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Remark. The catchier part of the title is due to Steve Evans, who
invented it in Oberwolfach in August 2005.
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Outline

General aim:
Study/understand the space-time embedding of ancestral lineages in
spatial models for populations with local density regulation (in particular,
with non-constant local population sizes).

1 Why local regulation?

2 Contact process (in discrete time) and directed percolation

3 Random walk on the cluster
A renewal structure

4 Locally regulated populations (and ancestral lineages)
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Why local regulation?

A well-known problem with branching random walk

The presumably simplest stochastic population model incorporating space
are branching random walks:

Particles ‘live’ on Zd , produce offspring independently, offspring
independently take a random walk step from mother’s location.

Analysis of the ancestral lineage of a sampled individual is conceptually
very simple via the ‘Kallenberg tree’: The spatial embedding of the lineage
is a random walk.

Problem: In d = 1, 2, under general second moment assumptions, there is
no non-trivial equilibrium population (Kallenberg 1977).
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Why local regulation?
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Why local regulation?

Branching random walk on (Z/(200Z))2: Felsenstein’s ‘pain in the torus’ (1975)
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Why local regulation?

A customary ‘solution’ in population genetics:

Stepping stone model:

Condition on fixed local population size N in each patch

Pros: No local extinction

Ancestral lineages are coalescing random walks, this
makes detailed analysis feasible

Cons: An ‘ad hoc’ simplification, effects of local size
fluctations no longer explicitly modelled

N is an ‘effective’ parameter, relation to ‘real’
population dynamics is unclear

Possible (and natural) extension: Branching random walk with local
density-dependendent feedback

e.g. Bolker & Pacala (1997), Murrell & Law (2003), Etheridge (2004), Fournier &

Méléard (2004), Blath, Etheridge & Meredith (2007), B. & Depperschmidt

(2007), ...
Dynamics of ancestral lineages??
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Contact process (in discrete time) and directed percolation

The discrete time contact process

ηn(x), n ∈ Z+, x ∈ Zd , values in {0, 1}.
Site x is generation n is “inhabited” (or: “infected”) if ηn(x) = 1.

Dynamics: U
(

= {y ∈ Zd : ||y ||∞ ≤ 1
)
⊂ Zd finite, symmetric, p ∈ (0, 1).

Given ηn, independently for x ∈ Zd ,

ηn+1(x) =

{
1 w. prob. p · 1(ηn(y) = 1 for some y ∈ x + U)

0 w. prob. 1− p · 1(ηn(y) = 1 for some y ∈ x + U)

Interpretation:
In generation n + 1, each site x is inhabitable with probability p.
If ηn(y) = 1 of some y ∈ x + U, the particle at y in gen. n puts an
offspring at x .
If several y are eligible, one is chosen at random.

gen. n + 1

gen. n
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Contact process (in discrete time) and directed percolation

The discrete time contact process ...
... viewed as a locally regulated population model

Neighbours compete for inhabitable sites, so individuals in sparsely
populated regions have on average higher reproductive success.

This is particularly evident in multitype version, where particles carry a
type, e.g. from (0, 1), and offspring inherit parent’s type.

n+ 1

n

expected no. of red offspring:
3p > 1

expected no. of red offspring:
31
3p = p < 1
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Contact process (in discrete time) and directed percolation

Alternative view: Directed (site) percolation

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p)
Interpretation: ω(x , n) = 1 : site (x , n) is inhabitable/open,

otherwise not inhabitable/closed

space Zd

tim
e

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

Open paths:

m < n, x , y ∈ Zd : (x ,m)→ (y , n) if there exist x = x0, x1, . . . , xn−m = y
such that ||xi − xi−1||∞ ≤ 1 and ω(xi ,m + i) = 1 for i = 1, . . . , n −m,

C0 := {(y , n) : y ∈ Zd , n ≥ 0, (0, 0)→ (y , n)} is the (directed) cluster of
the origin
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Contact process (in discrete time) and directed percolation

Critical value

−40 −20 0 20 40

0
20

40
60

There exists pc ∈ (0, 1) such that

P(|C0| =∞) > 0 iff p > pc .

If p > pc , P(C0 reaches height n | |C0| <∞) ≤ Ce−cn for some
c ,C ∈ (0,∞).
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Contact process (in discrete time) and directed percolation

Stationary contact process and directed percolation

Assume p > pc (from now on).
Start with η−m(y) ≡ 1 at time −m < 0, then (n > −m)

ηn(x) = 1 ⇐⇒ ∃ y ∈ Zd : (y ,−m)→ (x , n).

time n

time −m ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

m→∞ yields (ηstatn )n∈Z, the stationary (discrete time) contact process

ηstatn (x) = 1 “⇐⇒” Zd × {−∞} → (x , n)

(the law of ηstat0 is the upper invariant measure, the unique non-trivial ergodic

stationary distribution)
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Contact process (in discrete time) and directed percolation

An ancestral line in the stationary contact process

(ηstatn (x), x ∈ Zd , n ∈ Z) stationary DCP, assume ηstat0 (0) = 1.

−40 −20 0 20 40

−
60

−
40

−
20

0

Let Xn = position of the ancestor of the individual at the (space-time)
origin n generations ago.

Given ηstat and Xn = x , Xn+1 is uniform on

{y ∈ Zd : ||y − x ||∞ ≤ 1, ηstat−n−1(y) = 1} (6= ∅).
To avoid lots of −-signs later, put ξn(x) := ηstat−n (x), x ∈ Zd , n ∈ Z.

Note: ξn(x) = 1 ⇐⇒ “(x , n)→ Zd × {+∞}”
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Random walk on the cluster

Directed random walk on the supercritical directed cluster

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p), p > pc
ξn(x)

(
= ξn(x ;ω)

)
= 1 iff “(x , n)→ Zd × {+∞}”

Put C := {(y ,m) : ξm(y) = 1}, U(x , n) := {y : ||y − x ||∞ ≤ 1} × {n + 1}

Let X0 = 0 (∈ Zd),

P(Xn+1 = y | ξ, Xn = x ,Xn−1 = xn−1, . . .X1 = x1) =
1(y ∈ U(x , n) ∩ C)

|U(x , n) ∩ C|

(with some arbitrary setting if U(x , n) ∩ C = ∅, we will later consider ξ under

P(· | (0, 0) ∈ C) )

Aim: Understand the long-time behaviour of (Xn). Is it similar to
“ordinary” random walk?

Note:
For the voter model (≈ contact process when no empty sites are allowed),
ancestral lines are literally (coalescing) random walks.

14/28
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Random walk on the cluster

Remark.
(Xn) is a random walk in space-time random environment (which is a
function of ξ = ξ(ω)).

Random walks in random environments and recently also random walks in
dynamic (space-time) random environments have received considerable
attention (see e.g. Firas Rassoul-Agha’s homepage
http://www.math.utah.edu/~firas/Research/)

As far as we know, none of the general techniques developed so far in this
context is applicable:

(Xn) is not uniformly elliptic.
ξ is complicated: not i.i.d., nor is (ξn(x))n=0,1,... for fixed x a Markov
chain.
The abstract conditions from Dolgopyat, Keller and Liverani (2008)
appear very hard to verify.
The cone-mixing condition from Avena, den Hollander and Redig
(2010, 2011) is violated.
The uniform coupling condition from Redig and Völlering (2011) does
not hold.
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Random walk on the cluster A renewal structure

A local construction of the walk

For x ∈ Zd , n ∈ Z let ω̃(x , n) =
(
ω̃(x , n)[1], ω̃(x , n)[2], . . . , ω̃(x , n)[|3d |]

)
an independent uniform permutation of U(x , n) = (x + U)× {n + 1}.

For a space-time point (x , n) and k ∈ N define a (directed) path γ
(x ,n)
k of

k steps that begin on open sites, choosing directions according to ω̃:

γ
(x ,n)
k (0) = x ,

if γ
(x ,n)
k (j) = y then γ

(x ,n)
k (j + 1) = z ,

where z is the element of{
z ′ : ||z ′ − y ||∞ ≤ 1, (z ′, n + j + 1)→ Zd × {n + k − 1}

}
with the smallest index in ω̃(y , n + j)

(x , n)

ω̃(x,n)(1)ω̃(x,n)(2)

k = 1 k = 2 k = 3 k = 4

16/28



Random walk on the cluster A renewal structure

A local construction of the walk

For x ∈ Zd , n ∈ Z let ω̃(x , n) =
(
ω̃(x , n)[1], ω̃(x , n)[2], . . . , ω̃(x , n)[|3d |]

)
an independent uniform permutation of U(x , n) = (x + U)× {n + 1}.
For a space-time point (x , n) and k ∈ N define a (directed) path γ

(x ,n)
k of

k steps that begin on open sites, choosing directions according to ω̃:

γ
(x ,n)
k (0) = x ,

if γ
(x ,n)
k (j) = y then γ

(x ,n)
k (j + 1) = z ,

where z is the element of{
z ′ : ||z ′ − y ||∞ ≤ 1, (z ′, n + j + 1)→ Zd × {n + k − 1}

}
with the smallest index in ω̃(y , n + j)

(x , n)

ω̃(x,n)(1)ω̃(x,n)(2)

k = 1 k = 2 k = 3 k = 4

16/28



Random walk on the cluster A renewal structure

A local construction of the walk

For x ∈ Zd , n ∈ Z let ω̃(x , n) =
(
ω̃(x , n)[1], ω̃(x , n)[2], . . . , ω̃(x , n)[|3d |]

)
an independent uniform permutation of U(x , n) = (x + U)× {n + 1}.
For a space-time point (x , n) and k ∈ N define a (directed) path γ

(x ,n)
k of

k steps that begin on open sites, choosing directions according to ω̃:

γ
(x ,n)
k (0) = x ,

if γ
(x ,n)
k (j) = y then γ

(x ,n)
k (j + 1) = z ,

where z is the element of{
z ′ : ||z ′ − y ||∞ ≤ 1, (z ′, n + j + 1)→ Zd × {n + k − 1}

}
with the smallest index in ω̃(y , n + j)

(x , n)

ω̃(x,n)(1)ω̃(x,n)(2)

k = 1 k = 2 k = 3 k = 4
16/28



Random walk on the cluster A renewal structure

Local vs global construction of the walk

γ
(x ,n)
k (k) = endpoint of the local k-step construction

(interpretation: (potential) ancestor k generations ago of site (x , n))

(x , n)

ω̃(x,n)(1)ω̃(x,n)(2)

k = 1 k = 2 k = 3 k = 4

For (x , n) ∈ C, γ(x ,n)∞ (j) := lim
k→∞

γ
(x ,n)
k (j) exists ∀ j

and γ
(x ,n)
k (k) = γ

(x ,n)
∞ (k) if ξn+k

(
γ
(x ,n)
k (k)

)
= 1.

Remarks. 1) Construction of γ
(x ,n)
k measurable w.r.t.

σ
(
ω(y , i), ω̃(y , i) : y ∈ Zd , n ≤ i < n + k

)
2) Randomised version of Kuczek’s (1989) construction, morally a discrete
time analogue of Neuhauser (1992)
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Random walk on the cluster A renewal structure

Regeneration

On B0 := {(0, 0) ∈ C}

Xk := γ(0,0)∞ (k), k = 0, 1, 2, . . .

is (a version of) the directed random walk on C,

and Xk = γ
(0,0)
k (k) if ξk

(
γ
(0,0)
k (k)

)
= 1.

Regeneration times:

T0 := 0, Y0 := 0,

T1 := min
{
k > 0 : ξk

(
γ
(0,0)
k (k)

)
= 1
}

, Y1 := γ
(0,0)
T1

(T1) = XT1 ,

then T2 := T1 + min
{
k > 0 : ξT1+k

(
γ
(Y1,T1)
k (k)

)
= 1
}

,

Y2 := γ
(Y1,T1)
T2−T1

(T2 − T1) = XT2 , etc.
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Random walk on the cluster A renewal structure

Proposition(
(Yi − Yi−1,Ti − Ti−1)

)
i≥1 is i.i.d. under P(· | B0), Y1 is symmetrically

distributed. There exist C , c ∈ (0,∞), such that

P(||Y1|| > n | B0), P(τ1 > n | B0) ≤ Ce−cn for n ∈ N.

T0

T1

T2

T3

T6

Tail bounds use the fact that finite clusters are small,

i.i.d. property follows from the fact that the local path construction uses
disjoint time-slices.
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Random walk on the cluster A renewal structure

LLN and annealed CLT for directed walk on the cluster

Corollary

P
(1

n
Xn → 0

∣∣∣B0

)
= 1 and P

(1

n
Xn → 0

∣∣∣ω) = 1 for P( · | B0)-a.a. ω,

there exists σ ∈ (0,∞) s.th.

lim
n→∞

E
[
f
(

1
σ
√
n
Xn

) ∣∣∣B0

]
= E

[
f (Z )

]
for any continuous bounded f : Rd → R, where Z is d-dimensional
standard normal.
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Random walk on the cluster A renewal structure

A quenched CLT

Theorem

lim
n→∞

E
[
f
(

1
σ
√
n
Xn

) ∣∣∣ω] = E
[
f (Z )

]
for P( · | B0)-a.a. ω

for any continuous bounded f : Rd → R, where Z is d-dimensional
standard normal.

(An invariance principle holds as well.)

Note: Quenched CLT implies annealed CLT but yields much more
information.
Extreme example: P

(
Xn = Zn

∣∣ω) = 1 would be compatible with annealed
CLT as long as Zn/

√
n is approximately normal.
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Random walk on the cluster A renewal structure

Two walks on the same cluster

(Xn), (X ′n) two independent directed walks on the same supercritical
directed cluster ξ (i.e. using the same ω’s, but independent ω̃’s resp. ω̃′.)

Proposition

Let d ≥ 2, p > pc . There exists b > 0 s.th. for f , g ∈ Cb(Rd) ∩ Lip(Rd)∣∣∣E[f ( 1
σ
√
n
Xn

)
g
(

1
σ
√
n
X ′n
) ∣∣∣B0

]
− E

[
f (Z )

]
E
[
g(Z )

]∣∣∣ ≤ Cf ,g

nb
,

in particular E
[
f
(

1
σ
√
n
Xn

) ∣∣∣ω]→ E
[
f (Z )

]
in L2

(
P(· | B0)

)
.

Exponential mixing of ξ allows to couple with two walks on independent
copies ξ and ξ′ with high probability. (In d = 2 the two walks do meet ≈ log n

times up to time n, but with high probability not after time εn; in d = 1 we use a

martingale decomposition)

From Prop., obtain first quenched CLT for (Xn) along subsequence, then
use additional concentration argument.
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Random walk on the cluster A renewal structure

Back to ancestral lineages

Remarks

Variation where (Xn) and (X ′n) coalesce upon meeting is of interest in
mathematical population genetics:
“Everything”1 that is true for the neutral multi-type voter model is
also true for the neutral multi-type discrete contact process.
(Some) analogous arguments for the continuous-time case by
Neuhauser (1992) and Valesin (2010).
Diffusion rate σ2 = σ2(p) = E

[
Y 2
1,1

]
/E[T1] ∈ (0,∞)

(no explicit formula, but in principle well-behaved for simulations
since T1,Y1,1 have exponential tails)

Effective coalescence probability still a “black box” (at least to me)
Method also works for a variant with random carrying capacities and
more general finite range, symmetric dispersal range U

1with a suitable interpretation of “everything”.
Examples: Clustering of neutral types in d = 1, 2; multiype contact equilibria exists in
d ≥ 3, P

(
two ind. sampled at distance x have same type

)
∼ C x2−d .
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Locally regulated populations (and ancestral lineages)

A spatial logistic model

Particles “live” in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,

each particle at x has Poisson
(
m −

∑
z λz−xηn(z))

)
+

offspring,
m > 1, λz ≥ 0, λ0 > 0, finite range.

Children take an independent random walk step to y with probability py−x ,
pxy = py−x symmetric, aperiodic finite range random walk kernel on Zd .

Given ηn,

ηn+1(y) ∼ Poi
(∑

x

py−xηn(x)
(
m −

∑
z λz−xηn(z)

)
+

)
, independent
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Locally regulated populations (and ancestral lineages)

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007)

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0.

Given survival, ηn converges in distribution to its unique non-trivial
equilibrium.

Starting from any two initial conditions η0, η′0, copies (ηn), (η′n) can be
coupled such that if both survive, ηn(x) = η′n(x) in a space-time cone.

Proof uses that corresponding deterministic system

ζn+1(y) =
∑
x

py−xζn(x)
(
m −

∑
z λz−xζn(z)

)
+

has unique non-triv. fixed point
plus coarse-graining, lots of comparisons with directed percolation.
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Locally regulated populations (and ancestral lineages)

Coupling, survival and convergence
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Coupling, survival and convergence
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Locally regulated populations (and ancestral lineages)

Ancestral lines

Given stationary (ηstatn (x), n ∈ Z, x ∈ Zd), cond. on ηstat0 (0) > 0, sample
an individual from space-time origin (0, 0) (uniformly)

Let (Xn) position of her ancestor n generations ago:

Given ηstat and Xn = x , Xn+1 = y w. prob.

px−yη
stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+

Hopeful result in progress ...

If m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0, there is a regeneration
construction for (Xn).
This again yields LLN and CLT for the ancestral line of an individual
drawn from equilibrium.
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Locally regulated populations (and ancestral lineages)

Thank you for your attention!
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