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Introduction

Environmental conditions vary in space and time.
Survivorship and fecundity depend on these conditions.
Individuals modulate fitness by dispersing.

How does dispersal interact with environmental heterogeneity to
influence population persistence?
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A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

A mathematical “curiosity” we all know

Zt := population size in year t
ft := per-capita fitness in year t – assume i.i.d.
Zt+1 = ft Zt
1
t logZt converges a.s. to E[log f1] < log E[f1]

“Even though the expectation of population size may grow
infinitely large with time, the probability of extinction may
approach unity, owing to the difference between the geometric
and arithmetic mean.” – Lewontin & Cohen (1969)

Continuous time analogue is the stochastic differential equation
dZt = µZtdt+ σZtdBt, where B is a one-dimensional Brownian
motion: 1

t log E[Zt]→ µ, but 1
t logZt → µ− σ2

2 < µ.

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Of eggs and baskets

What happens if offspring can disperse geographically
throughout a set of locations where the temporal variations in
fitness aren’t perfectly correlated?
That is, what happens if good years in a given region don’t
necessarily correspond to good years everywhere?
In particular, are there situations where every local population
would become extinct if there was no dispersal, BUT all local
populations persist if there is suitable dispersal???
YES!!!
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A continuous time model for patch fitnesses

Assume:
n distinct patches
F it := cumulative per-capita fitness in the i-th patch at time t,
∆F it := F it+∆t − F it
E[∆F it ] ≈ µi∆t
Cov[∆F it ,∆F

j
t ] ≈ σij∆t

∆F it independent of past
Conclude: for B a standard n-dimensional Brownian motion,

dF it = µi dt+
n∑
j=1

γji dB
j
t , Γ>Γ = Σ (> means transpose)

dFt = µdt+ Γ> dBt (column vectors!)
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Incorporating dispersal into the continuous time model

Dji := the per-capita rate at which the population in patch j
disperses to patch i, j 6= i

−Djj :=
∑

i 6=j Dji = total rate of dispersal from j

Xi
t := population size in the i-th patch at time t

dXi
t = Xi

t dF
i
t +

∑n
j=1DjiX

j
t dt

dXt =
(
µ �Xt +D>Xt

)
dt+ Xt � Γ> dBt

where � is the Hadamard product i.e. component-wise
multiplication (column vectors!)
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Suitable data can be collected
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A random matrix connection

Recall

dXt =
(
µ �Xt +D>Xt

)
dt+ Xt � Γ> dBt.

Note that
Xk = Mk · · ·M1X0,

where the M` are i.i.d. random matrices.
Consequently, if St := X1

t + · · ·+Xn
t = total population size

at time t, then
χ := lim

t→∞
t−1 logSt

exists a.s. (Kingman subadditive ergodic theorem, Oseledets
multiplicative ergodic theorem, Furstenberg–Kifer,...).
The constant χ is the Lyapunov exponent for Xt.
OK, but what now?
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Patch proportions

Set Yt := (Y 1
t , . . . , Y

n
t )>, where Y j

t := Xj
t /(X

1
t + · · ·+Xn

t )
is the proportion of individuals in patch j.
By Itô, Y satisfies the autonomous SDE

dYt = D>Yt dt+
(

diag(Yt)−YtY>t
)

(µ− ΣYt) dt

+
(

diag(Yt)−YtY>t
)

Γ> dBt.

If D is irreducible and Σ has full rank, then there is a random
variable Y∞ on the probability simplex
{y ∈ Rn :

∑
i yi = 1, yi ≥ 0} such that for any initial

conditions 1
t

∫ t
0 δYs ds converges almost surely to the law of

Y∞. Averaged over time, the proportion of the population in
each patch stabilizes to a random (patch-dependent) limit.
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Total population size

Recall that St := X1
t + · · ·+Xn

t = total population size at
time t.
Note

dSt = µ>Xt dt+ X>t Γ> dBt

= Stµ
>Yt dt+ StY>t Γ> dBt.

By Itô,

logSt = logS0 +
∫ t

0
Y>s Γ> dBs

+
∫ t

0
µ>Ys ds−

1
2

∫ t

0
Y>s ΣYs ds.
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Exponential growth – the Lyapunov exponent

Recall

logSt = logS0 +
∫ t

0
Y>s Γ> dBs

+
∫ t

0
µ>Ys ds−

1
2

∫ t

0
Y>s ΣYs ds.

Hence,

χ = lim
t→∞

t−1 logSt = µ>E[Y∞]− 1
2

E
[
Y>∞ΣY∞

]
a.s.

– reduces to µ− σ2

2 for a single patch.
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Two uncorrelated patches (n = 2)

Assume there are two patches (i.e. n = 2) and, for simplicity,
that σii = σ2

i and σij = 0 for i 6= j.
The limit Y∞ = (Y 1

∞, Y
2
∞) = (Y 1

∞, 1− Y 1
∞) is such that Y 1

∞
has density

ρ(y) = Cyβ−α1(1−y)−β−α2 exp
(
− 2
σ2

1 + σ2
2

(
D21

y
+

D12

1− y

))
,

where

αi =
σ2
i

σ2
1 + σ2

2

β =
2

σ2
1 + σ2

2

(µ1 − µ2 +D21 −D12) .
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Two uncorrelated patches with identical characteristics
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(a)

Population growth and spatial distribution in a two patch
environment. Parameter values are µ1 = µ2 = 0.3, σ2

1 = σ2
2 = 1,

and D12 = D21 = δ. In (a), the stochastic growth rate χ plotted as
a function of the dispersal rate δ. In (b), the stationary density of
the fraction of individuals in patch 1. Increasing the dispersal rate
pushes the system from extinction to persistence.
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Ideal free dispersal

Suppose the environmental conditions µ and Σ are fixed.
What form of dispersal (i.e. choice of D) maximizes χ?
Recall that χ = µ>E[Y∞]− 1

2E
[
Y>∞ΣY∞

]
. Jensen’s

inequality gives

E[Y>∞ΣY∞] ≥ E[Y∞]>Σ E[Y∞].

We want Y∞ = π for some constant vector π maximizing

µ>π − 1
2
π>Σπ

subject to the constraints
∑

i πi = 1 and π ≥ 0.
Maximum “achieved” by D = δQ where δ →∞ and Q is any
generator matrix with π>Q = 0 (π may be on the boundary).

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Ideal free dispersal

Suppose the environmental conditions µ and Σ are fixed.
What form of dispersal (i.e. choice of D) maximizes χ?
Recall that χ = µ>E[Y∞]− 1

2E
[
Y>∞ΣY∞

]
. Jensen’s

inequality gives

E[Y>∞ΣY∞] ≥ E[Y∞]>Σ E[Y∞].

We want Y∞ = π for some constant vector π maximizing

µ>π − 1
2
π>Σπ

subject to the constraints
∑

i πi = 1 and π ≥ 0.
Maximum “achieved” by D = δQ where δ →∞ and Q is any
generator matrix with π>Q = 0 (π may be on the boundary).

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Ideal free dispersal

Suppose the environmental conditions µ and Σ are fixed.
What form of dispersal (i.e. choice of D) maximizes χ?
Recall that χ = µ>E[Y∞]− 1

2E
[
Y>∞ΣY∞

]
. Jensen’s

inequality gives

E[Y>∞ΣY∞] ≥ E[Y∞]>Σ E[Y∞].

We want Y∞ = π for some constant vector π maximizing

µ>π − 1
2
π>Σπ

subject to the constraints
∑

i πi = 1 and π ≥ 0.
Maximum “achieved” by D = δQ where δ →∞ and Q is any
generator matrix with π>Q = 0 (π may be on the boundary).

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Ideal free dispersal

Suppose the environmental conditions µ and Σ are fixed.
What form of dispersal (i.e. choice of D) maximizes χ?
Recall that χ = µ>E[Y∞]− 1

2E
[
Y>∞ΣY∞

]
. Jensen’s

inequality gives

E[Y>∞ΣY∞] ≥ E[Y∞]>Σ E[Y∞].

We want Y∞ = π for some constant vector π maximizing

µ>π − 1
2
π>Σπ

subject to the constraints
∑

i πi = 1 and π ≥ 0.
Maximum “achieved” by D = δQ where δ →∞ and Q is any
generator matrix with π>Q = 0 (π may be on the boundary).

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Ideal free dispersal

Suppose the environmental conditions µ and Σ are fixed.
What form of dispersal (i.e. choice of D) maximizes χ?
Recall that χ = µ>E[Y∞]− 1

2E
[
Y>∞ΣY∞

]
. Jensen’s

inequality gives

E[Y>∞ΣY∞] ≥ E[Y∞]>Σ E[Y∞].

We want Y∞ = π for some constant vector π maximizing

µ>π − 1
2
π>Σπ

subject to the constraints
∑

i πi = 1 and π ≥ 0.
Maximum “achieved” by D = δQ where δ →∞ and Q is any
generator matrix with π>Q = 0 (π may be on the boundary).

Steven N. Evans Go forth and multiply?



Intro Setup Ideal free Large rates Conclusion

Ideal free dispersal – uncorrelated patches

Suppose that Σ is a diagonal matrix (i.e. zero correlations)
with diagonal entries σii = σ2

i .
The optimal dispersal distribution is given by

πi =
1

σ2
i

∑
j 1/σ2

j

∑
j

µi − µj
σ2
j

+ 1


provided that

∑
j(µj − µi)/σ2

j < 1 for all i.
Ideal free dispersers visit all patches provided that the
environmental variation is sufficiently great relative to
differences in the per-capita growth rates.
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Ideal free dispersal – a numerical example

Effects of spatial correlations on the ideal free distribution in a 10
patch environment. Mean per-capita growth rate µi and within
patch variance σ2

i are plotted in the top left. The ideal free
distribution π is plotted when there are negative (ρ = −0.1), no
(ρ = 0) and positive (ρ = 0.5) spatial correlations.
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A large dispersal rate approximation

Suppose D = δQ, where Q is reversible with respect to π and
consider what happens to χ = χ(δ) as δ →∞.
Recall:

dYt = δQ>Ytdt+
(

diag(Yt)−YtY>t
)

(µ− ΣYt) dt

+
(

diag(Yt)−YtY>t
)

Γ>dBt.

Define ν to be the solution of

QT ν + (diag(π)− ππT )(µ− Σπ) = 0,

(note that Q is singular, but the existence and uniqueness of ν
follows from spectral theory).
Then, δ1/2(Yδ−1t − π − δ−1ν) converges to the solution of

dUt = QTUtdt+ (diag(π)− ππT )ΓTdBt.
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A large dispersal rate approximation

By standard facts about Ornstein-Uhlenbeck processes,

χ(δ) ≈
(
µ>π − 1

2
π>Σπ

)
+

1
δ

[
(µ− Σπ)>ν

− 1
2

∫ ∞
0

Tr
(

exp(Q>s)
(

diag(π)− ππ>
)

Σ
(

diag(π)− ππ>
)

exp(Qs)Σ
)
ds

]
+ O

(
δ−

5
4

)
as δ →∞.
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A friendlier large dispersal rate approximation

Suppose that Q is symmetric and ΣQ = QΣ.
Write λ1 ≤ . . . ≤ λn−1 < λn = 0 for the eigenvalues of Q
with corresponding orthonormal eigenvectors ξ1, . . . , ξn, where
ξn = 1√

n
1.

Note that ξk is an eigenvector of Σ with eigenvalue θk, say.
Then,

χ(δ) ≈
(
µ̄− 1

2n
θn

)
− 1
δ

[
n−1∑
k=1

1
λk

(
1
n

(ξ>k µ)2 − 1
4n2

θ2
k

)]
+O(δ−5/4)

as δ →∞.
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Large dispersal rates – fully connected patches

Suppose that Σ = (1− ρ)σ2I + ρσ211> with ρ ≥ 0 and
Q = n−111> − I.
Then,

χ(0+) < χ(∞−)⇐⇒ n

n− 1

(
max
i
µi − µ̄

)
<
σ2

2
(1− ρ).

Also, χ(δ) is decreasing for large δ ⇐⇒√
n

n− 1

√
Var[µ] >

σ2

2
(1− ρ).

Note, χ(0+) < χ(∞−) and χ(δ) ↓ for large δ =⇒
intermediate dispersal is optimal.
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Large dispersal rates – patches in a ring

Identify the patches with the integers modulo n.
Suppose µ = (1 + c, 1, . . . , 1)>, where c > 0 (all patches are
equally good, except patch 0, which is better), Qij = qj−i and
Σ = sj−i, where q = (p0 − 1, p1, . . . , pn−1), with p is a
probability vector for which pk = p−k, and
s = (1 + η0, η1, . . . , ηn−1) for which ηk = η−k.
If maxi ηi is not too large, then there is a choice of c for which
χ(0+) < χ(∞−) and χ(δ) is decreasing for large δ, and so
intermediate dispersal is optimal.
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Large dispersal rates – hierarchically structured patches

It is possible to use representation theory to examine “topologies”
such as patches arranged in a hierarchy (e.g. butterflies in bushes
around meadows on islands).
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Conclusion

Suitable probability models can shed light on how various dispersal
strategies interact with environmental variability in time and space
to influence population growth.

We have not accounted for the effect of competition for resources
as population size increases.

Our model can be thought of as applying to situations where
individuals are relatively scarce.

Also, χ > 0 (resp. χ < 0) in our model should be equivalent to the
existence of a stationary distribution (resp. eventual extinction)
after competition for resources is incorporated.

Steven N. Evans Go forth and multiply?


	Intro
	Setup
	Ideal free
	Large rates
	Conclusion

