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Stochastic equations in random environments

Consider stochastic equations of the form

X(t) = X(0) +
∫ t

0
σ(X(s), Z(s))dW(s) +

∫ t

0
b(X(s), Z(s))ds, (1)

where W is a standard Brownian motion independent of X(0) and Z, or

X(t) = X(0) +
∑

k

Yk(
∫ t

0
λk(X(s), Z(s))ds)ζk, (2)

where ζk ∈ Zd and the Yk are independent unit Poisson processes that
are independent of X(0) and Z.

Thinking of Z as determining the “environment” in which X evolves, in
(1), X is a diffusion process in a random environment, and in (2), X is a
Markov chain in a random environment.
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Martingale problems with random environ-
ments

If ƒ is C2 with compact support, (, z) = σ(, z)σ(, z)T , and

Aƒ (, z) =
1

2

∑

,j

j(, z)∂∂jƒ () +
∑



b(, z)∂ƒ (), (3)

then for (1), by Itô’s formula

ƒ (X(t))− ƒ (X(0))−
∫ t

0Aƒ (X(s), Z(s))ds =
∫ t

0
∇ƒ (X(s))Tσ(X(s), Z(s))dW(s)

is a martingale. or more precisely, for g bounded and appropriately mea-
surable,

g(Z)ƒ (X(t))− g(Z)ƒ (X(0))−
∫ t

0
g(Z)Aƒ (X(s), Z(s))ds

is a martingale with respect to the filtration F t = FX
t
∨ σ(Z).
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Martingale problem for Markov chain in a ran-
dom environment

Similarly, setting

Aƒ (, z) =
∑

k

λk(, z)(ƒ (+ ζk)− ƒ ()), (4)

if X satisfies (2), then

g(Z)ƒ (X(t))− g(Z)ƒ (X(0))−
∫ t

0
g(Z)Aƒ (X(s), Z(s))ds

=
∑

k

∫ t

0
g(Z)(ƒ (X(s−) + ζk)− ƒ (X(s−)))

deYk(
∫ s

0
λk(X(r−), Z(r−))dr),

where eYk() = Yk()− , is a martingale.
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Martingale problem in a random environment

Let E and S be complete, separable metric spaces,

A ⊂ C(E)× B([0,∞)× E× S),

and μ0 ∈ P(E × S). Then a progressive E-valued process X and an S-
valued random variable Z give a solution of the martingale problem for
(A, μ0) if (X(0), Z) has distribution μ0 and there exists a filtration {Ft}
such that for each ƒ ∈ D(A) and g ∈ B(S)

g(Z)ƒ (X(t))− g(Z)ƒ (X(0))−
∫ t

0
g(Z)Aƒ (s, X(s), Z)ds

is a {Ft}-martingale.
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Equivalence

Theorem 1 If A is of the form (3) (resp. (4)), then any solution of the
martingale problem that does not explode in finite time can be obtained
as a solution of the corresponding stochastic equation.

Proof. The diffusion case follows essentially by the same arguments
as in the nonrandom environment setting. See Stroock and Varadhan
(1972). Most examples of the jump case will follow by a result of Meyer
(1971). In some cases, it may be helpful to apply results in Kurtz (2011).
�
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A martingale lemma
Let {Ft} and {Gt} be filtrations with Gt ⊂ Ft.

Lemma 2 Suppose U and V are {Ft}-adapted and

U(t)−
∫ t

0
V(s)ds

is an {Ft}-martingale. Then

E[U(t)|Gt]−
∫ t

0
E[V(s)|Gs]ds

is a {Gt}-martingale.

Proof. The lemma follows by the definition and properties of conditional
expectations. �
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Filtered martingale problems

Let (X,Z) be a solution of the martingale problem for (A, μ0) with respect
to a filtration {Ft}, and let {Gt} be a filtration with Gt ⊂ Ft. Let πt be
the conditional distribution of (X(t), Z) given Gt. Then for ƒ ∈ D(A) and
g ∈ B(S),

πt(gƒ )− π0(gƒ )−
∫ t

0
πs(gAƒ )ds

is a {Gt}-martingale.
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Converse

Theorem 3 Suppose that {eπt, t ≥ 0} is a progressive, P(E × S)-valued
process adapted to a filtration { eGt} such that for each ƒ ∈ D(A) and
g ∈ B(S),

eπt(gƒ )− eπ0(gƒ )−
∫ t

0
eπs(gAƒ )ds

is a { eGt}-martingale. Then for μ0 = E[eπ0], there exists a solution (X,Z)
of the martingale problem for (A, μ0) and a filtration {Gt} such that
the P(E × S)-valued process given by the conditional distributions πt
of (X(t), Z) given Gt has the same finite dimensional distributions as
{eπt, t ≥ 0}.

Proof. See Kurtz and Nappo (2011). (The result is a direct descendent
of Kurtz and Ocone (1988).) �
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Branching processes in random environments

Let E = ∪n[0, r]n.

For 0 ≤ φ ≤ 1, φ(r) = 1, let ƒ (, n) =
∏n

=1 φ(). For Z = {((t), b(t)), t ≥
0} satisfying (t) > 0 and −∞ < b(t) ≤ r(t), define

Arƒ (t, Z, , n) = ƒ (, n)
n
∑

=1

2(t)
∫ r



(φ()− 1)d

+ƒ (, n)
n
∑

=1

((t)2

− b(t))

φ′()

φ()
.

In other words, particle levels satisfy

U̇(t) = (t)U2 (t)− b(t)U(t),

and a particle with level z gives birth at rate 2(t)(r − z) to a particle
whose initial level is uniformly distributed between z and r.

Let N(t) = #{ : U(t) < r} and let αr(n, d) be the joint distribution of n
iid uniform [0, r] random variables.
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A calculation
bƒ (n) =
∫

ƒ (, n)αr(n, d) = e−λφn, e−λφ = 1
r

∫ r

0 φ()d

To calculate Cbƒ (t, Z, n) =
∫

Arƒ (t, Z, , n)αr(n, d), observe that

r−12(t)
∫ r

0
φ(z)
∫ r

z

(φ()− 1)d = (t)re−2λφ − 2(t)r−1
∫ r

0
φ(z)(r − z)dz

and

r−1
∫ r

0
((t)z2 − b(t)z)φ′(z)dz = −r−1

∫ r

0
(2(t)z − b(t))(φ(z)− 1)dz

= −2(t)r−1
∫ r

0
zφ(z)dz + (t)r + b(t)(e−λφ − 1).

Then

Cbƒ (t, n) = ne−λφ(n−1)
�

(t)re−2λφ − 2(t)re−λφ + (t)r + b(t)(e−λφ − 1)
�

= (t)rn(bƒ (n+ 1)− bƒ (n)) + ((t)r − b(t))n(bƒ (n− 1)− bƒ (n)).
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Conclusion

Let eN be a solution of the martingale problem for

Cbƒ (t, n, Z) = (t)rn(bƒ (n+ 1)− bƒ (n)) + ((t)r − b(t))n(bƒ (n− 1)− bƒ (n)),

that is, eN is a branching process in a random environment with birth rate
(t)r and death rate ((t)r − b(t)).

Then, taking eπt(d, dz) ∈ P(E× S) to be αr( eN(t), d)δZ(dz),

Cbƒ (t, eN(t), Z) = eπtAr(t, eN(t), Z),

and by Theorem 3, there exists a solution (U1(t), . . . , UN(t)(t), N(t), Z) of
the martingale problem for Ar such that (N,Z) has the same distribution
as ( eN,Z).

See Kurtz and Rodrigues (2011).
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Limit theorem
Since r(t) ≥ b(t) and

U̇(t) = (t)U2 (t)− b(t)U(t),

either U(t) hits r in finite time or, noting that

d

dt
e
∫ t

0 b(s)dsU(t) = (t)e
∫ t

0 b(s)dsU(t)2 ≥ 0,

the limit
η = lim

t→∞
e
∫ t

0 b(s)dsU(t)

exists for all  (possibly ∞) and

W = lim
t→∞

e−
∫ t

0 b(s)dsN(t)

exists (possibly zero). If
∫∞
0 (t)e−
∫ t

0 b(s)dsdt =∞, then η =∞ for all  and

W = 0. If
∫∞
0 (t)e−
∫ t

0 b(s)dsdt <∞, then there is positive probability that
η <∞ for some  and W > 0. In particular, {W > 0} = {infη <∞} a.s.
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Fleming-Viot processes

The neutral Fleming-Viot process with mutation operator B on E is the
P(E)-valued process with generator A with domain

D(A) = {F(μ) = 〈ƒ , μm〉 : ƒ ∈ D(
m
∑

=1

B),m ≥ 1}

and

AF(μ) =
m
∑

=1

〈Bƒ , μm〉+
∑

1≤<j≤m
(〈jƒ , μm−1〉 − 〈ƒ , μm〉)

where for ƒ ∈ B(Em), jƒ is the function in B(Em−1) obtained by setting
 = j.
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Lookdown construction

The lookdown construction for the neutral Fleming-Viot process given in
Donnelly and Kurtz (1999) corresponds to the generator given by

ƒ () = ƒ (1, . . . , m) ∈ D(
m
∑

=1

B)

Aƒ () =
m
∑

=1

Bƒ () +
∑

1≤<j≤m
(ƒ (θj())− ƒ ())

where y = θj() is the element of E∞ satisfying

yk = k, k ≤ j− 1
yj = 
yk = k−1, k > j

that is θj() = (1, . . . , j−1, , j, j+1, . . .).
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Application of Theorem 3

Observe that for F(μ) = 〈ƒ , μm〉, AF(μ) = 〈Aƒ , μm〉, so if η is a solution of
the martingale problem for A and we define eπt =

∏∞
=1 η(t),

eπtAƒ = 〈Aƒ , η(t)m〉

=
m
∑

=1

〈Bƒ , η(t)m〉+
∑

1≤<j≤m
(〈jƒ , η(t)m−1〉 − 〈ƒ , η(t)m〉)

= AF(η(t))

and

eπtƒ − eπ0ƒ −
∫ t

0
eπsAƒds

is a martingale. By Theorem 3, there is a solution X of the martingale
problem for A and a filtration {Gt} such that {πt, t ≥ 0}, the conditional
distributions of X(t) given Gt, has the same distribution as {eπt, t ≥ 0}.
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Sampling at multiple time points

For a fixed time t, by exchangeability, X1(t), . . . , Xm(t) give a random
sample of size m from πt and the genealogy of the sample can be recov-
ered from the lookdown construction. If the sampling occurs at multiple
time points, then the original lookdown construction does not, at least
immediately, give a simple representation of the sample.

For definiteness, assume that one member of the population is sample
at the jump times of a Poisson process with parameter λ, and let Y(t)
be the type of the individual sampled most recently. Then (η, Y) will be
Markov with generator

AF(μ, y) =
m
∑

=1

〈Bƒ (·, y), μm〉+
∑

1≤<j≤m
(〈jƒ (·, y), μm−1〉 − 〈ƒ (·, y), μm〉)

+λ(〈ƒ , μm+1〉 − 〈ƒ (·, y), μm〉
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A lookdown construction

Let

Aƒ (, y) =
m
∑

=1

Bƒ (, y) +
∑

1≤<j≤m
(ƒ (θj(), y)− ƒ (, y))

+λ(ƒ (κ, 1)− ƒ (, y)),

where
κ = (2, 3, . . .).

To verify the construction, again apply Theorem 3 with

eπt =
∞
∏

=1

η(t)× δY(t).

Again, the genealogy of the sample can be recovered from the lookdown
construction.
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Abstract
Filtering and models in population biology

The simplest derivations of lookdown constructions for population models are based on filtering
arguments. Some of the background of these methods will be discussed along with extensions
to models in random environments and sampling at multiple time points.


