Model

Data Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Characterizing the Distribution of Lysis Time and Burst Size in Lytic Phage

Paul Joyce¹, Craig Miller¹, Dan Weinreich²

University of Idaho 1, Brown University 2

June 14, 2012

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size

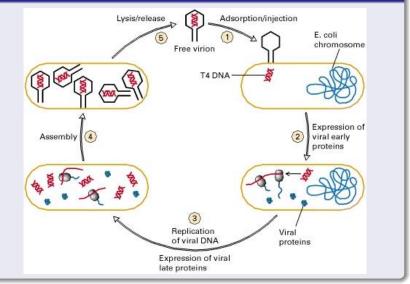
Outline

- Briefly explain cycle of a Virus (phage)
- Briefly explain the experiment that monitor a small number of phage through their life cycle
- Use a three step statistical procedure to understand lysis time and burst size that
 - estimates the number of phage in the well
 - estimates the lysis time
 - estimates the burst size
- Conclusions

Model

Data Analysis

Lytic Phage Life Cycle

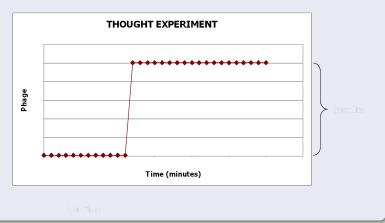


Model 000000000 Data Analysis

Conclusions

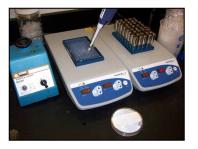
Can We Characterize Burst Size and Lysis Time for an Individual Phage?

Can We Characterize Burst Size and Lysis Time for an Individual Phage?



Model

Data Analysis

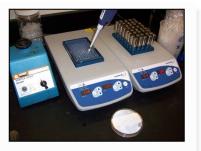


 Phage: φX174
 In 60 wells add 100 μl host cells.

- Target of ¹/₂ phage particle.
- Titrate 20 wells at 5 minutes prior to burst to
- hone estimates of
- number of phage per 5 well. We call this the early time data
- Titrate another well overy 30 seconds. We call this the late time point data.

Model

Data Analysis



- Phage: φX174
- In 60 wells add 100 μl host cells.

- Target of ¹/₂ phage particle.
- Titrate 20 wells at 5 minutes prior to burst the
 - hone estimates of
- number of phage per 5 well. We call this the early time data
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis

Phage: φX174
In 60 wells add 100 μl host cells.

- Target of ¹/₂ phage particle.
 Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
 Titrate another well
 - overy 30 seconds. We call this the late time point data.

Model

Data Analysis

• Phage: $\phi X174$

• In 60 wells add 100 μl host cells.

- Target of () phage particle.
 Thrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
 Thrate another well
 - overy 30 seconds. We call this the late time point data.

Model

Data Analysis

- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

Model

Data Analysis

- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

- Target of $\frac{1}{2}$ phage particle.
- Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis

- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

- Target of $\frac{1}{2}$ phage particle.
- Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis

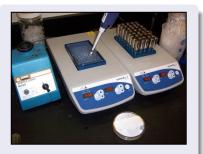
- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

• Target of $\frac{1}{2}$ phage particle.

- Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis



- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

- Target of $\frac{1}{2}$ phage particle.
- Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis

- Phage: $\phi X174$
- In 60 wells add 100 μl host cells.

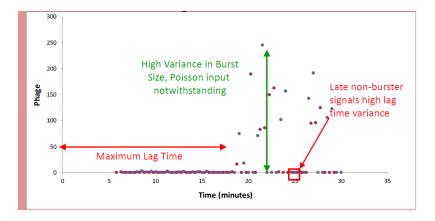
- Target of $\frac{1}{2}$ phage particle.
- Titrate 20 wells at 5 minutes prior to burst to hone estimates of number of phage per 5 well. We call this the early time data.
- Titrate another well every 30 seconds. We call this the late time point data.

Model

Data Analysis

Conclusions

Example Sample Data



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Notation

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ=standard deviation or average error of predicted versus observed burst size.

Notation

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- X_t = sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

Notation

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ=standard deviation or average error of predicted versus observed burst size.

Notation

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- X_t = sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

Notation

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- B = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- X_t = sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- *B* = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- *B* = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ =standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- *B* = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ=standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- *B* = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ=standard deviation or average error of predicted versus observed burst size.

- T_i = time to burst of phage *i*.
- t = time when well is sampled
- C_T = burst size at time T for phage i.
- C_t = observed count in well sampled at time t.
- *B* = the number of phage in the well.
- *N_t* = the number of phage in a well that have burst by time *t*, when well is sampled.
- $X_t =$ sum of burst times, T_i , for all phage that have burst
- α = slope of the linear function relating burst size to time.
- μ = intercept at time when burst is first possible $t > t_0$.
- σ=standard deviation or average error of predicted versus observed burst size.

Introductio	on

Model o●ooooooc Data Analysis

Three Step Algorithm for Estimating Lysis Time and Burst Size

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability e^{-β_d}
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

Introductio	on

Three Step Algorithm for Estimating Lysis Time and Burst Size

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 e^{-\beta t}$
 - If no burst occurs by time t assign that event probability e^{-β_d}
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

Introductio	on

Three Step Algorithm for Estimating Lysis Time and Burst Size

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 e^{-\beta a}$
 - If no burst occurs by time t assign that event probability e^{-β_d}
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

Introductio	on

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1-e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability $e^{-\beta_d}$
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

Introductio	on

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1-e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability $e^{-\beta_d}$
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d—the mean number of phage in a well on day d.

Introductio	on

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1-e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability $e^{-\beta_d}$

• Treat the late burst times as binary data.

 Combine early and late data using maximum likelihood to estimate β_d—the mean number of phage in a well on day d.

Introductio	on

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1-e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability $e^{-\beta_d}$
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

ロン ヘロン ヘルン ヘルン

Introductio	on

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.
- Use late time points as indirect observation.
 - If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1-e^{-\beta_d}$
 - If no burst occurs by time t assign that event probability $e^{-\beta_d}$
 - Treat the late burst times as binary data.
- Combine early and late data using maximum likelihood to estimate β_d-the mean number of phage in a well on day d.

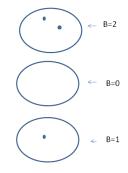
Model

Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean /_d for day d.
- Use the early time point data as direct observations



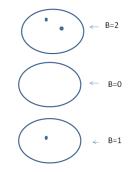
Introd	uction

Model 00000000 Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.



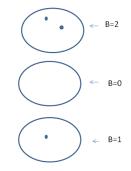
Introd	uction

Model 00000000 Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.

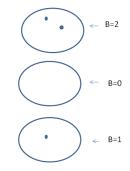


Model oo●oooooo Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.

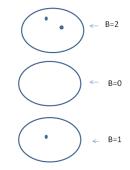


Model oo●oooooo Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.

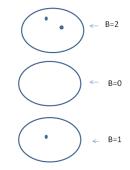


Model oo●oooooo Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- Assume a Poisson number of phage in a well with mean β_d for day d.
- Use the early time point data as direct observations.

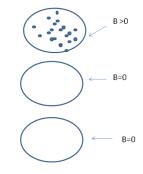


Model ○○○●○○○○○ Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time then there was at least one phage in that well. Assign that event probability 1—e⁻²⁴
- If no burst occurs by time t assign that event probability c⁻⁰
- Treat the late burst times as binary data.

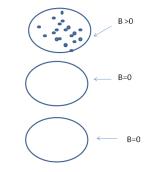


Model 000000000 Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well.
 Assign that event probability 1 - e^{-β_d}
- If no burst occurs by time t assign that event probability e^{-β_d}
- Treat the late burst times as binary data.



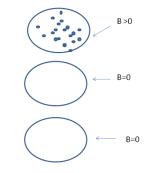
Model

Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 - e^{-\beta_d}$
- If no burst occurs by time t assign that event probability $e^{-\beta_d}$
- Treat the late burst times as binary data.



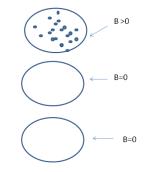
Model

Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 - e^{-\beta_d}$
- If no burst occurs by time t assign that event probability $e^{-\beta_d}$
- Treat the late burst times as binary data.



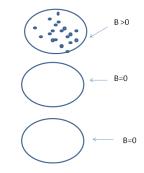
Model

Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 - e^{-\beta_d}$
- If no burst occurs by time t assign that event probability $e^{-\beta_d}$
- Treat the late burst times as binary data.



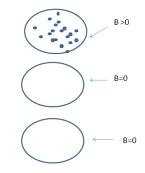
Model

Data Analysis

Conclusions

Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 - e^{-\beta_d}$
- If no burst occurs by time t assign that event probability $e^{-\beta_d}$
- Treat the late burst times as binary data.



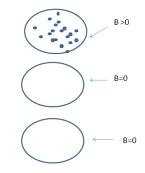
Model

Data Analysis

Conclusions

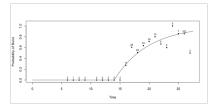
Step 1: Model and Estimate the mean number of phage per well

- If a burst occurs by time t then there was at least one phage in that well. Assign that event probability $1 - e^{-\beta_d}$
- If no burst occurs by time t assign that event probability $e^{-\beta_d}$
- Treat the late burst times as binary data.



Model

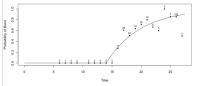
Data Analysis



Step 2: Model and Estimate Lysis Time

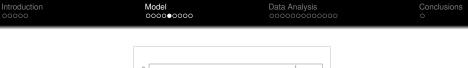
$$P(T < t) = w_t = 1 - e^{-(t-t_0)/\lambda}$$

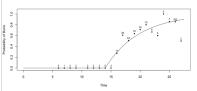
- N_t = the number of phage in a well that have burst by time t, when well is sampled. N_t is Poisson with mean βw_t .
- Let Y_t be 1 if $N_t > 0$ and 0 otherwise
- Use binary Y_t to estimate λ and t_0



$$P(T < t) = w_t = 1 - e^{-(t-t_0)/\lambda}$$

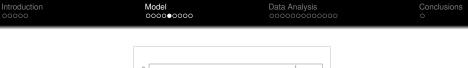
- N_t = the number of phage in a well that have burst by time t, when well is sampled. N_t is Poisson with mean βw_t .
- Let Y_t be 1 if $N_t > 0$ and 0 otherwise
- Use binary Y_t to estimate λ and t_0

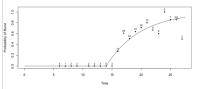




$$P(T < t) = w_t = 1 - e^{-(t-t_0)/\lambda}$$

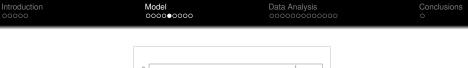
- N_t = the number of phage in a well that have burst by time t, when well is sampled. N_t is Poisson with mean βw_t .
- Let Y_t be 1 if $N_t > 0$ and 0 otherwise
- Use binary Y_t to estimate λ and t_0

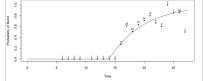




$$P(T < t) = w_t = 1 - e^{-(t-t_0)/\lambda}$$

- N_t = the number of phage in a well that have burst by time t, when well is sampled. N_t is Poisson with mean βw_t .
- Let Y_t be 1 if $N_t > 0$ and 0 otherwise
- Use binary Y_t to estimate λ and t_0





$$P(T < t) = w_t = 1 - e^{-(t-t_0)/\lambda}$$

- N_t = the number of phage in a well that have burst by time t, when well is sampled. N_t is Poisson with mean βw_t .
- Let Y_t be 1 if $N_t > 0$ and 0 otherwise
- Use binary Y_t to estimate λ and t_0

Introduction	Model oooooo●ooo	Data Analysis	Conclusions o
Three Step Algo Burst Size	orithm for Estir	mating Lysis Tim	ie and

Step 3: Model and Estimate Burst Size

$$C_T = \alpha T + \mu + \epsilon$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where ϵ is normally distributed with mean 0 and variance σ^2 . Note that none of the terms in the equation are directly observable

Model 0000000000 Data Analysis

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 3: Model and Estimate Burst Size

Observable Counts Equation

$$C_{t} = \alpha \sum_{i=1}^{B} T_{i}I\{T_{i} < t\} + \mu \sum_{i=1}^{B} I\{T_{i} < t\} + \sum_{i=1}^{B} \epsilon_{i}I\{T_{i} < t\}$$
$$C_{t} = \alpha X_{t} + \mu N_{t} + \delta$$

where δ is normally distributed with mean zero and variance $N_t\sigma^2$

Model ooooooo●o

Data Analysis

Step 3: Model and Estimate Burst Size using EM Algorithm

- **D** Begin with initial guesses for N_t and X_t for each well.
- 2 Given these values, estimate lpha and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

Given estimates \hat{lpha} and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^{2}}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

$$E(N_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

Begin with initial guesses for N_t and X_t for each well.

2) Given these values, estimate lpha and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

) Given estimates \hat{lpha} and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^{2}}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

$$E(N_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

- **1** Begin with initial guesses for N_t and X_t for each well.
- 2 Given these values, estimate α and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

) Given estimates \hat{lpha} and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^2}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

$$E(N_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

- **1** Begin with initial guesses for N_t and X_t for each well.
- 2 Given these values, estimate α and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

3 Given estimates $\hat{\alpha}$ and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^2}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t | C_{t,r}\hat{\alpha}, \hat{\mu}, \hat{\sigma}^2)$$

$$E(N_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

- **1** Begin with initial guesses for N_t and X_t for each well.
- 2 Given these values, estimate α and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

3 Given estimates $\hat{\alpha}$ and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^2}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

$$E(N_t | C_{t,r} \hat{\alpha}, \hat{\mu}, \hat{\sigma}^2)$$

- **1** Begin with initial guesses for N_t and X_t for each well.
- 2 Given these values, estimate α and μ using least-squares

$$\min_{\alpha,\mu} \sum_{t,r} \frac{(C_{t,r} - \alpha X_{t,r} - \mu N_{t,r})^2}{N_{t,r}} = \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha} X_{t,r} - \hat{\mu} N_{t,r})^2}{N_{t,r}}$$

where r indexes the well.

3 Given estimates $\hat{\alpha}$ and $\hat{\mu}$ estimate σ^2 using

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t,r} \frac{(C_{t,r} - \hat{\alpha}X_{t,r} - \hat{\mu}N_{t,r})^2}{N_{t,r}}$$

Impute the values X_t and N_t using their posterior expected values

$$E(X_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

$$E(N_t|C_{t,r}\hat{\alpha},\hat{\mu},\hat{\sigma}^2)$$

Interpretation of the step 2 until convergence occurs.

$$E(N_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{n_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$E(X_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{x_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$f_{C_t}(C_t) = \sum_{n_t, x_t} f_{N_t, X_t}(n_t, x_t | \beta, t_0, \lambda) f_{C_t}(c_t | n_t, x_t, \alpha, \mu, \sigma^2)$$

- β is estimated in step 1
- λ, t_0 is estimated in step 2
- μ, σ^2 are updated from the "M" part of the EM algorithm in step 3

$$E(N_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{n_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$E(X_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{x_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$f_{C_t}(C_t) = \sum_{n_t, x_t} f_{N_t, X_t}(n_t, x_t | \beta, t_0, \lambda) f_{C_t}(c_t | n_t, x_t, \alpha, \mu, \sigma^2)$$

• β is estimated in step 1

- λ, t_0 is estimated in step 2
- μ, σ^2 are updated from the "M" part of the EM algorithm in step 3

$$\begin{array}{ccc} & {\rm Model} & {\rm Data \ Analysis} & {\rm Conclusions} \\ {\rm occoccc} & {\rm occoccccc} & {\rm occocccccc} \\ \end{array} \\ \hline {\rm Imputing \ } X_t \ {\rm and \ } N_t \end{array}$$

$$E(N_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{n_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$E(X_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{x_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$f_{C_t}(C_t) = \sum_{n_t, x_t} f_{N_t, X_t}(n_t, x_t | \beta, t_0, \lambda) f_{C_t}(c_t | n_t, x_t, \alpha, \mu, \sigma^2)$$

- β is estimated in step 1
- λ, t_0 is estimated in step 2
- μ, σ^2 are updated from the "M" part of the EM algorithm in step 3

$$E(N_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{n_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$E(X_t|C_t) = \sum_{x_t} \sum_{n_t} \frac{x_t f_{N_t, X_t}(n_t, x_t|\beta, t_0, \lambda) f_{C_t}(c_t|n_t, x_t, \alpha, \mu, \sigma^2)}{f_{C_t}(c_t)}$$

$$f_{C_t}(C_t) = \sum_{n_t, x_t} f_{N_t, X_t}(n_t, x_t | \beta, t_0, \lambda) f_{C_t}(c_t | n_t, x_t, \alpha, \mu, \sigma^2)$$

- β is estimated in step 1
- λ, t_0 is estimated in step 2
- μ, σ^2 are updated from the "M" part of the EM algorithm in step 3

Model

Data Analysis

Conclusions

Initial Data on Burst Size

- Burst size was only recorded after 26 minutes. Thus there was no way to detect a time trend for this data.
- This would appear to make data analysis easier. Since we would need to assume $\alpha = 0$, so the observed burst counts depend only on N_t the initial number of phage in the well.

Model

Data Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Initial Data on Burst Size

- Burst size was only recorded after 26 minutes. Thus there was no way to detect a time trend for this data.
- This would appear to make data analysis easier. Since we would need to assume $\alpha = 0$, so the observed burst counts depend only on N_t the initial number of phage in the well.

Model

Data Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Initial Data on Burst Size

- Burst size was only recorded after 26 minutes. Thus there was no way to detect a time trend for this data.
- This would appear to make data analysis easier. Since we would need to assume $\alpha = 0$, so the observed burst counts depend only on N_t the initial number of phage in the well.

Model

Data Analysis

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Special case of no time trend $\alpha = 0$

Observable Counts Equation

$$C_t = \mu \sum_{i=1}^B I\{T_i < t\} + \sum_{i=1}^B \epsilon_i I\{T_i < t\}$$
$$C_t = \mu N_t + \delta$$

where δ is normally distributed with mean zero and variance $N_t\sigma^2$

Estimating Mean Burst Size μ with Low Variance

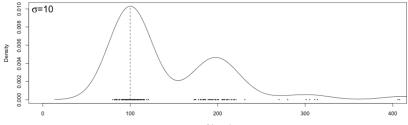


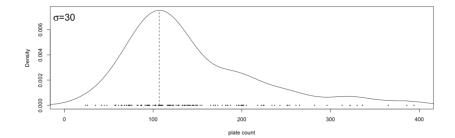
plate count

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Introduction
 Model
 Data Analysis
 Conclusion

 00000
 000000000
 0000000000
 0

Estimating Mean Burst Size μ with high Variance



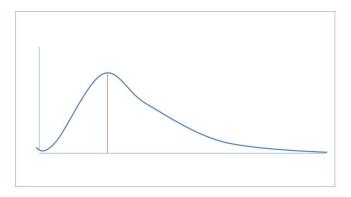
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Model

Data Analysis

Conclusions

Estimating Mean Burst Size μ with high Variance



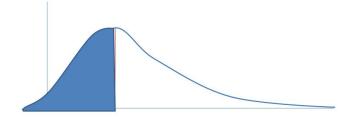
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Model

Data Analysis

Conclusions

Estimating Mean Burst Size μ with high Variance



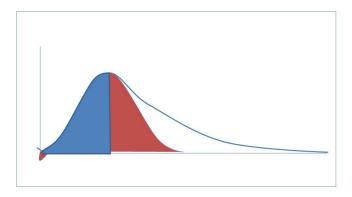
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Model

Data Analysis

Conclusions

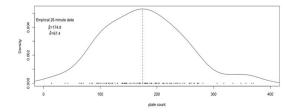
Estimating Mean Burst Size μ with high Variance



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction Model Data Analysis Conclusio

Estimating Mean Burst Size μ from 26 Minute Data



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Model

Data Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Data Came in

- Process was monitored more extensively so bursts events and multiple time points were recorded.
- This revealed a time trend in burst size, which helped explain the data.
- This produced lower variance, and better imputation.
- The EM algorithm now worked.

Model

Data Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Data Came in

- Process was monitored more extensively so bursts events and multiple time points were recorded.
- This revealed a time trend in burst size, which helped explain the data.
- This produced lower variance, and better imputation.
- The EM algorithm now worked.

Model

Data Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Data Came in

- Process was monitored more extensively so bursts events and multiple time points were recorded.
- This revealed a time trend in burst size, which helped explain the data.
- This produced lower variance, and better imputation.
- The EM algorithm now worked.

Model

Data Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Data Came in

- Process was monitored more extensively so bursts events and multiple time points were recorded.
- This revealed a time trend in burst size, which helped explain the data.
- This produced lower variance, and better imputation.
- The EM algorithm now worked.

Model

Data Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

More Data Came in

- Process was monitored more extensively so bursts events and multiple time points were recorded.
- This revealed a time trend in burst size, which helped explain the data.
- This produced lower variance, and better imputation.
- The EM algorithm now worked.

Model

Data Analysis

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

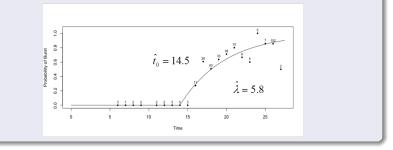
Estimating Slope α and Intercept μ

Observable Counts Equation

$$C_{t} = \alpha \sum_{i=1}^{B} T_{i}I\{T_{i} < t\} + \mu \sum_{i=1}^{B} I\{T_{i} < t\} + \sum_{i=1}^{B} \epsilon_{i}I\{T_{i} < t\}$$
$$C_{t} = \alpha X_{t} + \mu N_{t} + \delta$$

where δ is normally distributed with mean zero and variance $N_t\sigma^2$

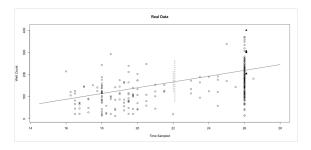
The estimated lysis time until burst probability > 0, t_0 = 14.5 minutes. Estimated mean lysis time is $\lambda + t_0 = 5.8 + 14.5 = 20.3$ minutes.



Model

Data Analysis

Full Data



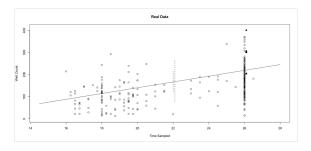
Slope intercept

- The estimated burst size at t_0 is $\mu = 67.0$. The estimated increase in burst size per minute is $\alpha = 13.1$.
- The estimated mean burst size is 143 phage: 67 + 13.1(5.8).

Model

Data Analysis

Full Data



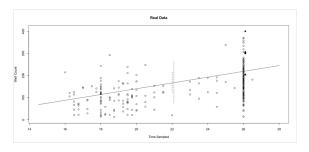
Slope intercept

- The estimated burst size at t_0 is $\mu = 67.0$. The estimated increase in burst size per minute is $\alpha = 13.1$.
- The estimated mean burst size is 143 phage: 67 + 13.1(5.8).

Model

Data Analysis

Full Data



Slope intercept

- The estimated burst size at t_0 is $\mu = 67.0$. The estimated increase in burst size per minute is $\alpha = 13.1$.
- The estimated mean burst size is 143 phage: 67 + 13.1(5.8).

Parameter estimates			
Parameter $lpha \ \mu \ \sigma$	Estimate 13.1 67.0 47.7	Confidence Interval (6.0, 22.5) (56.8, 87.0) (36.3, 57.8)	

- Either 'Missing data' or 'censored data' challenge any statistical modeling effort. This data set has both.
- We address the challenges in 3 steps: (1) estimating the number of phage in each well, (2) estimating the lysis time, and (3) estimate the burst size.
- A rigorously validation process using simulations offers credibility to the lysis time and size estimates for φ X 174 and indicates the methods may be extended to other lytic phage.

- Either 'Missing data' or 'censored data' challenge any statistical modeling effort. This data set has both.
- We address the challenges in 3 steps: (1) estimating the number of phage in each well, (2) estimating the lysis time, and (3) estimate the burst size.
- A rigorously validation process using simulations offers credibility to the lysis time and size estimates for φ X 174 and indicates the methods may be extended to other lytic phage.

- Either 'Missing data' or 'censored data' challenge any statistical modeling effort. This data set has both.
- We address the challenges in 3 steps: (1) estimating the number of phage in each well, (2) estimating the lysis time, and (3) estimate the burst size.
- A rigorously validation process using simulations offers credibility to the lysis time and size estimates for φ X 174 and indicates the methods may be extended to other lytic phage.

- Either 'Missing data' or 'censored data' challenge any statistical modeling effort. This data set has both.
- We address the challenges in 3 steps: (1) estimating the number of phage in each well, (2) estimating the lysis time, and (3) estimate the burst size.
- A rigorously validation process using simulations offers credibility to the lysis time and size estimates for φ X 174 and indicates the methods may be extended to other lytic phage.