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Exchangeable population models (Cannings)

Non-overlapping generations r ∈ Z = {. . . ,−1, 0, 1, . . .}
Population size N , i.e. N individuals (genes, particles) in each generation

ν
(r)
i := number of offspring of individual i of generation r, ν

(r)
1 + · · ·+ν

(r)
N = N

Additional assumptions on the offspring

Exchangeability: (ν
(r)
π1 , . . . , ν

(r)
πN)

d
= (ν

(r)
1 , . . . , ν

(r)
N ) ∀ π

Homogeneity: (ν
(r)
1 , . . . , ν

(r)
N )r i.i.d.

Avoid the trivial model (ν
(r)
i ≡ 1). Define (ν1, . . . , νN) := (ν

(0)
1 , . . . , ν

(0)
N ).

Examples. Wright-Fisher : (ν1, . . . , νN)
d
= Multinomial(N, 1

N
, . . . , 1

N
)

Moran : (ν1, . . . , νN) = random permutation of (2, 1, . . . , 1︸ ︷︷ ︸
N−2

, 0)
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Exchangeable population models (graphical representation)
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Example: Population size N = 8
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Conditional branching population models

Let ξ1, ξ2, . . . be independent random variables taking values in N0 := {0, 1, 2, . . .}.

Assume that P(ξ1 + · · ·+ ξN = N) > 0 for all N ∈ N := {1, 2, . . .}.

Perform the following two steps:

1. Conditioning: Let µ1, . . . , µN be random variables such that the distribution of them coin-

cides with that of ξ1, . . . , ξN conditioned on the event that ξ1 + · · ·+ ξN = N .

2. Shuffling: Let ν1, . . . , νN be the µ1, . . . , µN randomly permutated.

Conditional branching process models are particular Cannings models with offspring variables

ν1, . . . , νN constructed as above (Karlin and McGregor, 1964).
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Compound Poisson population models

Compound Poisson population models are particular conditional branching process models for

which ξn has p.g.f.

E(xξn) = exp (− θn(φ(z)− φ(zx))), |x| ≤ 1, n ∈ N,

with parameters 0 < θn < ∞ and with a power series φ of the form φ(z) =
∞∑

m=1

φm
zm

m!
,

|z| < r, with positive radius r of convergence and φm ≥ 0, φ1 > 0.
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Distribution and factorial moments of µ

Notation: Taylor expansion exp(θφ(z)) =
∞∑

k=0

σk(θ)

k!
zk, |z| < r.

(The coefficients σk(θ) can be computed recursively.)

Distribution of µ: P(µ1 = j1, . . . , µN = jN) =
N !

j1! · · · jN !

σj1(θ1) · · · σjN
(θN)

σN(
∑N

n=1 θn)

(j1, . . . , jN ∈ N0 with j1 + · · ·+ jN = N )

Factorial moments of µ:

E((µ1)k1 · · · (µN)kN
) =

N !

σN(
∑N

n=1 θn)

∑
j1≥k1,...,jN≥kN

j1+···+jN =N

σj1(θ1) · · ·σjN
(θN)

(j1 − k1)! · · · (jN − kN)!

(k1, . . . , kN ∈ N0)
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A subclass of compound Poisson models

We focus on the subclass of compound Poisson models satisfying

σk+1(θ)

σk(θ)
+

σk′+1(θ
′)

σk′(θ′)
=

σk+k′+1(θ + θ′)
σk+k′(θ + θ′)

k, k′ ∈ N0, θ, θ
′ ∈ (0,∞). (∗)

Lemma. A compound Poisson model satisfies (∗) if and only if φm = (m−1)!φ1(φ2/φ1)
m−1

for all m ∈ N. (These are essentially Wright–Fisher models and Dirichlet models.) If (∗) holds

then µ has factorial moments

E((µ1)k1 · · · (µN)kN
) = (N)k1+···+kN

σk1(θ1) · · · σkN
(θN)

σk(θ1 + · · ·+ θN)

(k1, . . . , kN ∈ N0)

Assumption. In the following it is always assumed that (∗) holds.
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Ancestral process

Take a sample of n (≤ N ) individuals from some generation and consider their ancestors.

(i, j) ∈ Rt = R(n)
t :⇐⇒ individuals i and j have a common parent t generations back-

wards in time.

The ancestral processR := (Rt)t=0,1,... is Markovian with state space En (set of equivalence

relations on {1, . . . , n}).

Transition probabilities: P(Rt+1 = η |Rt = ξ) = Φ
(N)
j (k1, . . . , kj), ξ, η ∈ En with ξ ⊆ η

with

Φ
(N)
j (k1, . . . , kj) :=

1

σk1+···+kj
(
∑N

n=1 θn)

N∑
n1,...,nj=1

all distinct

σk1(θn1) · · · σkj
(θnj

)

where j := |η| = number of blocks of η,

k1, . . . , kj := group sizes of merging classes of ξ. (⇒ k1 + · · ·+ kj = |ξ|)
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Two basic transition probabilities

Notation: For N, k ∈ N define Θk(N) :=
N∑

n=1

θk
n.

cN := ‘coalescence probability’ := P(2 individuals have same parent)

= Φ
(N)
1 (2) =

1

σ2(Θ1(N))

N∑
n=1

σ2(θn) =
φ2Θ1(N) + φ2

1Θ2(N)

φ2Θ1(N) + φ2
1(Θ1(N))2

.

We also need

dN := P(3 individuals have same parent)

= Φ
(N)
1 (3) =

φ3Θ1(N) + 3φ1φ2Θ2(N) + φ3
1Θ3(N)

φ3Θ1(N) + 3φ1φ2(Θ1(N))2 + φ3
1(Θ1(N))3

.
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Exchangeable coalescent processes

◦ Exchangeable coalescents are discrete-time or continuous-time Markov processes Π =

(Πt)t with state space E , the set of equivalence relations (partitions) onN := {1, 2, . . .}.

◦ During each transition, equivalence classes (blocks) merge together. Simultaneous multi-

ple collisions of blocks are allowed.

◦ Schweinsberg (2000) characterizes these processes via a finite measure Ξ on the infinite

simplex

∆ := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0, |x| :=
∞∑
i=1

xi ≤ 1}.

◦ These processes are therefore also called Ξ-coalescents.
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Domain of attraction

For n ∈ N let %n : E → En denote the restriction of E to En, the set of equivalence relations

on {1, . . . , n}.

Definition.

◦ We say that the considered population model is in the domain of attraction of a continuous-

time coalescent Π = (Πt)t≥0, if, for each sample size n ∈ N, the time-scaled ancestral

process (R(n)
[t/cN ])t≥0 weakly converges to (%n ◦ Πt)t≥0 as N →∞.

◦ We say that the considered population model is in the domain of attraction of a discrete-

time coalescent Π = (Πt)t=0,1,..., if, for each sample size n ∈ N, the ancestral process

(R(n)
t )t=0,1,... weakly converges to (%n ◦ Πt)t=0,1,... as N →∞.
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Results (Regime 1)

Theorem 1. Suppose that (∗) holds. If
∑∞

n=1 θn < ∞, then the compound Poisson populati-

on model is in the domain of attraction of a discrete-time Ξ-coalescent.

Characterization of Ξ. There exists a consistent sequence (Qj)j∈N of probability measures

Qj on the j-simplex ∆j := {(x1, . . . , xj) ∈ [0, 1]j : x1 + · · · + xj ≤ 1} uniquely

determined via their moments

∫

∆j

xk1
1 · · ·xkj

j Qj(dx1, . . . , dxj) =
σk1(θ1) · · · σkj

(θj)

σk1+···+kj
(
∑∞

n=1 θn)
, k1, . . . , kj ∈ N0.

Let Q denote the projective limit of (Qj)j∈N, let X1, X2, . . . be random variables with joint

distribution Q, and let ν be the joint distribution of the ordered variables X(1) ≥ X(2) · · ·.
Then, Ξ has density x 7→ (x, x) :=

∑∞
n=1 x2

n with respect to ν. The measure Ξ is concen-

trated on the subset ∆∗ of points x = (x1, x2, . . .) ∈ ∆ satisfying |x| := ∑∞
n=1 xn = 1.
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Regime 1 (continued)

Remark. The proof of Theorem 1 is based on general convergence theorems for ancestral

processes of Cannings models (M. and Sagitov 2001) and on the moment problem for the

j-dimensional simplex (Gupta).

Examples. Suppose that θ :=
∑∞

n=1 θn < ∞.

Wright-Fisher models. If φ(z) = φ1z, then σk(θ) = θkφk
1 . In this case ν is the Dirac

measure at p = (θ1/θ, θ2/θ, . . .) ∈ ∆∗. The measure Ξ assigns its total mass Ξ(∆) =

(p, p) = (
∑∞

n=1 θ2
n)/θ2 to the single point p.

Dirichlet models. If φ(x) = − log(1 − x), then φm = (m − 1)!, m ∈ N, and σk(θ) =

[θ]k := θ(θ + 1) · · · (θ + k − 1), k ∈ N0. The limiting coalescent is the discrete-time

Dirichlet-Kingman coalescent with parameter (θn)n∈N.
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Results (Regime 2)

Theorem 2. Suppose that (∗) holds. If
∑∞

n=1 θn = ∞ and if
∑∞

n=1 θ2
n < ∞, then the

compound Poisson population model is in the domain of attraction of the Kingman coalescent.

Remarks.

1. Time-scaling satisfies cN = Θ2(N)/(Θ1(N))2 if φ2 = 0 and cN ∼ φ2/(φ
2
1Θ1(N)) if

φ2 > 0, where Θk(N) :=
∑N

n=1 θk
n for k ∈ N.

2. In contrast to the situation in Theorem 1, the limiting coalescent in Theorem 2 does not

depend on the function φ of the compound Poisson model. Theorem 2 is for example

applicable if θn = n−α with α ∈ (1
2
, 1].
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Sketch of proof

The proof of Theorem 2 is based on the following technical lemma.

Lemma. If (∗) holds, then the following five conditions are equivalent.

(i) lim
N→∞

Θ2(N)

(Θ1(N))2
= 0. (ii) lim

N→∞
Θ3(N)

Θ1(N) Θ2(N)
= 0.

(iii) lim
N→∞

cN = 0. (iv) lim
N→∞

dN

cN

= 0.

(v) The compound Poisson model is in the domain of attraction of the Kingman coalescent.

Remark. The proof that (i) - (iii) are equivalent is technical but elementary. The equivalence

of (iv) and (v) and the implication ‘(iv) ⇒ (iii)’ hold even for arbitrary Cannings models (M.,

2000). The interesting point is that, for compound Poisson models, (iii) implies (iv). Note that

this implication does not hold for arbitrary Cannings models.
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Results (Regime 3)

Theorem 3. Suppose that (∗) holds, that
∑∞

n=1 θn = ∞ and that
∑∞

n=1 θ2
n = ∞. Then

the compound Poisson model is in the domain of attraction of the Kingman coalescent if and

only if Θ2(N)/(Θ1(N))2 → 0 as N → ∞. In this case the time-scaling cN satisfies

cN ∼ φ2/(φ
2
1Θ1(N)) + Θ2(N)/(Θ1(N))2.

Corollary. (unbiased case, Huillet and M., 2010) If (∗) holds and if θn = θ does not depend on

n, then the compound Poisson model is in the domain of attraction of the Kingman coalescent.

The time-scaling cN satisfies cN ∼ (1 + φ2/(φ
2
1θ))/N .
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Results (Regime 3, continued)

Theorem 4. Suppose that (∗) holds and that all the limits

p1(k) := lim
N→∞

Θk(N)

(Θ1(N))k
, k ∈ N,

exist. Then all the limits

pj(k1, . . . , kj) := lim
N→∞

1

(Θ1(N))k1+···+kj

N∑
n1,...,nj=1

all distinct

θk1
n1
· · · θkj

nj
,

k1, . . . , kj ∈ N, exist. Suppose now in addition that
∑∞

n=1 θn = ∞ and that p1(2) >

0. Then, the compound Poisson model is in the domain of attraction of a discrete-time Ξ-

coalescent Π. The characterizing measure ν(dx) := Ξ(dx)/(x, x) of Π is the Dirac-

measure at x = (x1, x2, . . .) ∈ ∆, where x1 := limk→∞(p1(k))1/k and xn+1 :=

limk→∞(p1(k)− (xk
1 + · · ·+ xk

n))1/k, n ∈ N.
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Regime 3 (continued)

Remarks.

◦ Let ZN be a random variable taking the value θn/Θ1(N) with probability θn/Θ1(N),

n ∈ {1, . . . , N}. The existence of all the limits p1(k), k ∈ N, is equivalent to the

convergence ZN → Z in distribution, where Z has characteristic function

t 7→ ∑∞
k=0(t

k/k!)p1(k + 1), t ∈ R.

◦ In contrast to the situation in Theorem 1, the limiting discrete-time Ξ-coalescent in Theo-

rem 4 does not depend on the function φ of the compound Poisson model.

Example. Fix λ > 1 and suppose that θn = λn, n ∈ N. Then, p1(k) = (λ − 1)k/(λk −
1) > 0, k ∈ N. In this case the measure Ξ of the limiting Ξ-coalescent assigns its total mass

Ξ(∆) = p1(2) = (λ− 1)/(λ + 1) to the single point x = (x1, x2, . . .) ∈ ∆∗ defined via

xn := (λ− 1)/λn = (1− 1/λ)(1/λ)n−1, n ∈ N.
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Generalization: Assume that ( ∗) does not hold

Theorem. (Huillet, M. 2011)

Fix θ ∈ (0,∞) and suppose that the equation θzφ′(z) = 1 has a real solution z(θ) ∈
(0, r). Then µ1 → X in distribution as N →∞, where X has distribution

P(X = k) = σk(θ)
(z(θ))k

k!
e−θφ(z(θ)) k ∈ {0, 1, 2, . . .}.

The associated symmetric compound Poisson model is in the domain of attraction of the King-

man coalescent. The effective population size Ne := 1/cN satisfies Ne ∼ %N as N →∞,

where % := 1/E((X)2) = 1/(1 + θ(z(θ))2φ′′(z(θ))) ∈ (0, 1].

Remark. Proof uses the saddle point method to establish the asymptotics of σN(Nθ).

Open cases.

a) Symmetric models without a solution z(θ), condensation (work in progress).

b) Non symmetric models.

19



Conclusions

◦ Asymptotics of the ancestry for some compound Poisson population models analyzed

◦ Results essentially based on convergence theorems (M. 2000 and M. and Sagitov 2001)

for ancestral processes of exchangeable Cannings population models

◦ Convergence to the Kingman coalescent if and only if Θ2(N)/(Θ1(N))2 → 0

◦ Compound Poisson models satisfying (∗) are never in the domain of attraction of a con-

tinuous-time coalescent different from Kingman’s coalescent; discrete-time Ξ-coalescents

(with simultaneous multiple collisions) arise if the parameters θn are ‘unbalanced’

◦ Three regimes depending on the behavior of the series
∑

n θn and
∑

n θ2
n; complete con-

vergence results for the first two regimes; partial convergence results for the third regime

(when both series diverge)

◦ Convergence to the Kingman coalescent holds even for more general symmetric com-

pound Poisson models, which do not necessarily satisfy the restriction (∗)
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