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A d-dimensional A-Fleming-Viot process {X(t)}s>0 represent-
ing frequencies of d types of individuals in a population has a
generator described by

Lg(x) = / Z zi(g(@(1 - y) + ye;) — g(@ ))F;C;y)~

The population is partltloned at events of change by choosing
type i € [d] to reproduce with probability x;, then rescaling the
population with additional offspring y of type 7 to be &(1—y)+ye;
at rate y~2F(dy).




Examples

Eldon and Wakeley (2006). A model where F' has a single point
of increase in (0, 1] with a possible atom at O.

A natural class that arises from discrete models is when F' has
a Beta(a, B) density, particularly a Beta(2 — «, ) density com-
ing from a discrete model where the offspring distribution tails
are asymptotic to a power law of index «. Birkner, Blath, Ca-
paldo, Etheridge, Mdhle, Schweinsberg, Wakolbinger (2005) give
a connection to stable processes.

Birkner and Blath (2009) describe the A-Fleming-Viot process
and discrete models whose Iimit gives rise to it.



If F' has a single atom at 0, then {X¢};>¢ is the d-dimensional
Wright-Fisher diffusion process with generator
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X1(t) is a one-dimensional Wright-Fisher diffusion process with

generator



The A-coalescent process is a random tree process back in time
which has multiple merger rates for a specific k lineages coalesc-
ing while n edges in the tree of

1 F(d
)\nk:/o 81— z)" ;;), k> 2

After coalescence there are n — k + 1 edges in the tree.

This process was introduced by Pitman (1999), Sagitov (1999)
and has been extensively studied. Berestycki (2009); recent re-
sults in the A-coalescent.



There is a connection between continuous state branching pro-
cesses and the A-coalescent. The connection is through the
Laplace exponent

¥(q) =/O

Bertoin and Le Gall (2006) showed that the A-coalescent comes
down from infinity under the same condition that the continuous
state branching process becomes extinct in finite time, that is
when

1 (e_qy — 1+ qy)y_QF (dy)

1 YP(q) =



Some papers on the A-coalescent
Berestycki (2009) Recent progress in coalescent theory.

Berestycki, Berestycki, and Limic (2012) Asymptotic sampling formulae for
A-coalescents.

Berestycki, Berestycki, and Limic (2012) A small-time coupling between A-
coalescents and branching processes.

Bertoin and Le Gall (2003) Stochastic flows associated to coalescent pro-
cesses.

Bertoin and Le Gall (2006) J. Bertoin and J.-F. Le Gall (2006). Stochastic
flows associated to coalescent processes III: Limit theorems.

Birkner, Blath, Capaldo, Etheridge, Mdhle, Schweinsberg, Wakolbinger, (2005)
Alpha-stable branching and Beta-coalescents.

Birkner and Blath (2009) Measure-Valued diffusions, general coalescents and
population genetic inference.



A Wright-Fisher generator connection

T heorem

Let L be the A-Fleming-Viot generator, V be a uniform random
variable on [0,1], U a random variable on [0, 1] with density
2u, 0 < uw < 1 and W = YU, where Y has distribution F
and V,U,Y are independent. Denote the second derivatives of
a function g(x) by g;;().

Then
1 d
1,7=1

where expectation [E is taken over V, W.



Wright-Fisher generator
1 d
Lg(x) =5 > 2i(5ij — 7;)9i ()

1,7=1

A-Fleming-Viot generator
1 d

Lo(@) =5 2. %i(0ij - l’j)E[gij (=1 -W)+ eri)]
1,7=1



Method of proof

xr T xr — €;) — F(dy)
Lo(@) = /zzgul ) +vei) —9(@) =3
1 d
,J=1

Show that the generators have the same answer acting on

d
g(x) = eXP{ > "7@'337;}7 n € R

1=1



1-dimensional generator

Wright-Fisher diffusion generator

Lo(e) = a1 - 2)g" ()

A-Fleming-Viot process generator

Lg(x) = %az(l — az)E[g”(aﬁ(l — W)+ WV)]

Lo(z) = %xu _2)E

g’(m(l — W) + W) — g’(az(l — W))
%%




The Laplace transform of W is related to the Laplace exponent

W = UY is continuous in (0,1) with a possible atom at 0.

P(W =0) = P(Y =0)



Adding mutation

The generator has an additional term added of

o 2 o
2;(22)]2% )85&6

If mutation is parent independent Hp,,;j — 9]-, not depending on
1, and the additional term is

0
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Eigenstructure of the A-Fleming-Viot process

‘Theorem
Let {An}, {Pn(x)} be the eigenvalues and eigenvectors of L,

the generator which includes mutation, satisfying

LPp(x) = —ApPn(x)

Denote the d — 1 eigenvalues of the mutation matrix P which
have modulus less than 1 by {qbk}cki;%

The eigenvalues of L are
d—1

1 o] 0
Ap=-n(n—1E|(1 -—W + — 1 —op)n
= DE|[L=W)"2 ]+ 55 (1 gy



Polynomial Eigenvectors

Denote the d — 1 eigenvalues of P which have modulus less than
1 by {¢ptr_ d—1 | corresponding to eigenvectors which are rows of a
d—1xd matrlx R satisfying

ZTkzpﬂ— ]{Tk']7 k = 1 d—l.
Define a d — 1 dimensional vector £ = Rzx.

The polynomials Pp(x) are polynomials in the d — 1 terms in
£ =(&,...,€4_1) whose only leading term of degree n is

-1
11 ¢”
j=1



In the parent independent model of mutation

1
M= dn = o {(n _ 1)1@[(1 _ W)”_2] + 9}
repeated (n+g_2) times with non-unique polynomial eigenfunc-
tions within the same degree n.

The non-unit eigenvalues of the mutation matrix with identical
rows are zero.

Wright-Fisher diffusion, general mutation structure.



A-coalescent eigenvalues and rates

1 n—2] o= (T
in(n — 1)18‘{(1 — W) 2] = kz::z (k))\nk

which is the total jump rate away from m individuals.

These are the eigenvalues in the A-coalescent tree.



The individual rates can be expressed as

(s = ) f o -ar-<P
_ EE Pk(nv W) - Pk—l(”) W)
2 W2 ’

where
n—1 B
Pr(n,w) = ( )(1 — )Rk
k—1
IS @ negative binomial probability of a waiting time of n trials to
obtain k successes, where the success probability is w.



Two types

T he generator is specified by

Lg(x) = %x(l - x)E[g”(aﬁ(l — W)+ WV)] + %(91 — 0z)g'(z)

T he eigenvalues are

Ap = %n {(n — 1)E[(1 — W)n_2] + 9}

and the eigenvectors are polynomials satisfying



Polynomial eigenvectors

Ph(z(1 = W)+ W) — P(z(1 - W))
%

1
—z(l —2)K
Jo(l - )

+ (01— 02) PA(2)

1

=on [(n — DE[(1 = W)""2| 4 0| Po(x)

The monic polynomial Pp(x) is uniquely defined by recursion of
its coefficients.



Stationary distribution ¥ (x)

[ co@yp(aydr = o
o’(z) = z(1 — z), p(z) =6] — 0z
k(z) = E[(l — W) 2g(x(1 - W) + VW)}
An equation for the stationary distribution
o= [k(@ij; 2 (@)(@)] - g(a) 5 [ @) |dz

k(@) [P @) 1

1
@)y ()

0



In a diffusion process k(x) = g(x) and the boundary terms van-
ish. Then there is a solution found by solving

2
5o @ (@) — ()] =0

however k(x) # g(x) so we do not have an equation like this.



Green's function, y(x)

Solve, for a given function g(x)

Ly(z) = —g(x), v(0) =~(1) =0.
Then

Y(@) = [ G, (e

A non-linear equation, equivalent to

%x(l — xﬁ{’v”(w(l ~W)+VW)| = —g(z)



Green’s function solution

Define
k(x) = E[(l - W)_Qv(a:(l — W) + VW)}

then

Mme.N g(x)
ki) = 233(1—33)

with a solution
k(z) = k0)(1—z)+k(1)z

_|_(1_ )/x(g_(ﬁ)) /2977(77)dn




Mean time to absorption

If glx) =1, x € (0,1) then «(x) is the mean time to absorption
at 0 or 1 when X (0) = .
k(xr) = k(0)(1—x)+ k( 1):13

12
(1—33)/ dn—l—x —dn
(1 - x 1)

There is a non-linear equation to solve of
k(r) =k(0)(1 —xz)+ k(1)z —2(1 —x)log(l — z) — 2xlogx

where

k(x) = E[(l — W)_zfy(az(l — W)+ VW)}



Stationary distribution, A-Fleming process with mutation

Let Z be a random variable with the size-biassed distribution of
X, Z4 a size-biassed Z random variable and Z* a size-biassed
random variable with respect to 1 — Z.

Let B be Bernoulli random variable, independent of the other
random variables in the following equation such that

0— 0
0(01+ 1)

An interesting distributional identity

VZe=P (1-B)VZ+B(2*1-W)+WV)

P(B=1) =




The frequency spectrum in the infinitely-many-alleles model

Take a limit from a d-allele model with 68, = 0/d, © € [d]. The
limit is a point process {X;}7°. The 1l-dimensional frequency
spectrum h(x) is a non-negative measure such that for suitable
functions k£ on [0,1] in the stationary distribution

]E[i k:(XZ-)} — /01 k(z)h(z)d.

Symmetry in the d-allele model shows that

/01 k(@)h(z)de = lim dE [k(Xl)].

The classical Wright-Fisher diffusion gives rise to the Poisson-
Dirichlet process with a frequency spectrum of

hz) =0z 11—z 0<z <1



A Fleming-Viot frequency spectrum

Let Z have a density
f(z) =zh(z), 0<2z<1
Interesting identity
VZe =P Z*(1 - W)+ WV

where Z is size-biassed with respect to Z, and Z™* is size-biassing
with respect to 1 — Z.

The constant 6 appears in the identity through scaling in the
Size-biassed distributions.

Limit distribution of excess life in a renewal process

P(VZi > 1) = /?7 1 P(g[;] ?) 4




Typed dual A-coalescent

The A-Fleming-Viot process is dual to the system of coalescing
lineages {L(t)};>0 which takes values in Zi and for which the
transition rates are, for 4,5 € [d] and [ > 2,

el 1)) — €N 1, yjg—1F(dy)
(€ e—eit=1) = [ ()0 -n=s
9 E+1—1M(E—e(l—1))

]+ 1 —1 M(E)
M(E +e; —¢€5)
M(§)

The process is constructed as a moment dual from the generator.

ar(§, €+ e —ej) = pii(§ + 1 —9;)



A different dual process

Define a sequence of monic polynomials {gn(x)} by the genera-
tor equation

%xu — z)Egp(z(1 — W)+ VW) + %(91 — 0z) gy (2)
— (Z’)E(l — W) 2[gp_1(x) — gn(z)] + n%[919n—1($) — Ogn(x)]

T he defining equation mimics the Wright-Fisher diffusion acting
on test functions gn(xz) = ="

1 2 . 1 d ,

1



Jacobi polynomial analogues
The eigenfunctions are polynomials {Pp(x)} satisfying

LPp(x) = AnPn(x)

n—1
Pn(m) — gn(a:) —+ Z Cnrgr(x)
r=0
The coefficients are
o ...)\°
_ r+1 n
Cnr =—
(Ar —An) - (Ap—1 — An)
n[ n—2
where Ap = 5 (n — DHE(1 — W) + 6
© n| n—2
N = ol — DR - W) 24 91]




In the stationary distribution

E|gn(X)| = wn

where wpn iIs a Beta moment analog

" (G- DEQ-Wy2+6)

Wn = .

n_ ((j ~DE(1 — W)i-2 + 9)
Let

I

_9n

SO



Dual Generator
Lhn = An [hn_l _ hn}
Dual equation
B (0)=a | hn(X (1)) = Ex()=n| v (@)
where {N(t),t > 0} is a death process with rates

An = %n((n — DE[(1 = W)""?| 4 0)

The process {N(t),t > 0} comes down from infinity if and only
if

@)
Z )\,,;1 < 00
n=2

which implies the A-coalescent comes down from infinity.



The transition functions are then

P(N(t) =3 | N(0) = 1)

_ zz: e—Akt(_l)k—j H{l=j§l§k+1} Al
- [Mg<i<ktr, 26y (N — Ak)

P(N(t) =7 | N(0) = oo) is well defined if N(t) comes down
from infinity.

In the Kingman coalescent the death rates are n(n — 1+ 0)/2
and N (t) describes the number of non-mutant lineages at time
t back in the population.



Wright-Fisher diffusion. Fixation probability with selection.
Two types.

Let P(x) be the probability that the 1st type fixes, starting from
an initial frequency of x. P(x) is the solution of

LPP(x) = %a:(l — )P’ (z) — ox(1 — 2)P'(x) =0

with P(0) = 0, P(1) = 1. The solution of this differential
equation is
620:13 1

P(x) = 20 1




A-Fleming Viot process. Fixation probability with selection.

Let P(x) be the probability that the 1st type fixes, starting from
an initial frequency of x. P(x) is the solution of

LPP(x) = %x(l—x)E Pl(z(1-W)4+WV)|—cz(1—x)P'(x) =0

with P(0) =0, P(1) = 1.

Der, Epstein and Plotkin (2011,2012). For some measures F
and o it is possible that P(xz) = 1 or O for all x € (0,1). If
o > 0, fixation is certain if

o> — /01 log(;2— y)F(dy)




A computational solution for P(x) when fixation or loss is not
certain from x € (0, 1).

Define a sequence of polynomials {hp(x)}o2, for a choice of
pre-specified constants {h,(0)} as solutions of

hin (2(1 = W) + W) = hn(2z(1 = W))
%

E

= nhy_1(x)

where the leading coefficient in hp(x) is

1
[T}=/ E[(1 — W)]




Polynomial solution for P(x)

P(z) = (* — 1)‘1 fj ( —Hu(=),

n=1

where {Hy(x)} are polynomials derived from

H(2) = [ nhy1(€)dg

and the constants {hy,(0)} are chosen so that

1
| nha1(©)dg =1

The coefficients of Hy(x) are well defined by a recurrence rela-
tionship with the coefficients of H,,_1(x).



