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Introduction

Chemostat

J. Monod (1950) and A.
Novik and L. Szilar (1950)
have developed a procedure
allowing to
• maintain a population

of bacteria at a
stationary size

• while keeping the
bacteria growth rate at
a positive level.

 chemostat
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Introduction

Chemostat

A chemostat is a bioreactor in which liquid is continuously injected
while volume is kept constant by an equal outflow:
• allows to control the growth rate of a microorganism in a constant

environment (temperature, pH, nutrient concentration...)
• used to grow cells or to perform a biochemical process (e.g.

wastewater treatment)
The chemostat is an efficient device to make bacteria adapt to given
environmental conditions, for example in order to improve nutrients
consumption (e.g. nitrogen or phosphorus in wastewater).
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Introduction

About chemostat models

Our Goal: Study adaptation in a multi-resources chemostat model.
• Basic chemostat model (system of ODEs)

u̇ = u(−1− d + ηR), Ṙ = 1− R − Rηu.

Multi-resources extensions have been studied in many contexts,
but very little is known in general about their long time behavior
(Smith and Waltman, 1995)

• Nearly no individual-based stochastic models (Crump and Young,
1979)

• In the context of adaptive dynamics, individual-based models are
widely used (Metz, Geritz et al. 1996, Doebeli and Dieckmann
2003, Fournier and Méléard, 2004, C. 2006, Méléard, Tran, 2009,
C. and Méléard, 2011, Klebaner et al. 2011, Collet, Méléard,
Metz 2011), but nearly all deal with direct competition.

• Recently, the PDE approach for adaptive dynamics (Diekmann,
Jabin, Mischler, Perthame, 2005) was also extended to
multi-resources chemostat models (Mirrahimi, Perthame,
Wakano, 2011)
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Introduction

Adaptive dynamics

Basic idea (Metz et al. 1996): look at the invasion and fixation of a
mutant type in a population, to construct a fitness landscape and
describe the long-time evolution of the population.

Assumptions:
• large populations
• rare mutations
• small mutation steps

Our contribution:
• Obtain general large-time behavior results for multi-resources

chemostat ODE systems
• Construct an individual-based multi-resources chemostat model
• Characterize the adaptive dynamics of this model in the limit of

rare mutations.
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Introduction

Evolutionary banching
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The model

Individual-based model

• K scales the size of the population (large K means large
population)

• µK scales the probability of mutation (small µK means rare
mutations)

Birth-death-mutation discrete process coupled with a piecewise
deterministic dynamics for r continuous resources with concentrations
RK

1 (t), . . . ,RK
r (t):

• each individual is characterized by a phenotypic trait x (rate of
nutrient intake, body size at maturity, age at maturity. . . ) in a
compact subset X of Rd

• a population of N K (t) individuals holding traits

x1, . . . , xN (t) ∈ X is represented by νK
t =

1
K

NK (t)∑
i=1

δxi
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The model

Transitions

• Each individual with trait x gives birth at (inhomogeneous) rate
r∑

k=1

ηk (x )RK
k (t) to a single individual.

ηk (x ) represents the consumption efficiency of resource k by
bacteria with trait x . At each birth time:

• with probability (1− µK )p(x), clonal reproduction (trait x)
• with probability µKp(x), mutation; the mutant trait is x + h

where h has given law m(x , h)dh.

• Each individual with trait x dies or is removed from the
chemostat at rate d(x ).

• Resources concentrations are solution to

dRK
k (t)
dt

= gk−RK
k −RK

k

 1
K

N (t)∑
i=1

ηk (xi)

 = gk−RK
k −RK

k 〈νσ,K , ηk 〉.

gk > 0 is incoming concentration of resource k .
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The model

Generator

LKφ(ν,R) =
∫
X

(
φ

(
ν +

δx
K
,R
)
− φ(ν,R)

)
(1− µK p(x ))

(
r∑

k=1

ηk (x ) Rk

)
Kν(dx )

+
∫
X

∫
Rl

(
φ

(
ν +

δx+h

K
,R
)
− φ(ν,R)

)
µK p(x )

(
r∑

k=1

ηk (x ) Rk

)
mσ(x , h)dhKν(dx )

+
∫
X

(
φ

(
ν − δx

K
,R
)
− φ(ν,R)

)
d(x ) Kν(dx )

+
r∑

k=1

∂φ

∂Rk
(ν,R)

(
gk − Rk − Rk 〈νσ,K , ηk 〉

)
.
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An example

Example

Two resources, one-dimensional trait having opposite effects on the
two resources consumption.

• X = [−1, 1], µK p(x ) ≡ p

• m(x , h)dh = N (0, σ2) (conditioned on x + h ∈ X )

• r = 2 (2 resources), g1 = g2 = 1

• d(x ) = 1 + x2 minimum at 0.

• η1(x ) = 2(x − 1)2, η2(x ) = 2(x + 1)2.



Introduction The model Long time behavior of chemostat systems Limit of rare mutations Evolutionary branching in dim 1

An example

Simulations

K = 100, p = 0.1, σ = 0.01 K = 300, p = 0.1, σ = 0.01
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Limit of large population

K → +∞ without time scaling

Theorem

If RK (0) = R(0) ∈ Rr
+, µK → 0 when K → +∞ and νK

0 converges in
distribution to a deterministic measure ν0 =

∑n
i=1 ui(0)δxi

, then
((νK

t ,R
K (t)), t ≥ 0) converges in distribution to the function

((
∑n

i=1 ui(t)δxi
,R(t)), t ≥ 0), where

u̇i = ui(−d(xi) +
r∑

k=1

ηk (xi) Rk ), ∀1 ≤ i ≤ n,

Ṙk = gk − Rk − Rk

n∑
i=1

ηk (xi) ui , ∀1 ≤ k ≤ r .

Multi-resources and multi-species chemostat ODE system.
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Assumptions

Assumptions

(A1) For all x ∈ X ,
r∑

k=1

ηk (x )gk > d(x ).

(A2) For all n ≥ 1 and distinct x1, · · · , xn ∈ X , the equation

d(xi)−
r∑

k=1

ηk (xi)gk

1 +
∑n

j=1 ηk (xj )uj
= 0 , 1 ≤ i ≤ n

has at most one solution (u1, · · · , un) ∈ Rn
+.

(A1) means that the trivial equilibrium (0, . . . , 0, g1, . . . , gk ) of the
chemostat system is unstable.
(A2) means that there is at most one equilibrium with prescibed
surviving species.
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Assumptions

How to check (A2)?

Proposition

Assumption (A2) holds if for all distinct x1, . . . , xr+1, the vectors η1(x1)
...

η1(xr+1)

 . . .

 ηr (x1)
...

ηr (xr+1)

 ,

 d(x1)
...

d(xr+1)


are linearly independent, and for all distinct x1, . . . , xr , the vectorsη1(x1)

...
ηr (x1)

 . . .

η1(xr )
...

ηr (xr )


are also linearly independent.



Introduction The model Long time behavior of chemostat systems Limit of rare mutations Evolutionary branching in dim 1

Long-time behavior

Long-time behavior of chemostat systems

Theorem (C., Jabin, Raoul, 2010)

Under Assumption (A2), for all n ≥ 1 and all distinct x1, · · · , xn ∈ X ,
there exists a unique (ū, R̄) in (R+)n+r such that any solution
(u(t),R(t)) of the chemostat system with ui(0) > 0 for any 1 ≤ i ≤ n,
converges to (ū, R̄).

We shall denote by (ū(x), R̄(x)) this equilibrium, where
x := (x1, . . . , xn).
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Long-time behavior

Some consequences of the theorem

In particular, the chemostat system can only have a single locally
stable equilibrium, and it is actually globally stable.

The case of a single trait: If n = 1, since the trivial equilibrium
(0, g1, . . . , gr ) is unstable, (ū(x ), R̄(x )) is the unique solution to

r∑
k=1

ηk (x ) gk

1 + ηk (x ) ū(x )
= d(x ), R̄k (x ) =

gk

1 + ηk (x ) ū(x )
.
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Long-time behavior

Some consequences of the theorem

The case of two trait: If n = 2, the equilibrium (ū(x1), 0, R̄(x1)) is
stable iff f (x2; x1) ≤ 0, where

f (y ; x ) = −d(y) +
r∑

k=1

ηk (y) gk

1 + ηk (x ) ū(x )
.

If both (ū(x1), 0, R̄(x1)) and (0, ū(x2), R̄(x2)) are unstable, i.e. if
f (x1; x2) > 0 and f (x2; x1) > 0, then there exists a stable equilibrium
where both traits coexist.

More generally, if x1, . . . , xn coexist, we define the invasion fitness of a
new (mutant) trait y as

f (y ; x1, · · · , xn) = −d(y) +
r∑

k=1

ηk (y) R̄k (x).
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Proof

Sketch of the proof (1)

Step 2: a classical Lyapunov functional. Provided the equilibrium is
known, we define
G(u,R) =

∑n
i=1(ui − ūi log ui) +

∑r
k=1(Rk − R̄k log Rk ). Then

d
dt

G(u(t),R(t)) =
∑
i

(ui − ūi)

(
−d(xi) +

∑
k

ηk (xi)Rk

)

+
∑
k

Rk − R̄k

Rk

(
gk − Rk (1 +

∑
i

ηk (xi)ui)

)

=
∑
i

(ui − ūi)

(
−d(xi) +

∑
k

ηk (xi)R̄k

)

+
∑
k

Rk − R̄k

Rk

(
gk − Rk (1 +

∑
i

ηk (xi)ūi)

)
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Proof

Sketch of the proof (2)

d
dt

G(u(t),R(t)) =
∑
i

(ui − ūi)

(
−d(xi) +

∑
k

ηk (xi)R̄k

)

+
∑
k

Rk − R̄k

Rk

(
gk − Rk (1 +

∑
i

ηk (xi)ūi)

)

=
∑
i

(ui − ūi)

(
−d(xi)+

∑
k

ηk (xi)R̄k

)
−
∑
k

(Rk − R̄k )2

Rk

(
1+
∑
i

ηk (xi)ūi

)

+
∑
k

Rk − R̄k

Rk

(
gk − R̄k (1 +

∑
i

ηk (xi)ūi)

)

= −
∑
k

(Rk − R̄k )2

Rk

(
1 +

∑
i

ηk (xi)ūi

)
+
∑
i∈I

ui

(
−d(xi) +

∑
k

ηk (xi)R̄k

)
,

where I = {i s.t. ūi = 0}.
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Proof

Sketch of the proof (3)

Step 1: Find the right equilibrium. We put resources at
(quasi)-equilibrium:

u̇i = ui

(
−d(xi) +

r∑
k=1

ηkgk

1 +
∑n

j=1 ηk (xj )uj

)
, ∀i ∈ {1, . . . ,n}.

This system has the Lyapunov functional

F (u1, . . . , un) =
∑
i

d(xi)ui −
∑
k

gk log

(
1 +

∑
j

ηk (xj )uj

)
,

which is convex but in general not strictly convex.

However, Assumption (A2) is what we need to ensure uniqueness of
the minimum of F  ū  (ū, R̄).
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Proof

Sketch of the proof (4)

Back to step 2: Now we have

d
dt

G(u(t),R(t)) ≤ −
∑
k

(Rk − R̄k )2

Rk

(
1 +

∑
i

ηk (xi)ūi

)
,

which implies the convergence of R(t) to R̄.
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Proof

Sketch of the proof (5)

Step 3: correction term. We define for small γ

H (u,R) = G(u,R) + γ
∑
k

(Rk − R̄k )
∑
i

ηk (xi)(ui − ūi).

In the time derivative of the correction term, all terms can be
controlled by −

∑
k (Rk − R̄k )2, except two:

d
dt

H (u(t),R(t)) ≤ −1
2

∑
k

(Rk − R̄k )2

Rk

− γ

2

∑
k

Rk

(∑
i

ηk (xi)(ui − ūi)

)2

+ γC
∑
i∈J

ui ,

where J = {i s.t. d(xi) >
∑

k ηk (xi)R̄k}. But ui(t)→ 0 for all i ∈ J .

Again, Assumption (A2) is just what we need to ensure that the r.h.s.
cancels only at the point (ū, R̄).
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General idea

Limit of rare mutations (Metz et al. 1996)

• The selection process has sufficient time between two mutations
to eliminate disadvantaged traits (time scale separation)

• The assumption of large populations allows one to assume a
deterministic population dynamics
 one can predict the outcome of competition between several
traits.

• Succession of phases of mutant invasion, and phases of
competition between traits



Introduction The model Long time behavior of chemostat systems Limit of rare mutations Evolutionary branching in dim 1

General idea

Simulations: rare mutations

K = 300, p = 0.1, σ = 0.01 K = 300, p = 0.0003, σ = 0.06
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Convergence to the PES

Convergence to the PES

Theorem

Assume (A). If νK
0 = uK

0 δx with uK
0 → ū(x ) in probability when

K → +∞. Assume also that RK
k (0)→ R̄k (x ) in probability for all

1 ≤ k ≤ r and

∀C > 0, log K � 1
KµK

� exp(CK ),

then, the process ((νK
t/KµK

,RK (t/KµK )), t ≥ 0) converges for f.d.d. to
a pure jump Markov process ((Λt ,R(t)), t ≥ 0) with explicit jump
rates and taking values in

M0 :=

{(
d∑

i=1

ūi(x)δxi
, R̄(x)

)
; d ≥ 1, x1, . . . , xn ∈ X coexist

}
.

When Λt is monomorphic, it is called Trait Substitution Sequence
(TSS); when it is polymorphic, we call it Polymorphic Evolution
Sequence (PES).
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Convergence to the PES

Monomorphic case: the TSS

• Until the first coexistence time, the trait dynamics is given by a
Markov jump process (Xt , t ≥ 0) such that X0 = x and with
infinitesimal generator

Aϕ(x ) =
∫

(ϕ(x + h)− ϕ(x ))p(x )

(∑
k

ηk (x )R̄k (x )

)
ū(x )

[f (x + h; x )]+∑
k ηk (x + h)R̄k (x )

m(x , h)dh

• Each jump corresponds to a successful invasion of a new mutant
trait

• The first coexistence time is the first time t such that
f (Xt ,Xt−) > 0 and f (Xt−,Xt) > 0.
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Idea of the proof

Before the first mutation in a monomorphic population

• (〈νK
t ,1〉,RK (t)) is close to the solution of the monomorphic

chemostat system.
 reaches an ε-neigborhood of (ū(x ), R̄(x )) in finite time.

• Large deviations (Feng and Kurtz, 2006): the exit time from this
ε-neighborhood behaves as exp(KCε,x ), with Cε,x > 0.

• Before this exit time, the rate of mutation is close to
µK p(x )

(∑
k ηk (x )R̄k (x )

)
K ū(x ).

• On the time scale t
KuK

: mutation rate
p(x )

(∑
k ηk (x )R̄k (x )

)
ū(x ).
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Idea of the proof

After the first mutation: competition phase

• between 0 and t1: the number of mutant individuals is close to
a branching process with birth rate

∑
k ηk (y)R̄(x ) and death rate

d(y)
 survival probability [f (y ; x )]+/(

∑
k ηk (y)R̄(x ))

• between t1 and t2: close to the chemostat system
• after t2: the number of resident individuals is close to a

sub-critical branching process
• If log K � 1

KuK
the next mutation occurs after this phase with

high probability.

-

6

0

ε

ūy

ūx

t1 t2 t3 t

〈νK
t ,1{y}〉

〈νK
t ,1{x}〉
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Idea of the proof

PES after the first coexistence

After the first coexistence time, two traits Xt ,Yt are coexisting, and

Λt = ū1(Xt ,Yt)δXt + ū2(Xt ,Yt)δYt

where the jump process (Xt ,Yt) is obtained as follows.
• A mutant born from Xt appears with rate

p(Xt)
(∑

k ηk (Xt)R̄k (Xt ,Yt)
)

ū1(Xt ,Yt) and a mutant born from
Yt appears independently with rate
p(Yt)

(∑
k ηk (Yt)R̄k (Xt ,Yt)

)
ū2(Xt ,Yt).

• Once a mutant trait z has appeared, it invades the population
with probability [f (z ; Xt ,Yt)]+/

(∑
k ηk (z )R̄k (Xt ,Yt)

)
.

• If the mutant invades, the new state of Λ is given by
(ū(Xt ,Yt , z ), R̄(Xt ,Yt , z ))...
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Evolutionary banching
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Canonical equation and Evolutionary singularities

Evolutionary singularities

Assume that X ⊂ R (dimension 1).

• Since f (x , x ) = 0, we have ∂1f (x , x ) + ∂2f (x , x ) = 0.
• For any x ∈ X ,

f (x + ε, x − ε) = 2∂1f (x , x ) ε+ O(ε2)

f (x − ε, x + ε) = −2∂1f (x , x ) ε+ O(ε2)

 when mutations are small, coexistence can only occur in the

neighborhood of points x∗ such that ∂1f (x∗, x∗) = 0.

Such a point is called an evolutionary singularity.
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Canonical equation and Evolutionary singularities

The Canonical Equation of Adaptive Dynamics

• Small mutations: size of mutations scaled by ε, i.e. m(x , h)dh
replaced by 1

εm(x , h
ε )dh.

• Renormalized PES: Λε.
• Rescaled time: t/ε2.

Theorem

The processes (Λεt/ε2 , t ≥ 0) converge in law as ε→ 0 to
(ū(x (t))δx(t), t ≥ 0), where x is solution of the ODE

dx
dt

=
∫

h2p(x )ū(x )∂1f (x ; x )m(x , h)dh.

This is the canonical equation of adaptive dynamics (Dieckmann and
Law, 1996).

 Evolutionary branching can only occur in the neighborhood of a
stable evolutionary singularity and on a longer scale than t/ε2.
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Branching criterion

A definition of evolutionary branching

Definition

For any η > 0, we say that there is η-branching at the evolutionary
singularity x∗ if

• There exist t > 0 such that the support of Λεt is composed of a
single trait in (x∗ − η, x∗ + η).

• There exist s > t such that the support of Λεs is composed of two
traits distant of more than η.

• Between s and t, the support of Λε is always a subset of
[x∗ − η, x∗ + η] composed of at most 2 traits.
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Branching criterion

Branching criterion

• Assume x∗ = 0. We have ∂1f (0; 0) = 0.
• Let a = ∂11f (0; 0) and c = ∂22f (0; 0). Assume that a 6= 0 and

a + c 6= 0.
• The evolutionary singularity x∗ = 0 is stable for the canonical

equation if
c > a.

Theorem

When c > a, for all sufficiently small η > 0, there exists ε0 > 0 s.t.
for all ε < ε0,

• If a > 0, then Pε(η-branching) = 1.

• If a < 0, then Pε(η-branching) = 0.
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Idea of the proof

Idea of the proof

Taylor expansion of the fitness functions around x∗:

f (y ; x ) =
1
2

(y − x )(ay − cx ) + o(|y − x |(|x |+ |y |)).

f (z ; x , y) =
a
2

(z − x )(z − y) + o(|z − x ||z − y |).

This implies
• Coexistence is possible in the neighborhood of x∗ ⇐⇒ a + c > 0.
• No triple coexistence can occur in the neighborhood of x∗.

Therefore, only binary evolutionary branching can occur.
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Idea of the proof

Case a < 0

Assume a < 0 and that x < y coexist.
• Since f (z ; x , y) ≈ a(z − x )(z − y)/2, only mutant traits z ∈ (x , y)

can invade the population.

• Therefore, when two traits coexist, the distance between the two
branches cannot increase, and evolutionary branching is
impossible when a < 0.

Note that there may be coexistence of two traits in the population,
but no evolutionary branching.
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Idea of the proof

Case a > 0 and c > a

x∗ is an attractor of the TSS.

• Coexistence happens almost surely in finite time.

• Once x < y coexist, since a > 0, only mutant traits z 6∈ [x , y ] can
invade the population.

• Zeeman (1993): once a mutant trait z > y (say) invades, then x
and z always coexist in the 3d LV system.

• The distance between the two branches increases  evolutionary
branching.



Introduction The model Long time behavior of chemostat systems Limit of rare mutations Evolutionary branching in dim 1

Idea of the proof

Coexistence region, case c > a > 0

+

−

−

+

+

+

.

.

f(y,x)=0.5(y−x)(ay−cx)

Coexistence

Coexistence

x

y

y=x

cy=ax

ay=cx
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