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The evolving Kingman N-coalescent (N = 5):

Evolutionary time

Moran’s model with time −∞ < t <∞:

Links between pairs of lines appear at rate 1,

independent between the different pairs.
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The evolving Kingman N-coalescent: (N = 5):

t1

Kingman’s coalescent at time t1
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The evolving Kingman N-coalescent: (N = 5):

t1 t2

The coalescent tree evolves in time.
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The evolving Kingman N-coalescent: (N = 5):

MRCA

Evolving time to MRCA

Evolving tree topology

Evolving total length

Evolving total external length
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These results are rather different in nature, none covering any

other.

Interesting aspects:

– limiting processes with

– a.s. continuous paths versus

– a.s. (compensated) pure jump paths

– different time scalings

6



A BASKET OF RESULTS
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Theorem: (Pfaffelhuber/Wakolbinger , Donnelly/Kurtz, 2006)

Let AN(t) be the time to the MRCA of the evolving Kingman

N-coalescent at time t ∈ R. Then, as N →∞,

(
AN(t)

)
t∈R

d→ A ,

where the limiting process A = (At)t∈R is stationary, a.s. pure

jump, non-Markovian.

For a related result on the two oldest families in the genealogy

see Delmas, Dhersin, and Siri-Jegousse (2010).
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Theorem: (Greven, Pfaffelhuber, Winter, 2009, 2010)

Let TN(t) be the tree, induced by the evolving Kingman N-

coalescent at time t ∈ R in the space of real trees furnished

with the Gromov-weak topology. Then, as N →∞,

(
TN(t)

)
t∈R

d→ T ,

where the limiting tree-valued process T = (Tt)t∈R is stationary,

a.s. continuous, and unique solution of a martingale problem.
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Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt, 2011)

Let L′N(t) be the total length of the evolving Kingman N-coalescent

at time t ∈ R. Then, as N →∞,

(
L′N(t)− 2 logN

)
t∈R

d→ L′ ,

where the limiting process L′ = (L′t)t∈R is stationary, a.s. pure

jump, non-Markovian.

L′ has infinite quadratic variation (Knobloch, Stanciu, Wakolbin-

ger, 2011), thus fails to be a semimartingale.
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Theorem: (Schweinsberg, 2011)

Let L′′N(t) be the total length of the evolving Bolthausen-Sznitman

N-coalescent at time t ∈ R. Then, as N →∞,

(
(logN)2

N L′′N( t
logN )− logN − log logN

)
t∈R

d→ L′′ ,

where the stationary limiting process L′′ = (L′′t )t∈R solves the

SDE

dL′′ = −L′′ dt+ dY

for a certain Lévy-process Y of index 1.
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Theorem: (K., Stanciu, 2012, ongoing work)

Let LN(t) be the total external length of the evolving Kingman
N-coalescent. Then

(√
N

4 logN

(
LN( tN )− 2

))
t∈R

d→ L ,

where L is a stationary, Gaussian, a.s. continuous, with covarian-
ce function

Cov(Ls, Lt) =
( 1

1 + |t− s|

)2
.

Note the different scaling of time (real instead of evolutionary
periodes).
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The dynamics of the external lengths:

t1 t2

internal branch level 2

internal branch level 3
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So let for the static Kingman N-coalescent (at time t = 0)

LiN = total internal branch length of level i ,

in particular for i = 1

L1
N = total external branch length . of level i

How do we gain access to these quantities?
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Branch numbers VN , . . . , V2 and WN , . . . ,W2.

V5 = 5V2 = 0

W5 = 0W2 = 1

T1 T2 T3 T4 T5 = 0

L1
N =

N∑
i=2

Vi(Ti−1 − Ti) , L2
N =

N∑
i=2

Wi(Ti−1 − Ti)
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L1
N =

N∑
i=2

Vi(Ti−1 − Ti)

=
N−1∑
k=1

Tk(Vk+1 − Vk) + T1V2

≈
N−1∑
k=1

2

k
∆Vk

∆Vk is easy to handle for k close to N .
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External branch numbers 0 = V1, V2, . . . , VN , and

(total) internal branch numbers

U1 = 1− V1, U2 = 2− V2, . . . , UN = 1− VN
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Let us look at the randomness within

VN −N (= 0)

VN−1 −N + 2

...

VN−i −N + 2i

...
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Randomness within (Vi) close to N :
VN −N + 1, VN−1 −N + 3, . . .

.1e4

.1e2

.1e3

1.
1.

.1e4.1e2 .1e3

.1e5

.1e3

.1e4

.1e2

1.
.1e2 .1e4 .1e51. .1e3

N1/2 NN0

Randomness enters (almost) independently.
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However, since we consider

L1
N ≈

N−1∑
k=1

2

k
∆Vk

we have to understand randomness at the beginning of V2, . . . , VN .

So let us compare

VN −N,VN−1 −N + 2, . . . to V1, V2, . . .
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Randomness within (Vi) close to N and 1:

VN −N + 1, VN−1 −N + 3, . . . versus V1 + 1, V2 + 1, . . .
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For the (total) internal numbers U1 = 1 − V1, . . . , UN = N − VN
we have reversibility:

Theorem: (Janson, K. 2011)

(U1, . . . , UN−1)
d
= (UN−1, . . . , U1) .

For another proof see Knobloch, Stanciu, Wakolbinger (2011).

Theorem: (Janson, K. 2011)

√
N

4 logN

(
L1
N − 2

)
d→ N(0,1) .
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The representation of the (total) internal numbers U1, . . . , UN as
diminishing urn:

– Take urn with blue balls, altogether N balls.

– Remove them stepwise:
– Successively remove a random pair of balls
– and replace it by one orange ball.

– If i balls are left,
– let Ui the number of orange balls among them
– and Vi the number of blue balls.

Note:

VN−i −N + 2i = i− UN−i , Vi = i− Ui .
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Now recall

VN , . . . , V2 external branch numbers

WN , . . . ,W2 internal branch numbers level 2

...

Note:

VN , VN−1, . . . , V2 is a Markov chain (inhomogeneous in time).

(VN ,WN), (VN−1,WN−1), · · · , (V2,W2) is a Markov chain, or

WN , . . . ,W2 is a Markov chain,

given the random environment VN , . . . , V2.
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The transition probabilities:

P kv,w(v′, w′) = P(Vk−1 = v′,Wk−1 = w′ | Vk = v,Wk = w)

P kv,w(v − 2, w + 1) =

(
v
2

)
(
k
2

) P kv,w(v, w − 2) =

(
w
2

)
(
k
2

)

P kv,w(v, w) =

(
k−v−w

2

)
(
k
2

) P kv,w(v − 1, w − 1) =
vw(
k
2

)

P kv,w(v − 1, w) =
v(k − v − w)(

k
2

) P kv,w(v, w − 1) =
w(k − v − w)(

k
2

)
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External branch numbers V1, . . . , VN , and

(total) internal branch numbers U1, . . . , UN and

internal branch numbers level 2 W1, . . . ,WN .
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Randomness within (Vi) and (Wi):

VN −N + 1, VN−1 −N + 3, . . . and V1 + 1, V2 + 1, . . .

and W1 + 1,W2 + 1, . . .
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Theorem: (K., Stanciu 2012)

For every k ∈ N

√
N

4 logN

(
L1
N − µ1, . . . , L

k
N − µk

)
d→ N(0, Ik) .

with the k × k identity matrix Ik and

µi =
2

i
.
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Idea of proof:

Reversing time seems no longer feasible.

We couple the Markov chain

(VN ,WN), . . . , (V2,W2)

with two independent urns, i.e. with

(VN , ṼN), . . . , (V2, Ṽ2) ,

where (ṼN , . . . , Ṽ2) is an independent copy of (VN , . . . , V2).

Now the urns can be reversed.
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Back to the evolving coalescent:

...

memory

Cov(Ls, Lt) =

probability that a critical binary branching process consists of

exactly 1 individual at time |t− s|.
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