The total external length in the evolving Kingman coalescent

Götz Kersting and Iulia Stanciu
Goethe Universität, Frankfurt am Main

CIRM, Luminy
June 11-15 2012

The evolving Kingman N-coalescent ($N=5$):

\qquad
Evolutionary time

Moran's model with time $-\infty<t<\infty$:
Links between pairs of lines appear at rate 1, independent between the different pairs.

The evolving Kingman N-coalescent:

Kingman's coalescent at time t_{1}

The evolving Kingman N-coalescent:

The coalescent tree evolves in time.

The evolving Kingman N-coalescent:

Evolving time to MRCA
tree topology
total length
total external length

These results are rather different in nature, none covering any other.

Interesting aspects:

- limiting processes with
a.s. continuous paths versus
a.s. (compensated) pure jump paths
- different time scalings

A BASKET OF RESULTS

Theorem: (Pfaffelhuber/Wakolbinger, Donnelly/Kurtz, 2006)
Let $A_{N}(t)$ be the time to the MRCA of the evolving Kingman N-coalescent at time $t \in \mathbb{R}$. Then, as $N \rightarrow \infty$,

$$
\left(A_{N}(t)\right)_{t \in \mathbb{R}} \quad \xrightarrow{d} \quad A,
$$

where the limiting process $A=\left(A_{t}\right)_{t \in \mathbb{R}}$ is stationary, a.s. pure jump, non-Markovian.

For a related result on the two oldest families in the genealogy see Delmas, Dhersin, and Siri-Jegousse (2010).

Theorem: (Greven, Pfaffelhuber, Winter, 2009, 2010)
Let $T_{N}(t)$ be the tree, induced by the evolving Kingman N coalescent at time $t \in \mathbb{R}$ in the space of real trees furnished with the Gromov-weak topology. Then, as $N \rightarrow \infty$,

$$
\left(T_{N}(t)\right)_{t \in \mathbb{R}} \quad \xrightarrow{d} \quad T,
$$

where the limiting tree-valued process $T=\left(T_{t}\right)_{t \in \mathbb{R}}$ is stationary, a.s. continuous, and unique solution of a martingale problem.

Theorem: (Pfaffelhuber, Wakolbinger, Weisshaupt, 2011)
Let $L_{N}^{\prime}(t)$ be the total length of the evolving Kingman N-coalescent at time $t \in \mathbb{R}$. Then, as $N \rightarrow \infty$,

$$
\left(L_{N}^{\prime}(t)-2 \log N\right)_{t \in \mathbb{R}} \quad \xrightarrow{d} \quad L^{\prime},
$$

where the limiting process $L^{\prime}=\left(L_{t}^{\prime}\right)_{t \in \mathbb{R}}$ is stationary, a.s. pure jump, non-Markovian.
L^{\prime} has infinite quadratic variation (Knobloch, Stanciu, Wakolbinger, 2011), thus fails to be a semimartingale.

Theorem: (Schweinsberg, 2011)
Let $L_{N}^{\prime \prime}(t)$ be the total length of the evolving Bolthausen-Sznitman N-coalescent at time $t \in \mathbb{R}$. Then, as $N \rightarrow \infty$,

$$
\left(\frac{(\log N)^{2}}{N} L_{N}^{\prime \prime}\left(\frac{t}{\log N}\right)-\log N-\log \log N\right)_{t \in \mathbb{R}} \quad \xrightarrow{d} \quad L^{\prime \prime},
$$

where the stationary limiting process $L^{\prime \prime}=\left(L_{t}^{\prime \prime}\right)_{t \in \mathbb{R}}$ solves the SDE

$$
d L^{\prime \prime}=-L^{\prime \prime} d t+d Y
$$

for a certain Lévy-process Y of index 1.

Theorem: (K., Stanciu, 2012, ongoing work)
Let $L_{N}(t)$ be the total external length of the evolving Kingman N-coalescent. Then

$$
\left(\sqrt{\frac{N}{4 \log N}}\left(L_{N}\left(\frac{t}{N}\right)-2\right)\right)_{t \in \mathbb{R}} \quad \xrightarrow{d} \quad L,
$$

where L is a stationary, Gaussian, a.s. continuous, with covariance function

$$
\operatorname{Cov}\left(L_{s}, L_{t}\right)=\left(\frac{1}{1+|t-s|}\right)^{2} .
$$

Note the different scaling of time (real instead of evolutionary periodes).

The dynamics of the external lengths:

So let for the static Kingman N-coalescent (at time $t=0$)

$$
L_{N}^{i}=\text { total internal branch length of level } i
$$

in particular for $i=1$

$$
L_{N}^{1}=\text { total external branch length . }
$$

How do we gain access to these quantities?

Branch numbers V_{N}, \ldots, V_{2} and W_{N}, \ldots, W_{2}.

$$
L_{N}^{1}=\sum_{i=2}^{N} V_{i}\left(T_{i-1}-T_{i}\right), \quad L_{N}^{2}=\sum_{i=2}^{N} W_{i}\left(T_{i-1}-T_{i}\right)
$$

$$
\begin{aligned}
L_{N}^{1} & =\sum_{i=2}^{N} V_{i}\left(T_{i-1}-T_{i}\right) \\
& =\sum_{k=1}^{N-1} T_{k}\left(V_{k+1}-V_{k}\right)+T_{1} V_{2} \\
& \approx \sum_{k=1}^{N-1} \frac{2}{k} \Delta V_{k}
\end{aligned}
$$

ΔV_{k} is easy to handle for k close to N.

External branch numbers $0=V_{1}, V_{2}, \ldots, V_{N}$, and (total) internal branch numbers

$$
U_{1}=1-V_{1}, U_{2}=2-V_{2}, \ldots, U_{N}=1-V_{N}
$$

Let us look at the randomness within

$$
\begin{gathered}
V_{N}-N \quad(=0) \\
V_{N-1}-N+2 \\
\vdots \\
V_{N-i}-N+2 i
\end{gathered}
$$

Randomness within (V_{i}) close to N :
$V_{N}-N+1, V_{N-1}-N+3, \ldots$

Randomness enters (almost) independently.

However, since we consider

$$
L_{N}^{1} \approx \sum_{k=1}^{N-1} \frac{2}{k} \Delta V_{k}
$$

we have to understand randomness at the beginning of V_{2}, \ldots, V_{N}. So let us compare

$$
V_{N}-N, V_{N-1}-N+2, \ldots \quad \text { to } \quad V_{1}, V_{2}, \ldots
$$

Randomness within (V_{i}) close to N and 1:

$$
V_{N}-N+1, V_{N-1}-N+3, \ldots \text { versus } V_{1}+1, V_{2}+1, \ldots
$$

For the (total) internal numbers $U_{1}=1-V_{1}, \ldots, U_{N}=N-V_{N}$ we have reversibility:

Theorem: (Janson, K. 2011)

$$
\left(U_{1}, \ldots, U_{N-1}\right) \stackrel{d}{=}\left(U_{N-1}, \ldots, U_{1}\right) .
$$

For another proof see Knobloch, Stanciu, Wakolbinger (2011).
Theorem: (Janson, K. 2011)

$$
\sqrt{\frac{N}{4 \log N}}\left(L_{N}^{1}-2\right) \xrightarrow{d} N(0,1) .
$$

The representation of the (total) internal numbers U_{1}, \ldots, U_{N} as diminishing urn:

- Take urn with blue balls, altogether N balls.
- Remove them stepwise:

Successively remove a random pair of balls and replace it by one orange ball.

- If i balls are left, let U_{i} the number of orange balls among them and V_{i} the number of blue balls.

Note:

$$
V_{N-i}-N+2 i=i-U_{N-i} \quad, \quad V_{i}=i-U_{i}
$$

Now recall

$$
\begin{aligned}
& V_{N}, \ldots, V_{2} \text { external branch numbers } \\
& W_{N}, \ldots, W_{2} \text { internal branch numbers level } 2
\end{aligned}
$$

Note:
$V_{N}, V_{N-1}, \ldots, V_{2}$ is a Markov chain (inhomogeneous in time).
$\left(V_{N}, W_{N}\right),\left(V_{N-1}, W_{N-1}\right), \cdots,\left(V_{2}, W_{2}\right)$ is a Markov chain, or
W_{N}, \ldots, W_{2} is a Markov chain, given the random environment V_{N}, \ldots, V_{2}.

The transition probabilities:

$$
\begin{gathered}
P_{v, w}^{k}\left(v^{\prime}, w^{\prime}\right)=\mathrm{P}\left(V_{k-1}=v^{\prime}, W_{k-1}=w^{\prime} \mid V_{k}=v, W_{k}=w\right) \\
P_{v, w}^{k}(v-2, w+1)=\frac{\binom{v}{2}}{\binom{k}{2}} \quad P_{v, w}^{k}(v, w-2)=\frac{\binom{w}{2}}{\binom{k}{2}} \\
P_{v, w}^{k}(v, w)=\frac{\binom{k-v-w}{2}}{\binom{k}{2}} \\
P_{v, w}^{k}(v-1, w-1)=\frac{v w}{\binom{k}{2}} \\
P_{v, w}^{k}(v-1, w)=\frac{v(k-v-w)}{\binom{k}{2}} \quad P_{v, w}^{k}(v, w-1)=\frac{w(k-v-w)}{\binom{k}{2}}
\end{gathered}
$$

External branch numbers V_{1}, \ldots, V_{N}, and (total) internal branch numbers U_{1}, \ldots, U_{N} and internal branch numbers level $2 W_{1}, \ldots, W_{N}$.

Randomness within (V_{i}) and (W_{i}):
$V_{N}-N+1, V_{N-1}-N+3, \ldots$ and $V_{1}+1, V_{2}+1, \ldots$ and $W_{1}+1, W_{2}+1, \ldots$

Theorem: (K., Stanciu 2012)

For every $k \in \mathbb{N}$

$$
\sqrt{\frac{N}{4 \log N}}\left(L_{N}^{1}-\mu_{1}, \ldots, L_{N}^{k}-\mu_{k}\right) \xrightarrow{d} N\left(0, I_{k}\right) .
$$

with the $k \times k$ identity matrix I_{k} and

$$
\mu_{i}=\frac{2}{i}
$$

Idea of proof:

Reversing time seems no longer feasible.

We couple the Markov chain

$$
\left(V_{N}, W_{N}\right), \ldots,\left(V_{2}, W_{2}\right)
$$

with two independent urns, i.e. with

$$
\left(V_{N}, \tilde{V}_{N}\right), \ldots,\left(V_{2}, \tilde{V}_{2}\right)
$$

where $\left(\tilde{V}_{N}, \ldots, \tilde{V}_{2}\right)$ is an independent copy of $\left(V_{N}, \ldots, V_{2}\right)$.

Now the urns can be reversed.

Back to the evolving coalescent:

$\operatorname{Cov}\left(L_{s}, L_{t}\right)=$
probability that a critical binary branching process consists of exactly 1 individual at time $|t-s|$.

