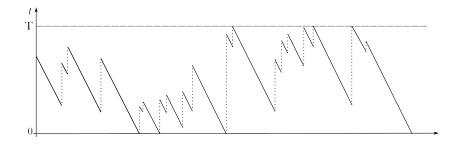
Define:

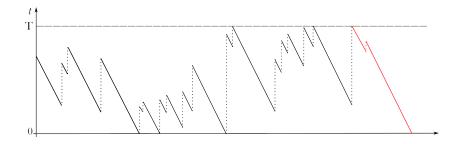
$$\gamma = \frac{1}{W(T)} = P_T \left(\tau_0 < \tau_T^+ \right)$$

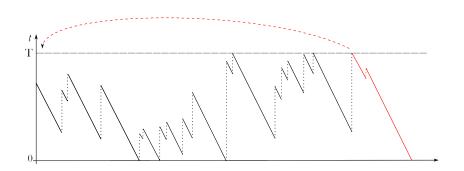
$$\widetilde{\gamma} = rac{1}{\widetilde{W}(T)} = \widetilde{P}_{T}\left(au_{0} < au_{T}^{+}
ight)$$

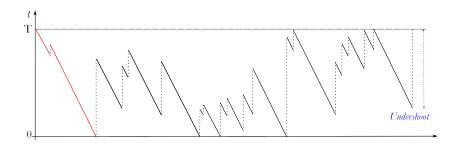
Miraine Dávila Felipe

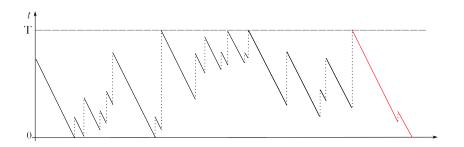












References I

K.B. Athreya and P.E. Ney

Branching Processes

Springer-Verlag, New York, Band 196. MR0373040.

J. Bertoin

An Extension of Pitman's Theorem for Spectrally Positive Levy Processes *Ann. Probab.*, 20(3):1464–1483,1992.

A. Lambert

The contour of splitting trees is a Lévy process. *Ann. Probab.*, 38(1):348–395, 2010.

Thank You!

 $\mathcal{F}^{p}_{\top}, \mathcal{F}^{p}_{\perp}$:

Lifetimes of the ancestors have a specific distribution, different from $\Pi(\cdot)/b$:

The undershoot and overshoot at 0 of an excursion starting at 0 and conditional on $\tau_0^+ < +\infty$, are distributed as follows,

