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Lytic Phage Life Cycle
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Can We Characterize Burst Size and Lysis Time for an
Individual Phage?
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Method

Phage: φX174

In 60 wells add 100 µl
host cells.

Target of 1
2 phage

particle.
Titrate 20 wells at 5
minutes prior to burst to
hone estimates of
number of phage per 5
well. We call this the
early time data.
Titrate another well
every 30 seconds. We
call this the late time
point data.
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Notation

Notation
Ti= time to burst of phage i.
t = time when well is sampled
CT = burst size at time T for phage i.
Ct = observed count in well sampled at time t.
B = the number of phage in the well.
Nt = the number of phage in a well that have burst by time
t, when well is sampled.
Xt = sum of burst times, Ti, for all phage that have burst
α = slope of the linear function relating burst size to time.
µ = intercept at time when burst is first possible t > t0.
σ=standard deviation or average error of predicted versus
observed burst size.
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Three Step Algorithm for Estimating Lysis Time and
Burst Size

Step 1: Model and Estimate the mean number of phage per
well

Assume a Poisson number of phage in a well with mean βd
for day d.
Use the early time point data as direct observations.
Use late time points as indirect observation.

If a burst occurs by time t then there was at least one
phage in that well. Assign that event probability 1− e−βd

If no burst occurs by time t assign that event probability
e−βd

Treat the late burst times as binary data.

Combine early and late data using maximum likelihood to
estimate βd–the mean number of phage in a well on day d.
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Step 1: Model and Estimate the mean number of
phage per well

Use early time points as
direct observations

Assume a Poisson
number of phage in a
well with mean βd for
day d.
Use the early time point
data as direct
observations.
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Step 2: Model and Estimate Lysis Time
Assume the time to burst, T follows a lagged exponential

P (T < t) = wt = 1− e−(t−t0)/λ

Nt = the number of phage in a well that have burst by time
t, when well is sampled. Nt is Poisson with mean βwt.
Let Yt be 1 if Nt > 0 and 0 otherwise
Use binary Yt to estimate λ and t0
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Three Step Algorithm for Estimating Lysis Time and
Burst Size

Step 3: Model and Estimate Burst Size

CT = αT + µ+ ε

where ε is normally distributed with mean 0 and variance σ2.
Note that none of the terms in the equation are directly
observable
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Step 3: Model and Estimate Burst Size

Observable Counts Equation

Ct = α

B∑
i=1

TiI{Ti < t}+ µ

B∑
i=1

I{Ti < t}+
B∑
i=1

εiI{Ti < t}

Ct = αXt + µNt + δ

where δ is normally distributed with mean zero and variance
Ntσ

2
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Step 3: Model and Estimate Burst Size using EM Algorithm
1 Begin with initial guesses for Nt and Xt for each well.
2 Given these values, estimate α and µ using least-squares

min
α,µ

∑
t,r

(Ct,r − αXt,r − µNt,r)2

Nt,r
=

∑
t,r

(Ct,r − α̂Xt,r − µ̂Nt,r)2

Nt,r

where r indexes the well.
3 Given estimates α̂ and µ̂ estimate σ2 using

σ̂2 =
1

n

∑
t,r

(Ct,r − α̂Xt,r − µ̂Nt,r)2

Nt,r

4 Impute the values Xt and Nt using their posterior expected values

E(Xt|Ct,rα̂, µ̂, σ̂2)

E(Nt|Ct,rα̂, µ̂, σ̂2)

5 return to step 2 until convergence occurs.
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(Ct,r − α̂Xt,r − µ̂Nt,r)2

Nt,r

where r indexes the well.
3 Given estimates α̂ and µ̂ estimate σ2 using

σ̂2 =
1

n

∑
t,r

(Ct,r − α̂Xt,r − µ̂Nt,r)2

Nt,r

4 Impute the values Xt and Nt using their posterior expected values

E(Xt|Ct,rα̂, µ̂, σ̂2)

E(Nt|Ct,rα̂, µ̂, σ̂2)

5 return to step 2 until convergence occurs.
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Imputing Xt and Nt

E(Nt|Ct) =
∑
xt

∑
nt

ntfNt,Xt(nt, xt|β, t0, λ)fCt(ct|nt, xt, α, µ, σ2)
fCt(ct)

E(Xt|Ct) =
∑
xt

∑
nt

xtfNt,Xt(nt, xt|β, t0, λ)fCt(ct|nt, xt, α, µ, σ2)
fCt(ct)

fCt(Ct) =
∑
nt,xt

fNt,Xt(nt, xt|β, t0, λ)fCt(ct|nt, xt, α, µ, σ2)

β is estimated in step 1
λ, t0 is estimated in step 2
µ, σ2 are updated from the "M" part of the EM algorithm in
step 3
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Initial Data on Burst Size

Burst size was only recorded after 26 minutes. Thus there
was no way to detect a time trend for this data.
This would appear to make data analysis easier. Since we
would need to assume α = 0, so the observed burst counts
depend only on Nt the initial number of phage in the well.
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Special case of no time trend α = 0

Observable Counts Equation

Ct = µ

B∑
i=1

I{Ti < t}+
B∑
i=1

εiI{Ti < t}

Ct = µNt + δ

where δ is normally distributed with mean zero and variance
Ntσ

2
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Estimating Mean Burst Size µ from 26 Minute Data
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More Data Came in

New Data Structure
Process was monitored more extensively so bursts events
and multiple time points were recorded.
This revealed a time trend in burst size, which helped
explain the data.
This produced lower variance, and better imputation.
The EM algorithm now worked.
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Estimating Slope α and Intercept µ

Observable Counts Equation

Ct = α

B∑
i=1

TiI{Ti < t}+ µ

B∑
i=1

I{Ti < t}+
B∑
i=1

εiI{Ti < t}

Ct = αXt + µNt + δ

where δ is normally distributed with mean zero and variance
Ntσ

2
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The estimated lysis time until burst probability > 0, t0= 14.5
minutes. Estimated mean lysis time is
λ+ t0 = 5.8 + 14.5 = 20.3 minutes.
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Full Data

Slope intercept
The estimated burst size at t0 is µ = 67.0. The estimated
increase in burst size per minute is α = 13.1.
The estimated mean burst size is 143 phage: 67 +
13.1(5.8).
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Parameter estimates

Parameter Estimate Confidence Interval
α 13.1 (6.0, 22.5)
µ 67.0 (56.8, 87.0)
σ 47.7 (36.3, 57.8)
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Conclusions

Either ‘Missing data’ or ‘censored data’ challenge any
statistical modeling effort. This data set has both.
We address the challenges in 3 steps: (1) estimating the
number of phage in each well, (2) estimating the lysis time,
and (3) estimate the burst size.
A rigorously validation process using simulations offers
credibility to the lysis time and size estimates for φ X 174
and indicates the methods may be extended to other lytic
phage.

Support: Paul Joyce and Craig Miller were funded by NIH R01
GM076040
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