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Introduction Galton Watson processes

Behavior of P(Zn = k) as n→∞, with k ≥ 1

Let Zn be a GW process with reproduction law specified by the p.g.f f .
Then

E(sZn ) = f ◦n(s) (s ∈ [0,1])

In the supercritical case (f ′(1) > 1),

P(Zn →∞) > 0, P(Zn →∞ or ∃n ∈ N : Zn = 0) = 1

What about
{Zn = k} k = 1, ...

and its probability f (k)n (0)/k ?
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Introduction Galton Watson processes

Proofs of the asymptotic behavior P1(Zn = 1)

easy if P1(Z1 = 0) = 0 (pe = 0)
analytical proofs [Athreya,Ney 70s]
The reduced tree (i.e. keeping only the survival branches) of a
supercritical GW is a supercritical GW (without extinction !) [see
e.g. Peres Lyons’s book]
spine decomposition [Lyons Peres Pemantle 95, Geiger 99]
a supercritical GW conditioned to become extincted is a subcritical
GW

Conclusion : if P1(Z1 = 1) > 0

P1(Zn = 1) ∼ cf ′(pe)n (n→∞)

where pe = P(∃n : Zn = 0) = inf{s ∈ [0,1] : f (s) = s}
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Introduction Galton Watson processes

Motivations for random environments

To evaluate the number Nn(k) of infected cells with k parasites in
Kimmel’s branching model

Nn(k) ∼ 2nP(Zn = k) (n→∞)

where Zn is a branching process in random environment.

To understand the role of environmental and demographic
stochasticity in the evolution of a population

To characterize the lower large deviations of BPRE

P(1 ≤ Zn ≤ cn) ∼?? (n→∞)
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BPRE Introduction

Branching processes in random environment (BPRE) generalize
Galton Watson processes [Smith, Wilkinson 69] :

In each generation, one pick in an i.i.d. manner an environment which
gives the reproduction law of each individual.
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BPRE Introduction

Description of a BPRE (Zn)n≥0

Now, in each generation, we pick randomly an environment in an i.i.d.
manner :

Ei = environment in generation i .

The reproduction law in environment e is given by the r.v. Ne :

fe(s) := E(sN(e)), m(e) := E(N(e)) = f ′e(1).

For every n ∈ N, conditionally on

En = e,

we have

Zn+1 =
Zn∑

i=1

Ni ,

where (Ni)i∈N are i.i.d. r.v. distributed as N(e).

Z becomes extincted a.s. iff E[log(m(E))] ≤ 0. [Athreya, Karlin 71].
Vincent Bansaye (Polytechnique) 16th june. Cirm. 6 / 21
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BPRE Small positive values

Supercritical BPRE with P(Z1 = 0) > 0

Let us note QE the random reproduction law, i.e. the law of N(E),

I :=
{

j ≥ 1 : P(QE(j) > 0,QE(0) > 0) > 0
}

and introduce the set Cl(I) of integers which can be reached from I
by Z :

Cl(I) :=
{

k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0
}
.

Finally, the reproduction between generation i and n is given by

fi,n = fEi ◦ · · · ◦ fEn−1

Vincent Bansaye (Polytechnique) 16th june. Cirm. 7 / 21



BPRE Small positive values

Supercritical BPRE with P(Z1 = 0) > 0

Let us note QE the random reproduction law, i.e. the law of N(E),

I :=
{

j ≥ 1 : P(QE(j) > 0,QE(0) > 0) > 0
}

and introduce the set Cl(I) of integers which can be reached from I
by Z :

Cl(I) :=
{

k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0
}
.

Finally, the reproduction between generation i and n is given by

fi,n = fEi ◦ · · · ◦ fEn−1

Vincent Bansaye (Polytechnique) 16th june. Cirm. 7 / 21



BPRE Small positive values

Supercritical BPRE with P(Z1 = 0) > 0

Let us note QE the random reproduction law, i.e. the law of N(E),

I :=
{

j ≥ 1 : P(QE(j) > 0,QE(0) > 0) > 0
}

and introduce the set Cl(I) of integers which can be reached from I
by Z :

Cl(I) :=
{

k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0
}
.

Finally, the reproduction between generation i and n is given by

fi,n = fEi ◦ · · · ◦ fEn−1

Vincent Bansaye (Polytechnique) 16th june. Cirm. 7 / 21



BPRE Small positive values

Supercritical BPRE with P(Z1 = 0) > 0

Keeping these notations

I :=
{

j ≥ 1 : P(QE(j) > 0,QE(0) > 0) > 0
}

Cl(I) :=
{

k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0
}
.

fi,n = fEi ◦ · · · ◦ fEn−1

Theorem
The following limits exist and coincide for all k , j ∈ Cl(I),

− lim
n→∞

1
n logPk (Zn = j) = − lim

n→∞
1
n logE

[
f0,n(0)z0−1Πn−1

i=1 f ′Ei

(
fi+1,n(0)

)]
where z0 is the smallest element of I.
This common limit is denoted % and % ∈ (0,∞).
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BPRE Small positive values

[Geiger 99] construction with T (c) trees conditioned on extinction and
T (u) unconditioned trees.
To get ρ > 0, we use an estimation of fi,n(0) due to Agresti, which gives
a lower bound using the random walk Sn =

∑n−1
i=0 log m(Ei)
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BPRE Small positive values

Example of BPRE II
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BPRE Small positive values

What about environmental stochasticity ?

We note Sn =
∑n−1

i=0 log m(Ei) and

E(Zn | E0, · · · En−1) = Πn−1
i=0 m(Ei) = exp(Sn)

and
Λ(x) = sup{tx − logE(exp(tX )) : t ∈ R}

Proposition (Environmental stochasticity scenario)

If truncated moment assumption (or P(m(E) ≥ 1) = 1) is fulfilled, then

ρ ≤ Λ(0)

Informally : we focus on {Sn ≈ 0}, so the probability that the population
survives without tending to∞ decreases polynomially.
Proof : Change of probability so that the r.w. S becomes critical and

{1 ≤ Zn ≤ kn}” ⊃ ”{ min
i=0···n−1

Si ≥ 0,Sn ≤ C}

for kn not growing fast.
Vincent Bansaye (Polytechnique) 16th june. Cirm. 11 / 21



BPRE Small positive values

What about environmental stochasticity ?

We note Sn =
∑n−1

i=0 log m(Ei) and

E(Zn | E0, · · · En−1) = Πn−1
i=0 m(Ei) = exp(Sn)

and
Λ(x) = sup{tx − logE(exp(tX )) : t ∈ R}

Proposition (Environmental stochasticity scenario)

If truncated moment assumption (or P(m(E) ≥ 1) = 1) is fulfilled, then

ρ ≤ Λ(0)

Informally : we focus on {Sn ≈ 0}, so the probability that the population
survives without tending to∞ decreases polynomially.
Proof : Change of probability so that the r.w. S becomes critical and

{1 ≤ Zn ≤ kn}” ⊃ ”{ min
i=0···n−1

Si ≥ 0,Sn ≤ C}

for kn not growing fast.
Vincent Bansaye (Polytechnique) 16th june. Cirm. 11 / 21



BPRE Small positive values

What about environmental stochasticity ?

We note Sn =
∑n−1

i=0 log m(Ei) and

E(Zn | E0, · · · En−1) = Πn−1
i=0 m(Ei) = exp(Sn)

and
Λ(x) = sup{tx − logE(exp(tX )) : t ∈ R}

Proposition (Environmental stochasticity scenario)

If truncated moment assumption (or P(m(E) ≥ 1) = 1) is fulfilled, then

ρ ≤ Λ(0)

Informally : we focus on {Sn ≈ 0}, so the probability that the population
survives without tending to∞ decreases polynomially.
Proof : Change of probability so that the r.w. S becomes critical and

{1 ≤ Zn ≤ kn}” ⊃ ”{ min
i=0···n−1

Si ≥ 0,Sn ≤ C}

for kn not growing fast.
Vincent Bansaye (Polytechnique) 16th june. Cirm. 11 / 21



BPRE The linear fractional case

Some special class of reproduction laws

We recall that a probability generating function is linear fractional (LF)
if there exist positive real numbers m and b such that

f (s) = 1− (1− s)/(m−1 + bm−2(1− s)/2).

The good news
This family of p.g.f is stable by composition
z0 = 1
it is representative ?
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BPRE The linear fractional case

Supercritical regimes

Theorem

If N(E) is a.s. linear fractional, then for every k ≥ 1, −% is

lim
n→∞

1
n

logP(Zn = k) = −% =

{
logE

[
m(E)−1] , if E[log(m(E))/m(E)] ≥ 0

−Λ(0) , else
.

Theorem (Dekking 88 ; D’Souza, Hambly 97 ; Guivarc’h, Liu 01 ;
Geiger, Kersting, Vatutin 03)
In the subcritical case, then

lim
n→∞

1
n

logP(Zn > 0) =

{
logE

[
m(E)

]
, if E[log(m(E))m(E)] ≤ 0

−Λ(0) , else
.

Recall a supercritical GW conditioned to become extincted is a
subcritical GW.
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BPRE The linear fractional case

MRCAn= most recent common ancestor of individuals living at time n.

Proposition

(i) If E[log(m(E))/m(E)] > 0, then for every δ ∈ (0,1],

lim sup
n→∞

1
n logP1(MRCAn > δn|Zn = 2) < 0.

(ii) If E[log(m(E))/m(E)] < 0, then

lim inf
n→∞

P1(MRCAn = n|Zn = 2) > 0 ; lim inf
n→∞

P1(MRCAn = 1|Zn = 2) > 0.

(iii) If E[log(m(E))/m(E)] = 0, then for every sequence (xn)n∈N such
that xn ∈ [1,n], we have

lim
n→∞

1
n logP1(MRCAn = xn|Zn = 2) = 0.
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Going farther... Lower Large Deviations

Now...lower larger deviations

In the supercritical regime, on the survival event, with N(E) log N(E)
moment assumption [Athreya Karlin 71]

Zn ∼W exp(Sn) ≈ exp(E(log m(E)n)) n→∞, W > 0

Let us now focus on
{0 < Zn ≤ exp(θn)}

where θ < E(log m(E)).
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Going farther... Lower Large Deviations

case without extinction, with J. Berestycki 09

Here, P(Z1 = 0) = 0 and Z grows a.s.

Theorem
If the mean and variance of reproduction law are bounded a.s.

1
n

logP(0 < Zn ≤ exp(θn))
n→∞−→ −χ(θ)

where

χ(θ) = inf
t∈[0,1]

{−t log(P1(Z1 = 1)) + (1− t)Λ(c/(1− t))}.

+ uniform dimensional convergence of the trajectory
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Going farther... Lower Large Deviations

case with possible extinction, with C. Boeinghoff

Theorem
Moment assumptions about the mean offspring.

1
n

logP(0 < Zn ≤ exp(θn))
n→∞−→ −χ(θ)

where
χ(θ) = inf

t∈[0,1]
{tρ+ (1− t)Λ(θ/(1− t))}.

+ finite dimensional convergence of the trajectory
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Going farther... Lower Large Deviations

...and cell infection model

In Kimmel’s (general) branching model
the cell divides in discrete time and the population is a binary tree.
the parasites population grows inside the cells following a Galton
Watson process
the parasites are shared randomly in the two daughter’s cells
(for example, by a binomial repartition with a random parameter P
picked in a iid manner for every cell)

The number of parasites in a random cell line is a BPRE (a GW
process iff P = 1/2 a.s).
Motivations come from experiments in TaMaRa’s laboratory, which
note a strong asymmetry.
A random environment (in time) can be added (for growth and sharing).
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picked in a iid manner for every cell)

The number of parasites in a random cell line is a BPRE (a GW
process iff P = 1/2 a.s).
Motivations come from experiments in TaMaRa’s laboratory, which
note a strong asymmetry.
A random environment (in time) can be added (for growth and sharing).
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Going farther... Lower Large Deviations

Counting cells...

Let us call Gn the cells in generation n and

Nn(A) = #{i ∈ Gn : Zi ∈ A}

the number of cells with k parasites in generation n. Then

E(Nn(A)) = 2nP(Zn ∈ A)

and in particular

1
n logENn[exp(nθ),∞)

n→∞−→ 2− χ(θ)

1
n logENn{k}

n→∞−→ 2− %

-> The two stochasticities of the model (growth and sharing) appear
along the lineage (separately or combined).
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Going farther... Lower Large Deviations

Different regimes for the cell infection

P = p a.s. m0 = mp m1 = m(1− p)
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Going farther... Lower Large Deviations

Conclusion Rate function χ for LD of BPRE

Kozlov [06, Discrt. Math. Appl.] : geometric offspring distributions,
upper rate function χ(θ) = Λ(θ).
B. & Beresticky [09, MPRF] : P(Z1 = 0) = 0, lower rate function :
χ(c) = inft∈[0,1]{−t log(P1(Z1 = 1)) + (1− t)Λ(c/(1− t))}.
Kersting & Boeinghoff [10, SPA] : Geometric tail offspring
distribution upper rate function
χ(θ) = inft∈[0,1]

{
tγ + (1− t)Λ((θ − u)/(1− t))

}
Kozlov [10, TPA] : Geometric offspring distributions. Finer
estimates for upper large deviations.
B. & Boeinghoff [11, EJP] : Possible heavy tails, upper rate
function χ(θ) = inft∈[0,1],u∈[0,θ]

{
tγ+βu + (1− t)Λ((θ−u)/(1− t))

}
B. & Boeinghoff [12] : lower large deviations and probability to stay
bounded without extinction
χ(θ) = inft∈[0,1]{t%+ (1− t)Λ(θ/(1− t))}.
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