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Evolutionary rescue

Empirical Relevance yeast populations
» Human impact & global change -0
» Antibiotic resistance 90000 @® =
« New data from experimental evolution ----0-85
(Bell and Gonzales, Science 2011) 200006 . =
| 00000@ &
Theory: 9000900 @ =
. 9000900 @ S
 Evolution and ecology cannot be separated 9000 O O =
e Verylittle previous work 90000@ 2’
»  Holt/Gomulkiewicz 1995; Birger /Lynch 1995: :. 000@ ~
quantitative trait with fixed variance: speed of -
adaptation vs. speed of population decline Rescue by adaptation ?

* Orr/Unckless 2008; Uecker /Hermisson 2011,
Pennings 2012, panmictic populations
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Island model

« D islands

e migrationrate m < migrant pool >

o wildtype Y, mutant rate m

original conditions: / 1 I 1 # b

» population size K = const O Q

+ wildtype fitness 1 ' O

* mutantfitness 1 -z O
(mutation-selection balance ‘ O #

= standing genetic variation) Q O
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Island model

perturbed conditions:

1. wildtype: < migrant pool >
rate m

e absolute fitness 1 —r
» exponential decline /4 $ I $ A \
plus immigration as long O -
as original islands exist O
* population size on k-th island O ‘ O

N () < K

(‘approaches mig-sel balance -
for long intervals T ) -
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Island model

perturbed conditions:

2. mutant: < migrant pool >

« absolute fitnNesz) /4 1 r;te mf # \
_ k

1+s(1 pr j O \.

e s> (0:can grow under ©¢ O

perturbed conditions

+ /3 density dependence ' - \

S > 1. mutants can only
grow at low densities
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perturbed conditions:

Island model

after T D generations: < migrant pool >
rate m

* wildtype declines to

extinction

» can the mutant establish
to rescue the population?

rescue probability:

P..(mr,zs, 6,uT,D)
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Level of gene-flow
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Analytical approach

 Without density dependence: two compartments
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Analytical approach
I: No back migration of mutants

 Wildtype dynamics:
Ny, (t) =~ K(D — d(t))

NP () = —rNE (£) + m(D — d(t)) (K — NE (¢)/D)

SNE() = .. Ny, (8)
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Analytical approach
I: No back migration of mutants

Branching process in perturbed demes:
o bithrate A=1+s o,

e deathrate u(t)=1+m(D-d(t)) e—*

o Sef(t) =A—pu(t) =s—m(D —d(t))

» establishment probability
1

1+ %ftoo exp(— ft:_u Seff(T)dT)du

Kendall 1948, Uecker /[Hermisson 2011

Pest(t) =
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Analytical approach
I: No back migration of mutants

* Rescue probability:

Presc =1—Exp [_nresc]
new mutants from wt

» three sources for mutants: in perturbed demes migrating mutants from
unperturbed demes

Nyesc = [ pest (t)dt
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Analytical approach
I: No back migration of mutants

* Rescue probability:

Presc =1 —EXp [_nresc]
. new mutants from wt
» three sources for mutants: in perturbed demes migrating mutants from

unperturbed demes
0 0]
Nyesc = [ +st (t)dt
0

pre-existing mutants
at environmental change
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Analytical approach
Il Levene model (m =1)

< migrant pool >
_ d(t)
all (0 d(t);)/ \ all
migrate © - migrate

Ny (6) = =Ny (£) + (D — d()) (K — Ny (£)/D)

=> Ny, (t) = ...
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Analytical approach
Il Levene model (m =1)

Branching process

In the migrant pool: C migrant pool >
_ (D —d(t)) d(t)

Sepe(t) ~ ?6 2 d(t) / \

D @
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Analytical approach
Il Levene model (m =1)

Branching process
In the migrant pool: C migrant pool >
_ (D —d(t)) d(t)

* number of wildtypes in the migrant
pool depends on severity of perturbation r

e mutants compete with wildtypes in the
original demes

= PT'BSC

» mutant growth increases with r



Evolutionary rescue in structured populations

Analytical approach
lll: Density dependent selection (7))

Unequal density among
perturbed islands: /C ?
S/ \a»
[Dd“)J =S = M A
) <€
r @D
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Analytical approach
lll: Density dependent selection (m = 0)

No gene-flow

 Independentislands

 Dbranching process
on a single island:

Setf(t) =$ (1 —p NM;{(t)>

ODE = N, (t) = .. results just depend on population
size, not on the number of demes
> Prose = ... — same as panmictic population
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Level of gene-flow

PI‘ESC (m)
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0.50

Level of gene-flow

PI‘ESC ( m)
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-

0.001
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high standing
genetic variation
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Level of gene-flow

Why the intermediate

maximum?
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Level of gene-flow

Why the intermediate Two consequences
maximum? of migration:
Presc (M) ¢ » wildtype migration beneficial:
0.4 po T oA Increases population size on
K & N four islands - .
035 | ', ‘ ﬁgmiggﬂgﬁ T perturbed |S|ands

» gain proportionalto m
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Level of gene-flow

Why the intermediate
maximum?
I:)resc (m) ¢
o4 : two islands
NN four islands -
N, eight islands ------
0.35 | nG migration ~---- 1

03}

0.25 f

0.2

0.15

0.001 0.01 0.1

Two consequences
of migration:

o wildtype migration beneficial:
Increases population size on
perturbed islands

» gain proportionalto m

« mutant migration detrimental:
perturbed — original
correspondsto loss of mutants

» loss proportionalto s - m
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Level of gene-flow

Why the increase?

Prese (M)
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Prese (M)
0.50

Level of gene-flow

Why the increase?

045 |
0.40 F
0.35 |
0.30 |
0.25 |*
0.20 f
0.15 F

0.10

0.001

0.01

0.1

Further consequences
of migration:

o wildtype migration
» (Qain proportionalto m

e back migration of migrants :
— perturbed — original: loss
— original — perturbed: recovery

> loss proportional to
s—m(1-m/z)
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Level of gene-flow

Why the increase? Further consequences
of migration:

Presc (M)
0.50 ] o wildtype migration
0451 e v ;] > gain proportionalto m
0.40 F . * o : : :
tas | ;| e back migration of migrants :

| coPos ] — perturbed — original: loss
el I %@/ — original — perturbed: recovery
025 f* © oy ]
0.0 k° _ > loss proportional to

s—m(1-m/z)

0151 $=0.01 z=0.1
0'13.001 0.01 01 Presc m(S —m(d-m/ Z))
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Severity of the change
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Severity of the change

Presc (r) no density dependence
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Severity of the change

Presc (r) density dependence
1.00 ym— Y r Y I I I
0.90 | . p=2
0.80 F | D=8
0.70 E . Ny, = 2500
0.60 F T =250

3 high s.g.v UDNo =1
0.50 F ghs.g ]

a OOOOOOOO m:O].
A0k 1 s=002
0.30 f2 502 .

0.20 -mﬂﬂnnﬂﬂnnnnn lOW S'g'V- !
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Severity of the change

Presc (r) density dependence
no migration

0.8

pre-existing
}  standing genetic
.mg—__Variation
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0.4

R T _

— new mutations
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Severity of the change

Why increase
with r ?
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Severity of the change

Why increase Interaction of standing variation
with r ? and density dependence:
Presc (r) . . N
e standing genetic variation :

;Zg R main source for mutant alleles
080 b B EXTT
0.70 ¥ .'.
0.60 F .,
0.50 | ...'- v 0009
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0.20 -mﬂ ", |
0.10 ”EDDDDnnnnnnnnqnnLE_:

0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 r




Evolutionary rescue in structured populations

Severity of the change

Why increase Interaction of standing variation
with r ? and density dependence:
P...(F
ese (1) » standing genetic variation :

1.00 ? T T T T T T ;
ol S main source for mutant alleles
oso b Cttteleeeeseod o density dependence::
0706 = - adaptation only possible with
060l = - low wildtype densities
050 V .co00°] » fast decline of wildtype needed
040k Tt ' otherwise standing variation lost
0.30 fo 500" Bl T 1
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Severity of the change

Why increase Interaction of standing variation
with r ? and density dependence:

P..(r

reSC( ) e standing genetic variation :
1.00 -, Y T Y T T Y -
oo | main source for mutant alleles
0:80 ! BN CYTRIRR e density dependence :
0708 = - adaptation only possible with
060l = - low wildtype densities
050 f V o000°] > fast decline of wildtype needed
40k oogo” ' otherwise standing variation lost
0.30 g 500" e, . |
0.20 %ﬁm BRLEY > It can be easier to adapt to
010 UDDDDDDDDDDDDDQDDLE_: faster Changes
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Severity of the change

Why increase Levene model (m = 1)
with r ? no density dependence!
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06

05 °

04t

0.3 |

0.2

Severity of the change

Why increase Levene model (m = 1)
with r ? no density dependence!

« for large back migration,
mutant growth depends on
wildtype decline:

d(t) D —d(t)

Seff(t) zT(S-l‘r)— >
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06

05 °

04t

0.3 |

0.2

Severity of the change

Why increase Levene model (m = 1)
with r ? no density dependence!

« for large back migration,
mutant growth depends on
wildtype decline:

Sefe(t) = ? (s +7) =2 _Dd ©,

» relaxed competition
> It can be easier to adapt to
faster changes

0O 005 01 015 02 025 03 035 04 045 r
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Summary

Evolutionary rescue: ecology and evolution intertwined

« details & combination of many factors matters and can lead to
unexpected behavior:

1. Three ways for migration to affect rescue probabilities
— Increases size of the source of wildtypes that might mutate
— emigration decreases establishment probability for mutants
— Increases establishment probability through reduced competition

2. Rescue can be easier for more severe perturbation

— if mutants only slightly deleterious under the original conditions & either
growth density dependent in perturbed conditions or strong back migration

Ecology matters for the adaptive process !




 Hildegard Uecker

o ...and DFG
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