T he total external length in the evolving Kingman coalescent
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The evolving Kingman N-coalescent (N = 5):

) S ] !

|
Evolutionary time

Moran’'s model with time —oco < t < oo:
Links between pairs of lines appear at rate 1,
independent between the different pairs.



The evolving Kingman N-coalescent:
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Kingman's coalescent at time ¢4



The evolving Kingman N-coalescent:

The coalescent tree evolves in time.



The evolving Kingman N-coalescent:

N

MRCA

Evolving time to MRCA
tree topology
total length
total external length



These results are rather different in nature, none covering any
other.

Interesting aspects:

— limiting processes with
a.s. continuous paths versus
a.s. (compensated) pure jump paths

— different time scalings



A BASKET OF RESULTS



Theorem: (Pfaffelhuber/Wakolbinger , Donnelly/Kurtz, 2006)

Let An(t) be the time to the MRCA of the evolving Kingman
N-coalescent at time t € R. Then, as N — oo,

(AN®), , = A,

where the limiting process A = (A;);cr is stationary, a.s. pure
jump, non-Markovian.

For a related result on the two oldest families in the genealogy
see Delmas, Dhersin, and Siri-Jegousse (2010).



Theorem: (Greven, Pfaffelhuber, Winter, 2009, 2010)
Let T (t) be the tree, induced by the evolving Kingman N-

coalescent at time ¢t € R in the space of real trees furnished
with the Gromov-weak topology. Then, as N — oo,

(TN(t))teR - I,

where the limiting tree-valued process 7' = (1});cr is stationary,
a.s. continuous, and unique solution of a martingale problem.



Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt, 2011)

Let L/\,(t) be the total length of the evolving Kingman N-coalescent
at time t € R. Then, as N — oo,

(Liy(t) — 2log N)teR 4

where the limiting process L' = (L});cgr is stationary, a.s. pure
jump, non-Markovian.

L' has infinite quadratic variation (Knobloch, Stanciu, Wakolbin-

ger, 2011), thus fails to be a semimartingale.
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Theorem: (Schweinsberg, 2011)

Let L}, (t) be the total length of the evolving Bolthausen-Sznitman
N-coalescent at time t € R. Then, as N — oo,

(logN)2 71 t N B d 7
(—N LN(IogN) log N IoglogN)teR — L"

where the stationary limiting process L” = (L});cr solves the
SDE

dl” = —L" dt + dY

for a certain Lévy-process Y of index 1.
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Theorem: (K., Stanciu, 2012, ongoing work)

Let Ly (t) be the total external length of the evolving Kingman
N-coalescent. Then

(Vﬁ(LN(%)_Q))feR S L

where L is a stationary, Gaussian, a.s. continuous, with covarian-
ce function

Cov(Ls, L) = (1 - |1t - S|)2 .

Note the different scaling of time (real instead of evolutionary
periodes).
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The dynamics of the external lengths:

internal branch level 2

internal branch level 3
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So let for the static Kingman N-coalescent (at time ¢t = 0)

L, = total internal branch length of level i ,

in particular for : =1

L}V — total external branch length .

How do we gain access to these quantities?
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Branch numbers Vi, ..., Vo and Wy, ..., Wo.

_—
] T> I3 1y T =0
Vo = Ve =5
Wo =1 Wg =20
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N
Ly =Y Vi(T;_1 - Ty)
=2

N—1
- T (Vi1 — Vi) + T V>
k=1

N-1 2

~ Z —AVk
k=1 k

AV, is easy to handle for k close to N.
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External branch numbers 0 = V4, V5, ..., V, and
(total) internal branch numbers
U=1—-V1,U,=2—-V5,....Un=1—-Vjx

Jjooo Joooo

'9 000 r9 0000

N = 1000 N = 10000 .



Let us look at the randomness within

Vn =N (=0)

Vy_1— N4+2

Vi — N + 2i
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Randomness within (V;) close to N:
Vwn—N+1,Vy_1—N+3,...
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Randomness enters (almost) independently.



However, since we consider

. N-1 5
Ly~ ) —AV
k=1
we have to understand randomness at the beginning of V5, ..., V.
So let us compare
Viv—N,Vny_1—N+2,... to Vi, Vo, ...
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Randomness within (V;) close to N and 1:

VN —N4+1,Vy_ 1—N+3,...

Ele4 .
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versus Vq + 1, Vo 4 1,...
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For the (total) internal numbers U1 =1 —-Vq,..., Uy = N — Vy
we have reversibility:

Theorem: (Janson, K. 2011)

d
(U17"'7UN—1) — (UN—]_?"'?U].)'

For another proof see Knobloch, Stanciu, Wakolbinger (2011).

Theorem: (Janson, K. 2011)

4|é\éN (Lk —2) <4 N(0,1) .

22



The representation of the (total) internal numbers as
diminishing urn:

— Take urn with blue balls, altogether N balls.

— Remove them stepwise:
Successively remove a random pair of balls
and replace it by one ball.

— If ¢ balls are left,
let the number of orange balls among them
and V; the number of blue balls.

Note:
VN—Z_N+QZ:Z_UN—Z ) V:LZ’L—UZ
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Now recall

Vin,..., Vo external branch numbers
Whar,...,Wo internal branch numbers level 2
Note:
Vn,VN_1,..., Vo is @ Markov chain (inhomogeneous in time).

(VN7WN)7(VN—17WN—1)7”° ,(VQ,WQ) IS a Markov chain, or

Whar,...,Wo is @ Markov chain,
given the random environment Vi, ..., Vo.
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T he transition probabilities:

PY, (W) =PV =0 W1 = | Vy = v, W), = w)

YR

leiw(v—Q,wﬁ—l): g) quiw(U,W—Q)z@

() ()
k—v—w
wa(v,w):< 2 ) wa(v—l,w—l):ﬂ
| (5) | ()
vk —v—w) wlk — v —w)

lef,w(v_law): P{Zw(v,w—l):

(5) (2)
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External branch numbers Vy,...,Vx, and
(total) internal branch numbers and
internal branch numbers level 2 Wy, ..., Wy.
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9 o o e

I~ N+3,...and V4 + 1,15+ 1

and W1+ 1, Wo+4+1,...

Randomness within (V;) and (W;):

VN —N+1,Vy_

NO

N1/2 N3/4
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Theorem: (K., Stanciu 2012)

For every k € N

4|C])ZN (LN — w1 LR — )

with the k£ x k£ identity matrix I, and

<N

Hoi

9 N(O, 1) .
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Idea of proof:
Reversing time seems no longer feasible.

We couple the Markov chain

(VN7WN)7' . ->(V27W2)

with two independent urns, i.e. with

VN, VD, oy (Vo, Vo)

where (Vy,...,V5) is an independent copy of (Vy,..

Now the urns can be reversed.

., V2).
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Back to the evolving coalescent:

—

:‘ memory
P
=

COV(Ls,Lt) —
probability that a critical binary branching process consists of
exactly 1 individual at time |t — s|.
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