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Introduction

m Environmental conditions vary in space and time.
m Survivorship and fecundity depend on these conditions.

m Individuals modulate fitness by dispersing.

How does dispersal interact with environmental heterogeneity to
influence population persistence?
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A mathematical “curiosity” we all know

Zy := population size in year ¢

ft := per-capita fitness in year ¢ — assume i.i.d.
Ziy1 = [t 2t

%log Z; converges a.s. to Ellog f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” — Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZy = pZydt + o Zyd By, where B is a one-dimensional Brownian
motion: %1()};E[Z/} — 11, but %1()}; Zy — p— %G < pu.
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Of eggs and baskets

m What happens if offspring can disperse geographically
throughout a set of locations where the temporal variations in
fitness aren't perfectly correlated?
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Of eggs and baskets

m What happens if offspring can disperse geographically
throughout a set of locations where the temporal variations in
fitness aren't perfectly correlated?

m That is, what happens if good years in a given region don't
necessarily correspond to good years everywhere?

m In particular, are there situations where every local population
would become extinct if there was no dispersal, BUT all local
populations persist if there is suitable dispersal???

m YES!!!
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m n distinct patches

m F} := cumulative per-capita fitness in the i-th patch at time ¢,
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A continuous time model for patch fitnesses

Assume:
m 1 distinct patches
m F} := cumulative per-capita fitness in the i-th patch at time ¢,
AFY = F{ n — FY
m E[AF]] ~ p; At
m Cov[AF}, AF/] ~ oi; At
m AF} independent of past

Conclude: for B a standard n-dimensional Brownian motion,

n
dF} = p; dt + Z’sz’ dB!, T'T'=% (T means transpose)
j=1

dF, = pdt +T" dB; (column vectors!)
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m Dj; := the per-capita rate at which the population in patch j
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Incorporating dispersal into the continuous time model

m Dj; := the per-capita rate at which the population in patch j
disperses to patch i, j # i

m —Djj = Zi#j Dj; = total rate of dispersal from j

m X/ := population size in the i-th patch at time ¢

m dX} =X} dF} + Y7 D;; X] dt

dX, = (u o X, + DTXt) dt + X, o7 dB,

where ¢ is the Hadamard product i.e. component-wise
multiplication (column vectors!)
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Suitable data can be collected

ESTIMATION OF GROWTH AND EXTINCTION
PARAMETERS FOR ENDANGERED SPECIES!

Pataicia L. MUNHOLLAND
Diguastest o Mathermatical Sciences, Montana State Univirsty, Bazeman, Mortana $9717.0001 USA
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A random matrix connection

m Recall

X, = (u o X, + DTXt) dt + X, 0T dB,.

m Note that
Xk = My - - - M1 X,
where the M, are i.i.d. random matrices.
m Consequently, if S; := X} 4+ --- + X' = total population size
at time t, then
x := lim ¢t !log S,
t—o0

exists a.s. (Kingman subadditive ergodic theorem, Oseledets
multiplicative ergodic theorem, Furstenberg—Kifer,...).
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A random matrix connection

m Recall
X, = <M<>Xt —|—DTXt) dt + X, 0T dB,.

m Note that
Xk = My -+ M1 X,
where the M, are i.i.d. random matrices.
m Consequently, if S; := X} 4+ --- + X' = total population size
at time ¢, then
X = tlirglo t~tlog S,
exists a.s. (Kingman subadditive ergodic theorem, Oseledets
multiplicative ergodic theorem, Furstenberg—Kifer,...).
m The constant x is the Lyapunov exponent for Xj.
m OK, but what now?
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is the proportion of individuals in patch j.
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Patch proportions

m Set Y, := (V... ¥/, where Y/ := X/ /(X} 4 - + X
is the proportion of individuals in patch j.
m By Itd, Y satisfies the autonomous SDE

dY: = DY, dt + (diag(Yt) YY) ) (14— SY,) dt

+ (diag(Yt) YY) ) I dB,.

m If D is irreducible and ¥ has full rank, then there is a random
variable Y4 on the probability simplex
{y e R": 3. y; =1, y; > 0} such that for any initial
conditions % fg dy, ds converges almost surely to the law of
Y . Averaged over time, the proportion of the population in
each patch stabilizes to a random (patch-dependent) limit.
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m Recall that Sy := X! +--- + X = total population size at
time ¢.

m Note

dS; = p' Xy dt + X/ T'T dB;
=S Y dt + S, Y/ T dB,.

Steven N. Evans



Total population size

m Recall that Sy := X! +--- + X = total population size at

time t.
m Note
dS; = p' Xy dt + X/ T'T dB;
=S Y dt + S, Y/ T dB,.
m By Ito,

t
log St = log Sy + / YSTFT dBg
0

t 1 t
+/ Jsts—z/ Y. XY, ds.
0 0
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Exponential growth — the Lyapunov exponent

m Recall
t
log S; = log Sy + / Y/ T dB,
0

t 1 t
+/ ,uTYs ds — / YZZYS ds.
0 2 Jo
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Exponential growth — the Lyapunov exponent

m Recall
t
log S; = log Sy + / Y/ T dB,
0

t 1 t
+/ ,ﬁsts—/ Y/ XY, ds.
0 2 0

m Hence,
1
x = lim " log S = 1 E[Y o] - SE [YOTOEYOO] as.
—00

2 .
— reduces to p — % for a single patch.
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Two uncorrelated patches (n = 2)

m Assume there are two patches (i.e. n = 2) and, for simplicity,
that 0;; = 07 and 0, = 0 for i # j.
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Two uncorrelated patches (n = 2)

m Assume there are two patches (i.e. n = 2) and, for simplicity,
that 0;; = 07 and 0, = 0 for i # j.
m The limit Yoo = (YL, Y2) = (V1,1 - YL) is such that Y1

has density
_ 4 2 Dy Do
— OB~ (1—y) P2 _ + ’
ply) = Cy” ' (1-y) eXp< U%JFU%( , t1oy,
where
o2
P ?
a3
2
= - — g + Doy — D1o) .
B a%—l—ag (1 — p2 21 12)

Steven N. Evans



Two uncorrelated patches with identical characteristics

Yo}
= < _ . n
@ © ™~ (b) ‘/ \\ disperal rate
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dispersal rate & fraction y in patch 1

Population growth and spatial distribution in a two patch
environment. Parameter values are py = pg = 0.3, 03 =03 =1,
and D13 = D9; = 4. In (a), the stochastic growth rate x plotted as
a function of the dispersal rate 6. In (b), the stationary density of
the fraction of individuals in patch 1. Increasing the dispersal rate
pushes the system from extinction to persistence.
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m Recall that x = " E[Yo] — sE[YLEY]. Jensen's
inequality gives
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m We want Y, = 7 for some constant vector m maximizing
1
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subject to the constraints Z¢ m; =1and ™ > 0.
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|deal free dispersal

m Suppose the environmental conditions p and X are fixed.

m What form of dispersal (i.e. choice of D) maximizes x?

m Recall that x = " E[Yo] — sE[YLEY]. Jensen's
inequality gives

E[YLXY] > E[Yo] SE[Y).

m We want Y, = 7 for some constant vector m maximizing
1
/,LTT(' — §7TTE7T

subject to the constraints Z¢ m; =1and ™ > 0.

m Maximum “achieved” by D = 6@ where § — oo and @ is any
generator matrix with 77 @Q = 0 (7 may be on the boundary).

Steven N. Evans



|deal free dispersal — uncorrelated patches

m Suppose that ¥ is a diagonal matrix (i.e. zero correlations)
with diagonal entries o;; = o?.
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|deal free dispersal — uncorrelated patches

m Suppose that ¥ is a diagonal matrix (i.e. zero correlations)
with diagonal entries o;; = o?.

m The optimal dispersal distribution is given by

1 i — 1y
= +1
! G?Zj 1/032. zjj 0]2-

provided that . (u; — ,ui)/a?- < 1 for all 4.
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|deal free dispersal — uncorrelated patches

m Suppose that ¥ is a diagonal matrix (i.e. zero correlations)
with diagonal entries o;; = o?.

m The optimal dispersal distribution is given by

1 i — 1y
= +1
! U?Zj 1/032. zjj 0]2-

provided that . (u; — ,ui)/a?- < 1 for all 4.

m |deal free dispersers visit all patches provided that the
environmental variation is sufficiently great relative to
differences in the per-capita growth rates.

Steven N. Evans



|deal free dispersal — a numerical example
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Effects of spatial correlations on the ideal free distribution in a 10
patch environment. Mean per-capita growth rate p; and within
patch variance o? are plotted in the top left. The ideal free
distribution 7 is plotted when there are negative (p = —0.1), no
(p = 0) and positive (p = 0.5) spatial correlations.
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A large dispersal rate approximation

m Suppose D = §Q, where @ is reversible with respect to 7 and
consider what happens to x = x(d) as 6 — oo.
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A large dispersal rate approximation

m Suppose D = §Q, where @ is reversible with respect to 7 and
consider what happens to x = x(d) as 6 — oo.
m Recall:

dY, =60 Y, dt + (diag(Yt) ~ Y, Y] ) (1 —XY,)dt
n ((11;1@(3(,) - Y,Yf) I dB,.
m Define 1/ to be the solution of

Q"v + (diag(m) — mn")(u — Tm) = 0,

(note that @ is singular, but the existence and uniqueness of v
follows from spectral theory).
]
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A large dispersal rate approximation

m Suppose D = §Q, where @ is reversible with respect to 7 and
consider what happens to x = x(d) as 6 — oo.
m Recall:

dY, =60 Y, dt + <diag(Yt) ~ Y, Y] ) (1 —XY,)dt
+ (dmg(Y, ) — Y,Yf) I dB..

m Define v to be the solution of
QT + (diag(r) — 7nT)(n — Tr) = 0,

(note that @ is singular, but the existence and uniqueness of v
follows from spectral theory).
m Then, 6/2(Ys-1;, — 7 — 0~ 'v) converges to the solution of

dU; = QTUdt + (diag(r) — mnl)T'TdB,.
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A large dispersal rate approximation

By standard facts about Ornstein-Uhlenbeck processes,

x(0) ~ (MT’/T — ;TFTEW>

+ % [(u —2m) 'y

- ;/000 Tr(exp(QTs) (diag(w) - 7r7rT)
z <diag(7r) — 7'['7TT> exp(Qs)E) ds]

+0 (5*3)

as 0 — o0.
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A friendlier large dispersal rate approximation

m Suppose that ) is symmetric and Q) = Q.
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A friendlier large dispersal rate approximation

m Suppose that ) is symmetric and Q) = Q.
m Write A1 <... < A\,_1 < A\, = 0 for the eigenvalues of )

with corresponding orthonormal eigenvectors &1, ..., &,, where
1
§n = ﬁl-

m Note that & is an eigenvector of ¥ with eigenvalue 6, say.
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A friendlier large dispersal rate approximation

m Suppose that ) is symmetric and Q) = Q.
m Write A1 <... < A\,_1 < A\, = 0 for the eigenvalues of )

with corresponding orthonormal eigenvectors &1, ..., &,, where
1
§n = ﬁl-

m Note that & is an eigenvector of ¥ with eigenvalue 6, say.
m Then,

o= (5= o) - 1 [S (hiet - ot
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Large dispersal rates — fully connected patches

m Suppose that ¥ = (1 — p)o?I + po?11 T with p > 0 and
Q=n"111"T -1
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m Then,
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Large dispersal rates — fully connected patches

m Suppose that ¥ = (1 — p)o?I + po?11 T with p > 0 and
Q=n"111"T -1
m Then,

n _ 0'2
X(0+) < x(oo—) e —— {maxp; — o | < (1= p).

m Also, x(0) is decreasing for large 0 <

n 02
\ gV Varlk] > 5 (1= p).
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Large dispersal rates — fully connected patches

m Suppose that ¥ = (1 — p)o?I + po?11 T with p > 0 and
Q=n"111"T -1
m Then,

n o?
x(04+) < x(oo—)«;sn 1 <mlaxui — ﬂ) < ?(1 - p).

m Also, x(0) is decreasing for large 0 <

n (72
\ gV Varlk] > 5 (1= p).

m Note, x(0+) < x(oco—) and x(8) | for large § —
intermediate dispersal is optimal.

Steven N. Evans
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m |dentify the patches with the integers modulo n.
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Large dispersal rates — patches in a ring

m |dentify the patches with the integers modulo n.

m Suppose ;1= (1+¢,1,...,1)", where ¢ > 0 (all patches are
equally good, except patch 0, which is better), Q;; = ¢;—; and
Y =s;_i, where g = (po — 1,p1,...,Pn—1), with pis a
probability vector for which p;, = p_;, and
s=(14mno,m,...,Mn—1) for which n = n_.
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Large dispersal rates — patches in a ring

m |dentify the patches with the integers modulo n.

m Suppose ;1= (1+¢,1,...,1)", where ¢ > 0 (all patches are
equally good, except patch 0, which is better), Q;; = ¢;—; and
Y =s;_i, where g = (po — 1,p1,...,Pn—1), with pis a
probability vector for which p;, = p_;, and
s=(14mno,m,...,Mn—1) for which n = n_.

m If max; n; is not too large, then there is a choice of ¢ for which
X(04) < x(0o—) and x(9) is decreasing for large §, and so
intermediate dispersal is optimal.

Steven N. Evans



Large dispersal rates — hierarchically structured patches

It is possible to use representation theory to examine “topologies”
such as patches arranged in a hierarchy (e.g. butterflies in bushes
around meadows on islands).

NN N\
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Conclusion

Suitable probability models can shed light on how various dispersal
strategies interact with environmental variability in time and space
to influence population growth.

We have not accounted for the effect of competition for resources
as population size increases.

Our model can be thought of as applying to situations where
individuals are relatively scarce.

Also, x > 0 (resp. x < 0) in our model should be equivalent to the
existence of a stationary distribution (resp. eventual extinction)
after competition for resources is incorporated.

Steven N. Evans
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