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A d-dimensional Λ-Fleming-Viot process {XXX(t)}t≥0 represent-

ing frequencies of d types of individuals in a population has a

generator described by

Lg(xxx) =
∫ 1

0

d∑
i=1

xi
(
g(xxx(1− y) + yeeei)− g(xxx)

)F (dy)

y2
.

The population is partitioned at events of change by choosing

type i ∈ [d] to reproduce with probability xi, then rescaling the

population with additional offspring y of type i to be xxx(1−y)+yeeei
at rate y−2F (dy).



Examples

Eldon and Wakeley (2006). A model where F has a single point

of increase in (0, 1] with a possible atom at 0.

A natural class that arises from discrete models is when F has

a Beta(α, β) density, particularly a Beta(2− α, α) density com-

ing from a discrete model where the offspring distribution tails

are asymptotic to a power law of index α. Birkner, Blath, Ca-

paldo, Etheridge, Möhle, Schweinsberg, Wakolbinger (2005) give

a connection to stable processes.

Birkner and Blath (2009) describe the Λ-Fleming-Viot process

and discrete models whose limit gives rise to it.



If F has a single atom at 0, then {XXXt}t≥0 is the d-dimensional

Wright-Fisher diffusion process with generator

L =
1

2

d∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj

X1(t) is a one-dimensional Wright-Fisher diffusion process with

generator

L =
1

2
x(1− x)

∂2

∂x2



The Λ-coalescent process is a random tree process back in time

which has multiple merger rates for a specific k lineages coalesc-

ing while n edges in the tree of

λnk =
∫ 1

0
xk(1− x)n−k

F (dx)

x2
, k ≥ 2

After coalescence there are n− k + 1 edges in the tree.

This process was introduced by Pitman (1999), Sagitov (1999)

and has been extensively studied. Berestycki (2009); recent re-

sults in the Λ-coalescent.



There is a connection between continuous state branching pro-

cesses and the Λ-coalescent. The connection is through the

Laplace exponent

ψ(q) =
∫ 1

0

(
e−qy − 1 + qy

)
y−2F (dy)

Bertoin and Le Gall (2006) showed that the Λ-coalescent comes

down from infinity under the same condition that the continuous

state branching process becomes extinct in finite time, that is

when ∫ ∞
1

dq

ψ(q)
<∞



Some papers on the Λ-coalescent

Berestycki (2009) Recent progress in coalescent theory.

Berestycki, Berestycki, and Limic (2012) Asymptotic sampling formulae for
Λ-coalescents.

Berestycki, Berestycki, and Limic (2012) A small-time coupling between Λ-
coalescents and branching processes.

Bertoin and Le Gall (2003) Stochastic flows associated to coalescent pro-
cesses.

Bertoin and Le Gall (2006) J. Bertoin and J.-F. Le Gall (2006). Stochastic
flows associated to coalescent processes III: Limit theorems.

Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger, (2005)
Alpha-stable branching and Beta-coalescents.

Birkner and Blath (2009) Measure-Valued diffusions, general coalescents and

population genetic inference.



A Wright-Fisher generator connection

Theorem

Let L be the Λ-Fleming-Viot generator, V be a uniform random

variable on [0, 1], U a random variable on [0, 1] with density

2u, 0 < u < 1 and W = Y U , where Y has distribution F
and V, U, Y are independent. Denote the second derivatives of

a function g(xxx) by gij(xxx).

Then

Lg(xxx) =
1

2

d∑
i,j=1

xi(δij − xj)E
[
gij
(
xxx(1−W ) +WVeeei

)]
where expectation E is taken over V,W .



Wright-Fisher generator

Lg(xxx) =
1

2

d∑
i,j=1

xi(δij − xj)gij
(
xxx
)

Λ-Fleming-Viot generator

Lg(xxx) =
1

2

d∑
i,j=1

xi(δij − xj)E
[
gij
(
xxx(1−W ) +WVeeei

)]



Method of proof

Lg(xxx) =
∫ 1

0

d∑
i=1

xi
(
g(xxx(1− y) + yeeei)− g(xxx)

)F (dy)

y2

Lg(xxx) =
1

2

d∑
i,j=1

xi(δij − xj)E
[
gij
(
xxx(1−W ) +WVeeei

)]
Show that the generators have the same answer acting on

g(xxx) = exp
{ d∑
i=1

ηixi
}
, ηηη ∈ Rd



1-dimensional generator

Wright-Fisher diffusion generator

Lg(x) =
1

2
x(1− x)g′′

(
x
)

Λ-Fleming-Viot process generator

Lg(x) =
1

2
x(1− x)E

[
g′′
(
x(1−W ) +WV

)]
or

Lg(x) =
1

2
x(1− x)E

g′
(
x(1−W ) +W

)
− g′

(
x(1−W )

)
W





The Laplace transform of W is related to the Laplace exponent

by

E
[
e−ηW

]
= 2

∫ 1

0

e−ηy − 1 + ηy

(yη)2
F (dy)

W = UY is continuous in (0, 1) with a possible atom at 0.

P (W = 0) = P (Y = 0)



Adding mutation

The generator has an additional term added of

θ

2

d∑
i=1

( d∑
j=1

pjixj − xi
)
∂

∂xi

If mutation is parent independent θpij = θj, not depending on

i, and the additional term is

1

2

d∑
i=1

( d∑
j=1

θjxj − θxi
)
∂

∂xi



Eigenstructure of the Λ-Fleming-Viot process

Theorem

Let {λnnn}, {Pnnn(xxx)} be the eigenvalues and eigenvectors of L,

the generator which includes mutation, satisfying

LPnnn(xxx) = −λnnnPnnn(xxx)

Denote the d − 1 eigenvalues of the mutation matrix P which

have modulus less than 1 by {φk}d−1
k=1.

The eigenvalues of L are

λnnn =
1

2
n(n− 1)E

[
(1−W )n−2

]
+
θ

2

d−1∑
k=1

(1− φk)nk



Polynomial Eigenvectors

Denote the d−1 eigenvalues of P which have modulus less than
1 by {φk}d−1

k=1 corresponding to eigenvectors which are rows of a
d− 1× d matrix R satisfying

d∑
i=1

rkipji = φkrkj, k = 1, . . . , d− 1.

Define a d− 1 dimensional vector ξξξ = Rxxx.

The polynomials Pnnn(xxx) are polynomials in the d − 1 terms in
ξξξ = (ξ1, . . . , ξd−1) whose only leading term of degree n is

d−1∏
j=1

ξ
nj
j



In the parent independent model of mutation

λnnn = λn =
1

2
n

{
(n− 1)E

[
(1−W )n−2

]
+ θ

}
repeated

(
n+d−2
n

)
times with non-unique polynomial eigenfunc-

tions within the same degree n.

The non-unit eigenvalues of the mutation matrix with identical

rows are zero.

Wright-Fisher diffusion, general mutation structure.

λnnn =
1

2
n(n− 1) +

θ

2

d−1∑
k=1

(1− φk)nk



Λ-coalescent eigenvalues and rates

1

2
n(n− 1)E

[
(1−W )n−2

]
=
∞∑
k=2

(n
k

)
λnk

which is the total jump rate away from n individuals.

These are the eigenvalues in the Λ-coalescent tree.



The individual rates can be expressed as(n
k

)
λnk =

(n
k

) ∫ 1

0
yk(1− y)n−k

F (dy)

y2

=
n

2
E

Pk(n,W )− Pk−1(n,W )

W 2

,
where

Pk(n,w) =
(n− 1

k − 1

)
(1− w)n−kwk

is a negative binomial probability of a waiting time of n trials to

obtain k successes, where the success probability is w.



Two types

The generator is specified by

Lg(x) =
1

2
x(1− x)E

[
g′′
(
x(1−W ) +WV

)]
+

1

2
(θ1 − θx)g′(x)

The eigenvalues are

λn =
1

2
n

{
(n− 1)E

[
(1−W )n−2

]
+ θ

}
and the eigenvectors are polynomials satisfying

LPn(x) = −λnPn(x), n ≥ 1.



Polynomial eigenvectors

1

2
x(1− x)E

P ′n
(
x(1−W ) +W

)
− P ′n

(
x(1−W )

)
W


+

1

2
(θ1 − θx)P ′n(x)

=
1

2
n

(n− 1)E
[
(1−W )n−2

]
+ θ

Pn(x)

The monic polynomial Pn(x) is uniquely defined by recursion of

its coefficients.



Stationary distribution ψ(x)

∫ 1

0
Lg(x)ψ(x)dx = 0

σ2(x) = x(1− x), µ(x) = θ1 − θx

k(x) = E
[
(1−W )−2g

(
x(1−W ) + VW

)]
An equation for the stationary distribution

0 =
∫ 1

0

[
k(x)

1

2

d2

dx2

[
σ2(x)ψ(x)

]
− g(x)

d

dx

[
µ(x)ψ(x)

]]
dx

+ k(x)
d

dx

[1
2
σ2(x)ψ(x)

] ∣∣∣∣1
0

+ g(x)µ(x)ψ(x)

∣∣∣∣1
0



In a diffusion process k(x) = g(x) and the boundary terms van-

ish. Then there is a solution found by solving

1

2

d2

dx2

[
σ2(x)ψ(x)

]
−

d

dx

[
µ(x)ψ(x)

]
= 0

however k(x) 6= g(x) so we do not have an equation like this.



Green’s function, γ(x)

Solve, for a given function g(x)

Lγ(x) = −g(x), γ(0) = γ(1) = 0.

Then

γ(x) =
∫ 1

0
G(x, ξ)g(ξ)dξ

A non-linear equation, equivalent to

1

2
x(1− x)E

[
γ′′(x(1−W ) + VW )

]
= −g(x)



Green’s function solution

Define

k(x) = E
[
(1−W )−2γ

(
x(1−W ) + VW

)]
then

k′′(x) = −2
g(x)

x(1− x)

with a solution

k(x) = k(0)(1− x) + k(1)x

+ (1− x)
∫ x
0

2g(η)

(1− η)
dη + x

∫ 1

x

2g(η)

η
dη



Mean time to absorption

If g(x) = 1, x ∈ (0, 1) then γ(x) is the mean time to absorption
at 0 or 1 when X(0) = x.

k(x) = k(0)(1− x) + k(1)x

+ (1− x)
∫ x
0

2

(1− η)
dη + x

∫ 1

x

2

η
dη

There is a non-linear equation to solve of

k(x) = k(0)(1− x) + k(1)x− 2(1− x) log(1− x)− 2x log x

where

k(x) = E
[
(1−W )−2γ

(
x(1−W ) + VW

)]



Stationary distribution, Λ-Fleming process with mutation

Let Z be a random variable with the size-biassed distribution of

X, Z∗ a size-biassed Z random variable and Z∗ a size-biassed

random variable with respect to 1− Z.

Let B be Bernoulli random variable, independent of the other

random variables in the following equation such that

P (B = 1) =
θ − θ1

θ(θ1 + 1)

An interesting distributional identity

V Z∗ =D
(
1−B

)
V Z +B

(
Z∗(1−W ) +WV

)



The frequency spectrum in the infinitely-many-alleles model

Take a limit from a d-allele model with θi = θ/d, i ∈ [d]. The
limit is a point process {Xi}∞i=1. The 1-dimensional frequency
spectrum h(x) is a non-negative measure such that for suitable
functions k on [0,1] in the stationary distribution

E
[ ∞∑
i=1

k(Xi)

]
=
∫ 1

0
k(x)h(x)dx.

Symmetry in the d-allele model shows that∫ 1

0
k(x)h(x)dx = lim

d→∞
dE
[
k(X1)

]
.

The classical Wright-Fisher diffusion gives rise to the Poisson-
Dirichlet process with a frequency spectrum of

h(x) = θx−1(1− x)θ−1, 0 < x < 1.



Λ Fleming-Viot frequency spectrum

Let Z have a density

f(z) = zh(z), 0 < z < 1

Interesting identity

V Z∗ =D Z∗(1−W ) +WV

where Z∗ is size-biassed with respect to Z, and Z∗ is size-biassing
with respect to 1− Z.
The constant θ appears in the identity through scaling in the
size-biassed distributions.

Limit distribution of excess life in a renewal process

P (V Z∗ > η) =
∫ 1

η

P (Z > z)

E[Z]
dz



Typed dual Λ-coalescent

The Λ-Fleming-Viot process is dual to the system of coalescing

lineages {L(t)}t≥0 which takes values in Zd+ and for which the

transition rates are, for i, j ∈ [d] and l ≥ 2,

qΛ(ξ, ξ − ei(l − 1)) =
∫
[0,1]

(|ξ|
l

)
yl(1− y)|ξ|−l

F (dy)

y2

×
ξi + 1− l
|ξ|+ 1− l

M(ξ − ei(l − 1))

M(ξ)

qΛ(ξ, ξ + ei − ej) = µij(ξi + 1− δij)
M(ξ + ei − ej)

M(ξ)

The process is constructed as a moment dual from the generator.



A different dual process

Define a sequence of monic polynomials {gn(x)} by the genera-
tor equation

1

2
x(1− x)Eg′′n(x(1−W ) + VW ) +

1

2
(θ1 − θx)g′n(x)

=
(n
2

)
E(1−W )n−2[gn−1(x)− gn(x)] + n

1

2
[θ1gn−1(x)− θgn(x)]

The defining equation mimics the Wright-Fisher diffusion acting
on test functions gn(x) = xn

1

2
x(1− x)

d2

dx2
xn +

1

2
(θ1 − θx)

d

dx
xn

=
(n
2

)
(xn−1 − xn) +

1

2
n(θ1x

n−1 − θxn)



Jacobi polynomial analogues
The eigenfunctions are polynomials {Pn(x)} satisfying

LPn(x) = λnPn(x)

Pn(x) = gn(x) +
n−1∑
r=0

cnrgr(x)

The coefficients are

cnr =
λ◦r+1 · · ·λ◦n

(λr − λn) · · · (λn−1 − λn)

where λn =
n

2

[
(n− 1)E(1−W )n−2 + θ

]
λ◦n =

n

2

[
(n− 1)E(1−W )n−2 + θ1

]



In the stationary distribution

E
[
gn(X)

]
= ωn

where ωn is a Beta moment analog

ωn =

∏n
j=1

(
(j − 1)E(1−W )j−2 + θ1

)
∏n
j=1

(
(j − 1)E(1−W )j−2 + θ

)
Let

hn =
gn

ωn
so

E
[
hn(X)

]
= 1



Dual Generator

Lhn = λn
[
hn−1 − hn

]
Dual equation

EX(0)=x

[
hn(X(t))

]
= EN(0)=n

[
hN(t)(x)

]
where {N(t), t ≥ 0} is a death process with rates

λn =
1

2
n
(
(n− 1)E

[
(1−W )n−2

]
+ θ

)
The process {N(t), t ≥ 0} comes down from infinity if and only
if

∞∑
n=2

λ−1
n <∞

which implies the Λ-coalescent comes down from infinity.



The transition functions are then

P
(
N(t) = j | N(0) = i

)
=

i∑
k=j

e−λkt(−1)k−j
∏
{l:j≤l≤k+1} λl∏

{l:j≤l≤k+1, l 6=k}(λl − λk)

P
(
N(t) = j | N(0) = ∞

)
is well defined if N(t) comes down

from infinity.

In the Kingman coalescent the death rates are n(n − 1 + θ)/2
and N(t) describes the number of non-mutant lineages at time

t back in the population.



Wright-Fisher diffusion. Fixation probability with selection.

Two types.

Let P (x) be the probability that the 1st type fixes, starting from

an initial frequency of x. P (x) is the solution of

LσP (x) =
1

2
x(1− x)P ′′(x)− σx(1− x)P ′(x) = 0

with P (0) = 0, P (1) = 1. The solution of this differential

equation is

P (x) =
e2σx − 1

e2σ − 1



Λ-Fleming Viot process. Fixation probability with selection.

Let P (x) be the probability that the 1st type fixes, starting from

an initial frequency of x. P (x) is the solution of

LσP (x) =
1

2
x(1−x)E

[
P ′′(x(1−W )+WV )

]
−σx(1−x)P ′(x) = 0

with P (0) = 0, P (1) = 1.

Der, Epstein and Plotkin (2011,2012). For some measures F
and σ it is possible that P (x) = 1 or 0 for all x ∈ (0, 1). If

σ > 0, fixation is certain if

σ > −
∫ 1

0

log(1− y)

y2
F (dy)



A computational solution for P (x) when fixation or loss is not

certain from x ∈ (0, 1).

Define a sequence of polynomials {hn(x)}∞n=0 for a choice of

pre-specified constants {hn(0)} as solutions of

E

hn
(
x(1−W ) +W

)
− hn

(
x(1−W )

)
W

 = nhn−1(x)

where the leading coefficient in hn(x) is

1∏n−1
j=1 E

[
(1−W )j

]



Polynomial solution for P (x)

P (x) =
(
e2σ − 1

)−1
∞∑
n=1

(2σ)n

n!
Hn(x),

where {Hn(x)} are polynomials derived from

Hn(x) =
∫ x
0
nhn−1(ξ)dξ

and the constants {hn(0)} are chosen so that∫ 1

0
nhn−1(ξ)dξ = 1

The coefficients of Hn(x) are well defined by a recurrence rela-

tionship with the coefficients of Hn−1(x).


