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We are interested in populations living on one island or being distributed
equally on two islands with symmetric migration.

Assume a beneficial allele is introduced once to the population and
eventually goes fixed under strong constant selection and the population is
evolving according to the diffusion setting, i.e.

• Selection strength α

• Migration rate µ

• frequency path (Y1(t),Y2(t))t≥0 of the beneficial allele conditioned
on fixation solves the SDE

dY1 = (αY1(1−Y1) coth(α(Y1 + Y2)) + µ(Y2 −Y1))dt +
√
Y1(1− Y1)dW1

dY2 = (αY2(1−Y2) coth(α(Y1 +Y2)) +µ(Y1−Y2))dt +
√
Y2(1− Y2)dW2,

started with Y1(0) = Y2(0) = 0 for two independent standard Brownian
motions W1, W2.
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Define the fixation time

Tfix := inf{t|Y1(t) = Y2(t) = 1}.

Analogously define the fixation time for a panmictic population.

Theorem:

One island

α

log(α)
Tfix

α→∞−−−→ 2 in probability, i.e. for large α

Tfix ≈ 2
log(α)

α
.
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Two islands

• If µ ∈ Ω(α),
α

log(α)
Tfix

α→∞−−−→ 2 in probability.

• If µ ∈ Θ(αp) for p ∈ [0, 1),

α

log(α)
Tfix

α→∞−−−→ (3− p) in probability, i.e. for large α

Tfix ≈ (1− p + 2)
log(α)

α
= (3− p)

log(α)

α
.

• If µ = c/ log(α), for some c ∈ R+

α

log(α)
Tfix

α→∞−−−→ 3 + X in distribution, where X ∼ Exp(2c).

That is for large α

Tfix ≈ (1 + X + 2)
log(α)

α
= (3 + X )

log(α)

α
.
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Heuristic explanation: One island

Main tool:

Ancestral selection graph (Krone and Neuhauser, 1997)

• analog to Kingman coalescent in setting with selection:

• gives potential genealogies of a sample of a large population evolving
under constant selection.
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Motivation ASG

Moran model with selection
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• Alleles are b and B

• Each pair resamples at
rate 1

• Each line creates red
arrows at rate α

• Black arrows can be
used by any allele

• Only B alleles can use
red arrows
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Definition: Ancestral selection graph (ASG)

• each pair of lines coalesces at rate 1

• each line splits at rate α

Fixation in the ASG:
Mark one random individual i0 with good type B, others with wild type b
at time τ in the past.
The beneficial allele is fixed at time 0 (the present), if there exist directed
paths between the individual (τ, i0) and all individuals (0, k).

Proposition:
Fixation time in ASG is distributed as fixation time in diffusion

P(Tfix ≤ τ) = P
(

for all k = 1, 2, . . . it holds (0, k)↔ (τ, 1) in ASG
)
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Definition: Ancestral selection graph (ASG)

• each pair of lines coalesces at rate 1

• each line splits at rate α

Fixation in the ASG:
Mark one random individual i0 with good type B, others with wild type b
at time τ in the past.
The beneficial allele is fixed at time 0 (the present), if there exist a
directed paths between the individual (τ, i0) and all individuals (0, k).
Write (0, k)↔ (τ, i0).

Proposition:
“Fixation time in ASG is distributed as fixation time in diffusion:”

P(Tfix ≤ τ) = P
(

for all k = 1, 2, . . . it holds (0, k)↔ (τ, 1) in ASG
)
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Heuristic explanation

Important property: Reversibility of ASG

• Line counting process of ASG has reversible equilibrium.
In equilibrium have ≈ n = 2α lines
(splitting rate n · α = 2α · α ≈ 2α(2α−1)

2 =
(2α

2

)
=
(n

2

)
coalescing rate)

• Reversibility can be conferred to ASG → in equilibrium the reversed
ASG is also an ASG
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Heuristic explanation

Sketch of the proof

Step 1: Start ASG in equilibrium instead of with ∞-ly many
individuals. Have at most 2α ancestors within time of
order 1/α

Step 2: “Forward” and “backward” graphs spanned by single
individuals are also ASGs

Step 3: Exponential growth at rate α: forward ASG of (τ, i0)
reaches εα lines at time t = log(εα)/α for any ε > 0

Step 4: Approximately deterministic growth according to
differential equation dQ = Q(1− Q/2)dt from εα lines
to 2α− εα lines within time frame O(1/α).

Step 5: Backward ASG of typical individual (0, k) reaches εα
lines after time t = log(εα)/α
Size of underlying ASG ≈ 2α ⇒ Forward ASG of (τ, i0)
meets with backward ASG of typical individual (0, k)
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Heuristic explanation

Two islands

Definition: Ancestral selection graph (ASG)

• each pair of lines coalesces within islands at rate 1

• each line splits at rate α within its island

• each line migrates to the neighboring island at rate µ

Note:

• ASG on two islands has also a reversible equilibrium

• to compute fixation time can again start ASG in equilibrium
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Heuristic explanation

Migration rate µ & α

First migrant to island 2: immediate migrant, i.e. within time of order
O(1/α).

Show: Other migrants do not speed up the sweep on island 2 and do not
slow down the sweep on island 1.

α

log(α)
Tfix

α→∞−−−→ 2 in probability.
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Heuristic explanation

Migration rate µ ≈ αp for p ∈ [0, 1)

First migrant to island 2:
Size of (τ, i0)-ASG ≈ eα·log(α)(1−p)/α = α1−p at time log(α)(1− p)/α
⇒ first migrant approximately at time log(α)(1− p)/α

α

log(α)
Tfix

α→∞−−−→ 1− p + 2 = 3− p in probability.
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Heuristic explanation

Migration rate µ = c/ log(α)

First migrant to island 2:

• no migrant until time log(α)/α

• after time log(α)/α: Size of (τ, i0)-ASG ≈ 2α

⇒ At (“constant”) rate 2α · c/ log(α) individuals migrate to island 2
⇒ waiting time scaled by log(α)/α is exponentially distributed with rate
2c.

α

log(α)
Tfix

α→∞−−−→ 1 + X + 2 in distribution, where X ∼ Exp(2c).
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Heuristic explanation
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Theory

Sim●

N = 105,
s = 0.05, i.e.
α = N · s = 5000
simulations based
on 1000 draws
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