

Contour processes, Coalescent point processes and applications

Amaury Lambert

CIRM, Luminy, le 12 juin 2012

- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics
- 6 Phylogenies

Jumping contour of a tree

a) Binary tree with edge lengths and b) Jumping contour process of its truncation below time *t*.

Retrieving information from the contour The depths of the excursions of the JCP away from T are the coalescence times of consecutive extant individuals at time T.

- *H_i* = coalescence time between individuals *i* – 1 and *i* = depth of *i*-th excursion of the contour process
- A_i = age of individual i= undershoot of last jump of...
- *R_i* = residual lifetime of individual *i* = overshoot of last jump of...

A (time-inhomogeneous) splitting tree (Geiger & Kersting 97) is a random tree model (genealogy, epidemic, phylogeny,...), where :

- particles reproduce singly and independently
- the birth rate $\lambda(t)$ may depend on absolute time t (only)
- lifetime distributions can be general and may also depend on birth time : example of a death rate $\mu(t, a)$ depending on absolute time *t* and age *a* of particles.

The population size process $(N_t; t \ge 0)$ is a binary Crump-Mode-Jagers process (with age-independent birth point process).

Contour of a splitting tree

Theorem (L. (2010))

The jumping contour process of a splitting tree truncated below T is a strong Markov process.

In the time-homogeneous case, it has the same law as a compound Poisson process X with Lévy measure $\lambda P(V \in \cdot)$, without negative jumps and drift -1, reflected below T and killed upon hitting 0.

- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics
- 6 Phylogenies

 H^T := depth of an excursion of the JCP away from *T*.

Corollary

The coalescent tree (or reconstructed tree) seen from T of a splitting tree, is a coalescent point process : the coalescence times form a sequence of i.i.d. r.v. distributed as H^T , killed at its first value larger than T.

 \Rightarrow <u>Notation :</u>

$$F_T(s) := \frac{1}{P(H^T \ge s)}.$$

Coalescent point processes : Popovic (2004), Aldous & Popovic (2005), L. & Popovic (2012).

FIGURE: Illustration of a coalescent point process showing the coalescence depths H_1, \ldots, H_6 for each of the 6 consecutive pairs of tips. The depth H_7 is the first one larger than T.

Three special cases

Coalescent

- 1 Time-homogeneous case (L. 2010) $\equiv \lambda$ and $\mu(a)$ do NOT depend on *t* ...And then F_T does not depend on *T*...
- 2 Markovian case (Nee, May & Harvey 1994) $\equiv \mu(t)$ does NOT depend on *a*

$$F_T(t) = 1 + \int_{T-t}^T dx \,\lambda(x) \, e^{\int_x^T dy r(y)},$$

where $r(t) := \lambda(t) - \mu(t)$ (instantaneous growth rate).

(3) Time-homogeneous + Markov (Rannala, 1997) $\equiv \lambda$ and μ are constant \equiv linear birth–death process

$$F_T(t) = 1 + \frac{\lambda}{r}(e^{rt} - 1).$$

- Contour
- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics
- 6 Phylogenies

Bottleneck : definition

- Start with a coalescent point process
- add a bottleneck with survival probability ε at time *s* backwards, i.e., all lineages crossing this time section are independently deleted with probability 1ε
- Set B_{ε}^{T} := coalescence time between two consecutive survivors,
- so that s = 0 corresponds to sampling.

Bottleneck : result

- With probability $P(H^T < s)$, B_{ε}^T is distributed as H^T conditional on $H^T < s$
- With probability $P(H^T \ge s)$,

$$\boldsymbol{B}_{\boldsymbol{\varepsilon}}^{T} \stackrel{(d)}{=} \max\{A_{1},\ldots,A_{K}\},\$$

where the A_i 's are i.i.d. distributed as H^T conditional on $H^T \ge s$ and

$$\mathbb{P}(K=j)=\varepsilon(1-\varepsilon)^{j-1}.$$

• This yields

$$F_{\varepsilon}(t) := \frac{1}{P(B_{\varepsilon}^T \ge t)} = \begin{cases} F_T(t) & \text{if } t < s \\ \varepsilon F_T(t) + (1 - \varepsilon)F_T(s) & \text{if } t \ge s \end{cases}$$

Contour Coalescent Bottlenecks Mutations Epidemics Phylogenies

Start with a coalescent point process and add extra bottlenecks with survival probabilities $\varepsilon_1, \ldots, \varepsilon_k$ at times $T - s_1 > \ldots > T - s_k$ (where $s_1 \ge 0$ and $s_k < T$).

Proposition (L. (2012))

Conditional on survival, the new reconstructed tree is again a coalescent point process with inverse tail distribution F_{ε} given by

$$F_{\varepsilon}(t) = \varepsilon_1 \cdots \varepsilon_m F_T(t) + \sum_{j=1}^m (1 - \varepsilon_j) \varepsilon_1 \cdots \varepsilon_{j-1} F_T(s_j) \qquad t \in [s_m, s_{m+1}],$$

for each $m \in \{0, 1, ..., k\}$, with $s_0 := 0$ and $s_{k+1} := T$.

- 1 Contour
- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics
- 6 Phylogenies

Neutral, Poissonian mutations

- Supercritical, time-homogeneous, splitting tree
- $N_t :=$ population size at time t
- $\alpha :=$ Malthusian parameter $= \lim_{t \to \infty} \frac{1}{t} \log N_t$
- θ := mutation rate on lineages.

Goal. Characterize the allelic partition under the infinitely-many alleles model.

See also Griffiths & Pakes (1988), Taïb (1992), Abraham & Delmas (2007), Bertoin (2009, 2010, 2011), Sagitov & Serra (2009, 2011).

Expected frequency spectrum

In (L. 2009) and (Champagnat & L. 2012a), we have characterized the clonal coalescent point process to give an explicit expression for the expectation, conditional on N_t , of

A(k,t,y) := number of alleles of age in (y, y + dy) and carried by k alive individuals at time t.

= expected allele frequency spectrum for small families.

Clonal coalescent point process

 $B_i^{\theta} = \text{distances}$ between consecutive virgin lineages $H_i^{\theta} = \max$ of branch lengths between consecutive virgin lineages $\implies (B_i^{\theta}, H_i^{\theta})$ are i.i.d.

Proposition (Champagnat & L. 2012b) Assume $\alpha \leq \theta$. The following results hold in expectation.

- If α < θ, there are explicit constants b and β := θ/(θ − α). such that largest families have sizes b(αt − β log(t)) + c and they all have age ~ log(t)/θ − α.
 Oldest families have ages γt + a and tight sizes, where γ := α/θ.
- If α = θ, there are explicit constants b and β := 1/(2α), such that largest families have sizes b(αt − β log(t) + c)² and they all have age ~ t/2.
 Oldest families have ages t − γlog(t) + a and tight sizes, where γ := 1/α.

If $\alpha > \theta$, largest families have sizes $ce^{(\alpha - \theta)t}$ and are also the oldest ones (born at times O(1)).

Largest or oldest families at time t

Proposition (Champagnat & L. 2012b) Assume $\alpha \leq \theta$. The following results hold in expectation.

- If $\alpha < \theta$, there are explicit constants b and $\beta := \theta/(\theta \alpha)$. such that largest families have sizes $b(\alpha t - \beta \log(t)) + c$ and they all have age $\sim \frac{\log(t)}{\theta - \alpha}$. Oldest families have ages $\gamma t + a$ and tight sizes, where $\gamma := \alpha/\theta$.
- If α = θ, there are explicit constants b and β := 1/(2α), such that largest families have sizes b(αt − β log(t) + c)² and they all have age ~ t/2.
 Oldest families have ages t − γlog(t) + a and tight sizes, where γ := 1/α.

If $\alpha > \theta$, largest families have sizes $ce^{(\alpha - \theta)t}$ and are also the oldest ones (born at times O(1)).

 N'_{t-s_t} := number of subtrees (\mathscr{T}_i) grafted on branch lengths $\geq s_t$

Convergence in distribution (2)

Set

 $X_t^{(k)} :=$ size of the *k*-th largest family in the whole population

 $Y_i :=$ size of the largest family in subtree \mathscr{T}_i .

With $s_t := \log(t) / (\theta - \alpha)$, we have

- $N'_{t-s_t} \to \infty$
- $(X_t^{(1)}, \dots, X_t^{(k)})$ = first k order statistics of $\{Y_1, \dots, Y_{N'_{t-s_t}}\}$ W.H.P.
- With $L_t(x) :=$ number of families larger than x at time t,

$$\mathbb{P}(Y \ge x_t + c) = \mathbb{P}(L_{s_t}(x_t + c) \ge 1) \sim \mathbb{E}(L_{s_t}(x_t + c)).$$

Convergence in distribution (3)

 $X_t^{(k)} :=$ size of the *k*-th largest family in the whole population

Theorem (Champagnat & L. 2012b) There is an explicit constant $c \in (0, 1)$, such that $(X_t^{(k)} - b(\alpha t - \beta \log(t)); k \ge 1)$ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

$$\mathscr{E}\sum_{j\in\mathbb{Z}}c^j\delta_j,$$

where & is some exponential r.v.

Convergence in distribution (4)

 $A_t^{(k)} :=$ age of the *k*-th oldest family in the whole population

Theorem (Champagnat & L. 2012b) The sequence $(A_t^{(k)} - (\alpha t / \theta); k \ge 1)$ converges (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

 $\mathscr{E}e^{-\theta a}da,$

where \mathcal{E} is some exponential r.v.

- 1 Contour
- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics
- 6 Phylogenies

Contour Coalescent Bottlenecks Mutations Epidemics Phylogenies

- Epidemics modelled by a splitting tree, where birth = transmission (rate λ) and lifetime = period of infectiousness
- each patient can be detected to be a carrier only after an independent exponential clock with parameter δ running from the beginning of her infection (medical exam or symptoms);
- T := detection time = first time when one these clocks rings.

Splitting tree with exponential clocks \Rightarrow Each individual is equipped with an exponential clock with parameter δ initialized at birth.

T := first time when one of these clocks rings.

Contour Coalescent Bottlenecks Mutations Epidemics Phylogenies

Let $X^{(T)}$ be the JCP of the splitting tree truncated below the detection time *T*.

Theorem (L. & Trapman 2012)

For any $n \ge 1$, for any t > 0, for any càdlàg path e,

$$\mathbb{P}\left(N_T = n, T \in dt, X^{(T)} \in de\right) = \frac{\delta}{b} e^{-\delta V(e)} P\left(-I_n \in dt, Y'_n \in de\right),$$

where V(e) denotes the total lifetime of a path e, Y_n is the concatenation of n i.i.d. excursions of a Lévy process, I_n is its infimum and Y'_n is its Vervaat transform.

Methicillin-resistant Staphylococcus aureus

- patients have i.i.d lengths of stay in the hospital, all distributed as some r.v. K (such that E(K) < ∞);
- Conditional on infection, the length of stay of a patient is a size-biased version of *K*;
- At detection time *T*, all patients in the hospital are screened and identified.

Contour Coalescent Bottlenecks Mutations Epidemics Phylogenies

Notation

For individual *i*, set

- $U_i :=$ time elapsed from entrance of the hospital up to infection
- $A_i :=$ time elapsed from infection up to T
- $R_i :=$ residual lifetime in the hospital after *T*.

Set $m := \mathbb{E}(K)$ and let ϕ denote the inverse of the convex function

Inference from hospital data

Proposition (L. & Trapman 2012)

Conditional on $N_T = n$, the triples (U_i, A_i, R_i) of the *n* (randomly labelled) carriers at time *T* are *i.i.d.*, distributed as the *r.v.* (U, A, R) (independent of *n*), where

 $\mathbb{E}(f(U,A,R)) =$

 $\frac{\lambda}{m}\frac{\phi(\delta)}{\phi(\delta)-\delta}\int_{u=0}^{\infty}du\int_{a=0}^{\infty}da\int_{z=u+a}^{\infty}\mathbb{P}(K\in dz)e^{-\phi(\delta)a}f(u,a,z-u-a),$

In particular, the times $J_i = U_i + A_i$ spent in the hospital up to time T are *i.i.d.*, distributed as the r.v. J

$$\mathbb{P}(J \in dy) = \frac{\lambda/m}{\phi(\delta) - \delta} \mathbb{P}(K > y) \left(1 - e^{-\phi(\delta)y}\right) dy.$$

- 1 Contour
- 2 Coalescent
- 3 Bottlenecks
- 4 Mutations
- 5 Epidemics

Temporally-spaced epidemiological data (with Tanja Stadler)

- A sampled individual immediately leaves the infective population.
- $S_i :=$ sampling time of individual i
- $R_i :=$ coalescence time between individuals i 1 and i.

By the contour technique, the (S_i, R_i) is a Markov chain with explicit transitions.

 \Rightarrow inference of model parameters from viral phylogenies (HIV, flu).

Splitting tree with exponential clocks (2)

Black dots = sampling/detecting

Phylogenetic tree models (with H. Morlon, R.S. Etienne, B. Haegeman)

Phylogenies

...(statistical) work in progress...

- Protracted speciation (Etienne & Rosindell 2011) : New born species are incipient, and turn good after a random time
- Speciation by genetic differentiation and point mutation : two individuals are in the same species if their MRCA belongs to a geodesic without mutation.

 \Rightarrow Infer parameters of diversification dynamics from real phylogenetic tree shapes.

Contour Coalescent Bottlenecks Mutations Epidemics Phylogenies Acknowledgements

• Stochastics & Biology group

 \subset Laboratoire de Probabilités et Modèles Aléatoires \subset UPMC University Paris 06

• Stochastic Models for the Inference of Life Evolution (SMILE)

 \subset Center for Interdisciplinary Research in Biology \subset Collège de France

• ANR Modèles Aléatoires eN Écologie, Génétique, Évolution (MANEGE)

