The $\boldsymbol{\Lambda}$-Fleming-Viot process and a connection with
 Wright-Fisher diffusion

Bob Griffiths

University of Oxford

A d-dimensional Λ-Fleming-Viot process $\{\boldsymbol{X}(t)\}_{t \geq 0}$ representing frequencies of d types of individuals in a population has a generator described by

$$
\mathcal{L} g(\boldsymbol{x})=\int_{0}^{1} \sum_{i=1}^{d} x_{i}\left(g\left(\boldsymbol{x}(1-y)+y \boldsymbol{e}_{i}\right)-g(\boldsymbol{x})\right) \frac{F(d y)}{y^{2}} .
$$

The population is partitioned at events of change by choosing type $i \in[d]$ to reproduce with probability x_{i}, then rescaling the population with additional offspring y of type i to be $\boldsymbol{x}(1-y)+y \boldsymbol{e}_{i}$ at rate $y^{-2} F(d y)$.

Examples

Eldon and Wakeley (2006). A model where F has a single point of increase in $(0,1]$ with a possible atom at 0 .

A natural class that arises from discrete models is when F has a $\operatorname{Beta}(\alpha, \beta)$ density, particularly a $\operatorname{Beta}(2-\alpha, \alpha)$ density coming from a discrete model where the offspring distribution tails are asymptotic to a power law of index α. Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger (2005) give a connection to stable processes.

Birkner and Blath (2009) describe the Λ-Fleming-Viot process and discrete models whose limit gives rise to it.

If F has a single atom at 0 , then $\left\{\boldsymbol{X}_{t}\right\}_{t \geq 0}$ is the d-dimensional Wright-Fisher diffusion process with generator

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{d} x_{i}\left(\delta_{i j}-x_{j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

$X_{1}(t)$ is a one-dimensional Wright-Fisher diffusion process with generator

$$
\mathcal{L}=\frac{1}{2} x(1-x) \frac{\partial^{2}}{\partial x^{2}}
$$

The Λ-coalescent process is a random tree process back in time which has multiple merger rates for a specific k lineages coalescing while n edges in the tree of

$$
\lambda_{n k}=\int_{0}^{1} x^{k}(1-x)^{n-k} \frac{F(d x)}{x^{2}}, k \geq 2
$$

After coalescence there are $n-k+1$ edges in the tree.

This process was introduced by Pitman (1999), Sagitov (1999) and has been extensively studied. Berestycki (2009); recent results in the Λ-coalescent.

There is a connection between continuous state branching processes and the Λ-coalescent. The connection is through the Laplace exponent

$$
\psi(q)=\int_{0}^{1}\left(e^{-q y}-1+q y\right) y^{-2} F(d y)
$$

Bertoin and Le Gall (2006) showed that the Λ-coalescent comes down from infinity under the same condition that the continuous state branching process becomes extinct in finite time, that is when

$$
\int_{1}^{\infty} \frac{d q}{\psi(q)}<\infty
$$

Some papers on the Λ-coalescent
Berestycki (2009) Recent progress in coalescent theory.
Berestycki, Berestycki, and Limic (2012) Asymptotic sampling formulae for Λ-coalescents.

Berestycki, Berestycki, and Limic (2012) A small-time coupling between Λ coalescents and branching processes.

Bertoin and Le Gall (2003) Stochastic flows associated to coalescent processes.

Bertoin and Le Gall (2006) J. Bertoin and J.-F. Le Gall (2006). Stochastic flows associated to coalescent processes III: Limit theorems.

Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger, (2005) Alpha-stable branching and Beta-coalescents.

Birkner and Blath (2009) Measure-Valued diffusions, general coalescents and population genetic inference.

A Wright-Fisher generator connection

Theorem

Let \mathcal{L} be the Λ-Fleming-Viot generator, V be a uniform random variable on $[0,1], U$ a random variable on $[0,1]$ with density $2 u, 0<u<1$ and $W=Y U$, where Y has distribution F and V, U, Y are independent. Denote the second derivatives of a function $g(\boldsymbol{x})$ by $g_{i j}(\boldsymbol{x})$.

Then

$$
\mathcal{L} g(\boldsymbol{x})=\frac{1}{2} \sum_{i, j=1}^{d} x_{i}\left(\delta_{i j}-x_{j}\right) \mathbb{E}\left[g_{i j}\left(\boldsymbol{x}(1-W)+W V \boldsymbol{e}_{i}\right)\right]
$$

where expectation \mathbb{E} is taken over V, W.

Wright-Fisher generator

$$
\mathcal{L} g(\boldsymbol{x})=\frac{1}{2} \sum_{i, j=1}^{d} x_{i}\left(\delta_{i j}-x_{j}\right) g_{i j}(\boldsymbol{x})
$$

Λ-Fleming-Viot generator

$$
\mathcal{L} g(\boldsymbol{x})=\frac{1}{2} \sum_{i, j=1}^{d} x_{i}\left(\delta_{i j}-x_{j}\right) \mathbb{E}\left[g_{i j}\left(\boldsymbol{x}(1-W)+W V \boldsymbol{e}_{i}\right)\right]
$$

Method of proof

$$
\begin{gathered}
\mathcal{L} g(\boldsymbol{x})=\int_{0}^{1} \sum_{i=1}^{d} x_{i}\left(g\left(\boldsymbol{x}(1-y)+y \boldsymbol{e}_{i}\right)-g(\boldsymbol{x})\right) \frac{F(d y)}{y^{2}} \\
\mathcal{L} g(\boldsymbol{x})=\frac{1}{2} \sum_{i, j=1}^{d} x_{i}\left(\delta_{i j}-x_{j}\right) \mathbb{E}\left[g_{i j}\left(\boldsymbol{x}(1-W)+W V \boldsymbol{e}_{i}\right)\right]
\end{gathered}
$$

Show that the generators have the same answer acting on

$$
g(\boldsymbol{x})=\exp \left\{\sum_{i=1}^{d} \eta_{i} x_{i}\right\}, \boldsymbol{\eta} \in \mathbb{R}^{d}
$$

1-dimensional generator

Wright-Fisher diffusion generator

$$
\mathcal{L} g(x)=\frac{1}{2} x(1-x) g^{\prime \prime}(x)
$$

Λ-Fleming-Viot process generator

$$
\mathcal{L} g(x)=\frac{1}{2} x(1-x) \mathbb{E}\left[g^{\prime \prime}(x(1-W)+W V)\right]
$$

or

$$
\mathcal{L} g(x)=\frac{1}{2} x(1-x) \mathbb{E}\left[\frac{g^{\prime}(x(1-W)+W)-g^{\prime}(x(1-W))}{W}\right]
$$

The Laplace transform of W is related to the Laplace exponent by

$$
\mathbb{E}\left[e^{-\eta W}\right]=2 \int_{0}^{1} \frac{e^{-\eta y}-1+\eta y}{(y \eta)^{2}} F(d y)
$$

$W=U Y$ is continuous in $(0,1)$ with a possible atom at 0.

$$
P(W=0)=P(Y=0)
$$

Adding mutation

The generator has an additional term added of

$$
\frac{\theta}{2} \sum_{i=1}^{d}\left(\sum_{j=1}^{d} p_{j i} x_{j}-x_{i}\right) \frac{\partial}{\partial x_{i}}
$$

If mutation is parent independent $\theta p_{i j}=\theta_{j}$, not depending on
i, and the additional term is

$$
\frac{1}{2} \sum_{i=1}^{d}\left(\sum_{j=1}^{d} \theta_{j} x_{j}-\theta x_{i}\right) \frac{\partial}{\partial x_{i}}
$$

Eigenstructure of the Λ-Fleming-Viot process
Theorem
Let $\left\{\lambda_{\boldsymbol{n}}\right\},\left\{P_{\boldsymbol{n}}(\boldsymbol{x})\right\}$ be the eigenvalues and eigenvectors of \mathcal{L}, the generator which includes mutation, satisfying

$$
\mathcal{L} P_{\boldsymbol{n}}(\boldsymbol{x})=-\lambda_{\boldsymbol{n}} P_{\boldsymbol{n}}(\boldsymbol{x})
$$

Denote the $d-1$ eigenvalues of the mutation matrix P which have modulus less than 1 by $\left\{\phi_{k}\right\}_{k=1}^{d-1}$.

The eigenvalues of \mathcal{L} are

$$
\lambda_{n}=\frac{1}{2} n(n-1) \mathbb{E}\left[(1-W)^{n-2}\right]+\frac{\theta}{2} \sum_{k=1}^{d-1}\left(1-\phi_{k}\right) n_{k}
$$

Polynomial Eigenvectors

Denote the $d-1$ eigenvalues of P which have modulus less than 1 by $\left\{\phi_{k}\right\}_{k=1}^{d-1}$ corresponding to eigenvectors which are rows of a $d-1 \times d$ matrix R satisfying

$$
\sum_{i=1}^{d} r_{k i} p_{j i}=\phi_{k} r_{k j}, k=1, \ldots, d-1
$$

Define a $d-1$ dimensional vector $\boldsymbol{\xi}=R \boldsymbol{x}$.
The polynomials $P_{\boldsymbol{n}}(\boldsymbol{x})$ are polynomials in the $d-1$ terms in $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{d-1}\right)$ whose only leading term of degree n is

$$
\prod_{j=1}^{d-1} \xi_{j}^{n_{j}}
$$

In the parent independent model of mutation

$$
\lambda_{\boldsymbol{n}}=\lambda_{n}=\frac{1}{2} n\left\{(n-1) \mathbb{E}\left[(1-W)^{n-2}\right]+\theta\right\}
$$

repeated $\binom{n+d-2}{n}$ times with non-unique polynomial eigenfunctions within the same degree n.

The non-unit eigenvalues of the mutation matrix with identical rows are zero.

Wright-Fisher diffusion, general mutation structure.

$$
\lambda_{n}=\frac{1}{2} n(n-1)+\frac{\theta}{2} \sum_{k=1}^{d-1}\left(1-\phi_{k}\right) n_{k}
$$

Λ-coalescent eigenvalues and rates

$$
\frac{1}{2} n(n-1) \mathbb{E}\left[(1-W)^{n-2}\right]=\sum_{k=2}^{\infty}\binom{n}{k} \lambda_{n k}
$$

which is the total jump rate away from n individuals.

These are the eigenvalues in the Λ-coalescent tree.

The individual rates can be expressed as

$$
\begin{aligned}
\binom{n}{k} \lambda_{n k} & =\binom{n}{k} \int_{0}^{1} y^{k}(1-y)^{n-k} \frac{F(d y)}{y^{2}} \\
& =\frac{n}{2} \mathbb{E}\left[\frac{P_{k}(n, W)-P_{k-1}(n, W)}{W^{2}}\right]
\end{aligned}
$$

where

$$
P_{k}(n, w)=\binom{n-1}{k-1}(1-w)^{n-k} w^{k}
$$

is a negative binomial probability of a waiting time of n trials to obtain k successes, where the success probability is w.

Two types

The generator is specified by
$\mathcal{L} g(x)=\frac{1}{2} x(1-x) \mathbb{E}\left[g^{\prime \prime}(x(1-W)+W V)\right]+\frac{1}{2}\left(\theta_{1}-\theta x\right) g^{\prime}(x)$

The eigenvalues are

$$
\lambda_{n}=\frac{1}{2} n\left\{(n-1) \mathbb{E}\left[(1-W)^{n-2}\right]+\theta\right\}
$$

and the eigenvectors are polynomials satisfying

$$
\mathcal{L} P_{n}(x)=-\lambda_{n} P_{n}(x), n \geq 1
$$

Polynomial eigenvectors

$$
\begin{aligned}
& \frac{1}{2} x(1-x) \mathbb{E}\left[\frac{P_{n}^{\prime}(x(1-W)+W)-P_{n}^{\prime}(x(1-W))}{W}\right] \\
& +\frac{1}{2}\left(\theta_{1}-\theta x\right) P_{n}^{\prime}(x) \\
& =\frac{1}{2} n\left[(n-1) \mathbb{E}\left[(1-W)^{n-2}\right]+\theta\right] P_{n}(x)
\end{aligned}
$$

The monic polynomial $P_{n}(x)$ is uniquely defined by recursion of its coefficients.

Stationary distribution $\psi(x)$

$$
\begin{gathered}
\int_{0}^{1} \mathcal{L} g(x) \psi(x) d x=0 \\
\sigma^{2}(x)=x(1-x), \quad \mu(x)=\theta_{1}-\theta x \\
k(x)=\mathbb{E}\left[(1-W)^{-2} g(x(1-W)+V W)\right]
\end{gathered}
$$

An equation for the stationary distribution

$$
\begin{array}{r}
0=\int_{0}^{1}\left[k(x) \frac{1}{2} \frac{d^{2}}{d x^{2}}\left[\sigma^{2}(x) \psi(x)\right]-g(x) \frac{d}{d x}[\mu(x) \psi(x)]\right] d x \\
+\left.k(x) \frac{d}{d x}\left[\frac{1}{2} \sigma^{2}(x) \psi(x)\right]\right|_{0} ^{1}+\left.g(x) \mu(x) \psi(x)\right|_{0} ^{1}
\end{array}
$$

In a diffusion process $k(x)=g(x)$ and the boundary terms vanish. Then there is a solution found by solving

$$
\frac{1}{2} \frac{d^{2}}{d x^{2}}\left[\sigma^{2}(x) \psi(x)\right]-\frac{d}{d x}[\mu(x) \psi(x)]=0
$$

however $k(x) \neq g(x)$ so we do not have an equation like this.

Green's function, $\gamma(x)$
Solve, for a given function $g(x)$

$$
\mathcal{L} \gamma(x)=-g(x), \quad \gamma(0)=\gamma(1)=0
$$

Then

$$
\gamma(x)=\int_{0}^{1} G(x, \xi) g(\xi) d \xi
$$

A non-linear equation, equivalent to

$$
\frac{1}{2} x(1-x) \mathbb{E}\left[\gamma^{\prime \prime}(x(1-W)+V W)\right]=-g(x)
$$

Green's function solution

Define

$$
k(x)=\mathbb{E}\left[(1-W)^{-2} \gamma(x(1-W)+V W)\right]
$$

then

$$
k^{\prime \prime}(x)=-2 \frac{g(x)}{x(1-x)}
$$

with a solution

$$
\begin{aligned}
k(x)= & k(0)(1-x)+k(1) x \\
& +(1-x) \int_{0}^{x} \frac{2 g(\eta)}{(1-\eta)} d \eta+x \int_{x}^{1} \frac{2 g(\eta)}{\eta} d \eta
\end{aligned}
$$

Mean time to absorption
If $g(x)=1, x \in(0,1)$ then $\gamma(x)$ is the mean time to absorption at 0 or 1 when $X(0)=x$.

$$
\begin{aligned}
k(x)= & k(0)(1-x)+k(1) x \\
& +(1-x) \int_{0}^{x} \frac{2}{(1-\eta)} d \eta+x \int_{x}^{1} \frac{2}{\eta} d \eta
\end{aligned}
$$

There is a non-linear equation to solve of

$$
k(x)=k(0)(1-x)+k(1) x-2(1-x) \log (1-x)-2 x \log x
$$

where

$$
k(x)=\mathbb{E}\left[(1-W)^{-2} \gamma(x(1-W)+V W)\right]
$$

Stationary distribution, Λ-Fleming process with mutation
Let Z be a random variable with the size-biassed distribution of X, Z_{*} a size-biassed Z random variable and Z^{*} a size-biassed random variable with respect to $1-Z$.

Let B be Bernoulli random variable, independent of the other random variables in the following equation such that

$$
P(B=1)=\frac{\theta-\theta_{1}}{\theta\left(\theta_{1}+1\right)}
$$

An interesting distributional identity

$$
V Z_{*}={ }^{\mathcal{D}}(1-B) V Z+B\left(Z^{*}(1-W)+W V\right)
$$

The frequency spectrum in the infinitely-many-alleles model
Take a limit from a d-allele model with $\theta_{i}=\theta / d, i \in[d]$. The limit is a point process $\left\{X_{i}\right\}_{i=1}^{\infty}$. The 1-dimensional frequency spectrum $h(x)$ is a non-negative measure such that for suitable functions k on $[0,1]$ in the stationary distribution

$$
\mathbb{E}\left[\sum_{i=1}^{\infty} k\left(X_{i}\right)\right]=\int_{0}^{1} k(x) h(x) d x
$$

Symmetry in the d-allele model shows that

$$
\int_{0}^{1} k(x) h(x) d x=\lim _{d \rightarrow \infty} d \mathbb{E}\left[k\left(X_{1}\right)\right] .
$$

The classical Wright-Fisher diffusion gives rise to the PoissonDirichlet process with a frequency spectrum of

$$
h(x)=\theta x^{-1}(1-x)^{\theta-1}, 0<x<1 .
$$

Λ Fleming-Viot frequency spectrum
Let Z have a density

$$
f(z)=z h(z), \quad 0<z<1
$$

Interesting identity

$$
V Z_{*}={ }^{\mathcal{D}} Z^{*}(1-W)+W V
$$

where Z_{*} is size-biassed with respect to Z, and Z^{*} is size-biassing with respect to $1-Z$.
The constant θ appears in the identity through scaling in the size-biassed distributions.

Limit distribution of excess life in a renewal process

$$
P\left(V Z_{*}>\eta\right)=\int_{\eta}^{1} \frac{P(Z>z)}{\mathbb{E}[Z]} d z
$$

Typed dual Λ-coalescent

The Λ-Fleming-Viot process is dual to the system of coalescing lineages $\{L(t)\}_{t \geq 0}$ which takes values in \mathbb{Z}_{+}^{d} and for which the transition rates are, for $i, j \in[d]$ and $l \geq 2$,

$$
\begin{aligned}
q_{\Lambda}\left(\xi, \xi-e_{i}(l-1)\right)= & \int_{[0,1]}\binom{|\xi|}{l}
\end{aligned} y^{l}(1-y)|\xi|-l \frac{F(d y)}{y^{2}} .
$$

The process is constructed as a moment dual from the generator.

A different dual process

Define a sequence of monic polynomials $\left\{g_{n}(x)\right\}$ by the generator equation

$$
\begin{aligned}
& \frac{1}{2} x(1-x) \mathbb{E} g_{n}^{\prime \prime}(x(1-W)+V W)+\frac{1}{2}\left(\theta_{1}-\theta x\right) g_{n}^{\prime}(x) \\
= & \binom{n}{2} \mathbb{E}(1-W)^{n-2}\left[g_{n-1}(x)-g_{n}(x)\right]+n \frac{1}{2}\left[\theta_{1} g_{n-1}(x)-\theta g_{n}(x)\right]
\end{aligned}
$$

The defining equation mimics the Wright-Fisher diffusion acting on test functions $g_{n}(x)=x^{n}$

$$
\begin{aligned}
& \frac{1}{2} x(1-x) \frac{d^{2}}{d x^{2}} x^{n}+\frac{1}{2}\left(\theta_{1}-\theta x\right) \frac{d}{d x} x^{n} \\
= & \binom{n}{2}\left(x^{n-1}-x^{n}\right)+\frac{1}{2} n\left(\theta_{1} x^{n-1}-\theta x^{n}\right)
\end{aligned}
$$

Jacobi polynomial analogues
The eigenfunctions are polynomials $\left\{P_{n}(x)\right\}$ satisfying

$$
\begin{gathered}
\mathcal{L} P_{n}(x)=\lambda_{n} P_{n}(x) \\
P_{n}(x)=g_{n}(x)+\sum_{r=0}^{n-1} c_{n r} g_{r}(x)
\end{gathered}
$$

The coefficients are

$$
\begin{aligned}
c_{n r} & =\frac{\lambda_{r+1}^{\circ} \cdots \lambda_{n}^{\circ}}{\left(\lambda_{r}-\lambda_{n}\right) \cdots\left(\lambda_{n-1}-\lambda_{n}\right)} \\
\text { where } \lambda_{n} & =\frac{n}{2}\left[(n-1) \mathbb{E}(1-W)^{n-2}+\theta\right] \\
\lambda_{n}^{\circ} & =\frac{n}{2}\left[(n-1) \mathbb{E}(1-W)^{n-2}+\theta_{1}\right]
\end{aligned}
$$

In the stationary distribution

$$
\mathbb{E}\left[g_{n}(X)\right]=\omega_{n}
$$

where ω_{n} is a Beta moment analog

$$
\omega_{n}=\frac{\prod_{j=1}^{n}\left((j-1) \mathbb{E}(1-W)^{j-2}+\theta_{1}\right)}{\prod_{j=1}^{n}\left((j-1) \mathbb{E}(1-W)^{j-2}+\theta\right)}
$$

Let

$$
h_{n}=\frac{g_{n}}{\omega_{n}}
$$

so

$$
\mathbb{E}\left[h_{n}(X)\right]=1
$$

Dual Generator

$$
\mathcal{L} h_{n}=\lambda_{n}\left[h_{n-1}-h_{n}\right]
$$

Dual equation

$$
\mathbb{E}_{X(0)=x}\left[h_{n}(X(t))\right]=\mathbb{E}_{N(0)=n}\left[h_{N(t)}(x)\right]
$$

where $\{N(t), t \geq 0\}$ is a death process with rates

$$
\lambda_{n}=\frac{1}{2} n\left((n-1) \mathbb{E}\left[(1-W)^{n-2}\right]+\theta\right)
$$

The process $\{N(t), t \geq 0\}$ comes down from infinity if and only if

$$
\sum_{n=2}^{\infty} \lambda_{n}^{-1}<\infty
$$

which implies the Λ-coalescent comes down from infinity.

The transition functions are then

$$
\begin{aligned}
& P(N(t)=j \mid N(0)=i) \\
& \quad=\sum_{k=j}^{i} e^{-\lambda_{k} t}(-1)^{k-j} \frac{\prod_{\{l: j \leq l \leq k+1\}} \lambda_{l}}{\prod_{\{l: j \leq l \leq k+1, l \neq k\}}\left(\lambda_{l}-\lambda_{k}\right)}
\end{aligned}
$$

$P(N(t)=j \mid N(0)=\infty)$ is well defined if $N(t)$ comes down from infinity.

In the Kingman coalescent the death rates are $n(n-1+\theta) / 2$ and $N(t)$ describes the number of non-mutant lineages at time t back in the population.

Wright-Fisher diffusion. Fixation probability with selection. Two types.

Let $P(x)$ be the probability that the 1 st type fixes, starting from an initial frequency of $x . P(x)$ is the solution of

$$
\mathcal{L}^{\sigma} P(x)=\frac{1}{2} x(1-x) P^{\prime \prime}(x)-\sigma x(1-x) P^{\prime}(x)=0
$$

with $P(0)=0, P(1)=1$. The solution of this differential equation is

$$
P(x)=\frac{e^{2 \sigma x}-1}{e^{2 \sigma}-1}
$$

Λ-Fleming Viot process. Fixation probability with selection.
Let $P(x)$ be the probability that the 1st type fixes, starting from an initial frequency of $x . P(x)$ is the solution of
$\mathcal{L}^{\sigma} P(x)=\frac{1}{2} x(1-x) \mathbb{E}\left[P^{\prime \prime}(x(1-W)+W V)\right]-\sigma x(1-x) P^{\prime}(x)=0$
with $P(0)=0, P(1)=1$.
Der, Epstein and Plotkin $(2011,2012)$. For some measures F and σ it is possible that $P(x)=1$ or 0 for all $x \in(0,1)$. If $\sigma>0$, fixation is certain if

$$
\sigma>-\int_{0}^{1} \frac{\log (1-y)}{y^{2}} F(d y)
$$

A computational solution for $P(x)$ when fixation or loss is not certain from $x \in(0,1)$.

Define a sequence of polynomials $\left\{h_{n}(x)\right\}_{n=0}^{\infty}$ for a choice of pre-specified constants $\left\{h_{n}(0)\right\}$ as solutions of

$$
\mathbb{E}\left[\frac{h_{n}(x(1-W)+W)-h_{n}(x(1-W))}{W}\right]=n h_{n-1}(x)
$$

where the leading coefficient in $h_{n}(x)$ is

$$
\frac{1}{\prod_{j=1}^{n-1} \mathbb{E}\left[(1-W)^{j}\right]}
$$

Polynomial solution for $P(x)$

$$
P(x)=\left(e^{2 \sigma}-1\right)^{-1} \sum_{n=1}^{\infty} \frac{(2 \sigma)^{n}}{n!} H_{n}(x)
$$

where $\left\{H_{n}(x)\right\}$ are polynomials derived from

$$
H_{n}(x)=\int_{0}^{x} n h_{n-1}(\xi) d \xi
$$

and the constants $\left\{h_{n}(0)\right\}$ are chosen so that

$$
\int_{0}^{1} n h_{n-1}(\xi) d \xi=1
$$

The coefficients of $H_{n}(x)$ are well defined by a recurrence relationship with the coefficients of $H_{n-1}(x)$.

