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Motivation

* Interacting Populations systems:
models for ecology, epidemiology and molecular reaction
networks

* Dynamics leading to on/off or all/nothing values:
switching between them - (quasi)bistability

* In gene expression (cellular differentiation, development) and
cell signaling (enzyme kinetics, metabolic pathways):
modeled deterministically using positive feedback switches

* Stochastic models for reaction systems in biology:
- needed due to visibly noisy outcomes



Time-scales for switching vary over:
* 1 per 108 generations (lysogenic state of E/coli)
* 1 per 8.33 generations (epigenetic states of S.cerevisiae)

Memory of previous state vanishes within:
* single generation; to

* thousands of generations

Relevant questions:
* How long will a cell stay in the same state before
spontaneously switching to an alternative one?
* What features of the underlying interaction network
determine this stability?

* s stability independent of specific details of interaction
network?
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Yeast cells switch between expressing and nonexpressing states —
'Heritable Stochastic Switching Revealed by Single Cell Genealogy’,

Kaufmann, B.B., Yang, Q., Mettetal, J.T., van Oudenaarden, A.,
PLOS Biology, 5(9), 2007
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Additional noise in gene expression from partitioning of the cells —
'‘Non-genetic heterogeneity from stochastic partitioning at cell division’,
Huh, D., Paulsson, J., Nature Genetics, 43(2), 2011



Reaction Networks

o Simple interaction system:

ab

{a,-A+b,~B K—<> (al+<I)A+( CI)B}I 1,...7

1-dim system in terms of the population size of species A

o {1,...,7T} = set of different interactions
o conservation law between A and B - environment or space
limitations; or species can only one of two forms

o Density dependent Markov chain model:

X(t) +Z¢, (/ X(s). N~ X(s))ds)

o {Yi}i=1,... 7 independent Poisson processes
o Aj(+,-) interaction rate - depends on the population size of A



o Additional noisy mechanism:

X(t) = X(0) + /0 (Z(X(s).5) — X(s—))dYs(s)

error due to resampling/splitting

o Y, a counting process with state-dependent rate y(x, )
o {Z(x,s)}o<x<n,s>0 independent with distribution py.
o Effects of additional noisy mechanism examined based on:

o different orders of magnitude of rate v(x, )
o different variance of 'resampling’ distributions p,



Assumptions on interaction dynamics:

1. the amount of species X(t) € {0,..., N} has finite capacity;
2. the drift at the boundaries 0 and N is reflecting

%E[XA(t)yXA(t) =0] >0, %E[XA(t)|XA(t) = N] < 0;

3. the form of rate for a;A + b;B =5 (ai + G)A+ (b —¢i)B is
Ai(X (1)) = w2 (Xa(1))a(Xa(1)s,

where (x); = x(x —1)---(x — a+ 1) is the falling factorial
4. the effect of any other species on an interaction is reflected
only in the value of its interaction rate nzb;



Assumptions on splitting/resampling mechanism:

5. overall rate is y(x, N), which depends both on current state x
and on the scaling parameter N

6. the distribution p, has absorbing boundaries
po(0) =1, pn(N) =1 and is unbiased > yp«(y) = x

For some results we will also assume:

7% the jump sizes are asymptotically uniformly bounded

A >0, sup y(x, N) Z px(y) =0 as N — oo
x y:N—lly—x|>A

the variance is asymptotically given by

sup {’Y(X, N)N_2 Z(y—x)2px(y)—'”y2&2(N_1x)‘ — 0 as N — oo,
x y

where 2 is continuous 52(x) > 0, and 52(0) = &%(1) = 0.



Conventional Scaling

o Rescaled species amounts: Xy(t) = N~1X(t)
o Balanced interactions: 7° c T

> ) =0vx & 3ab)e1™: Y (kP =0
(a,b,¢)ezba! (a,b,¢)eZb!
o Biased interactions: Z%? ¢ 7 =7 — 72
o Relationship between mean and variance:

iE[XN(t)U-'t] = > NI R XN (8)an(1 = Xn(t))bn

dt _
(¢a,b)eZ™?

LE[OM(-EXNOIZIF] =0 N2 s Xn()a (1 Xu(E))o
(¢,a,b)ezP@ Uz

_|_/t N=2(Z(NXn(s—),s) — NXN(S_))de’Y(S)
0

constrains the possibilities for limitting behavior



LLN:

~ab L . +b_1 b , - , .
Cras Nllnoo N k¢ (N) ('mass-action’ scaling)

VT >0,Ye >0 P[ sup |Xn(t)—X(t)]>¢ —0

0<t<T
dX(1) = $(X(1))dt, d(x)= Y CREx(1-x)P
(¢a,b) e
FCLT:
5252 (x) = Jim (N, N)> (v = x)*px(Ny) (7% holds)
y

(Xn(t))ocecT = (X(8))oe<T

dX(t) = $(X(1))dt + 55 (X(t))dW(¢)



Effects of additional mechanism
o nonlinear dynamics needs to have 2 stable equilibria:
0<x1<x<x3<1:(x)=0,¢'(x1) <0,¢'(x2) >0,8(x3) <0

moving between enabled by noise of additional mechanism

o if 4 := ¢ is small (perturbation) then LD for diffusions apply:

Ly o (6, 5) = mf.nf{/ ), ¢ (u))dulp € CY([0, s]),

s>0 ¢
0(0) = x;,¢(s) = x2}
is the 'quasipotential’ with the action functional
- 2
¢ — (e
L(‘Pa ‘Pl) = <~()>

()
o have explicit form:

&&@ﬁ%:_L2ggﬂ&i=L3



LD for diffusion
o transitions To = inf{t > 0: Xy(t) = Bc(x3)}, for i > 1:
Ti=inf{t > Ti_1: X(t) € Be(x1)}, T; = inf{t > T; : X(t) € Bc(x3)}
o time scales 35, and s

P[T1 > 5| X(0) = xs] = e ™%, P[T >[5/ X(0) = xa] = &7

Theorem (Wentzell '78 + Galves-Olivieri-Vares '87)

If QNS has two stable equilibria x; < x3 and one unstable equilibrium
xp, then transitions of X from D3 = (x2,1] and D1 = [0, x2) satisfy:

(i) lim P(T > t B3] X(0) € D3] = e, Jimop[? > tf3:|X(0) e Dy = et
A= A=

(if) 4@0&2 InB5 = by (4, 5), 4@0% In By = by (0, 5).



o occupation measure: bdd conts f, Rs — oo s.t. % —0
Y

) Bst+Ry
v:(f)—,; / F(Xs(s))ds

1

Theorem (Wentzell '78 + Galves-Olivieri-Vares '87)

(i) (Metastability) If — [** 90 g < — I 909 dx, then

52(x) 52(x)

(yg)tzo = (vt)e>0 where, with T an exponential mean 1 r.v.

b Oxsy t< T
t 6y t2>T

(ii) (Bistability) If — [** £%hdx = — [** 28 dx, then

(17 )0 = (Vt)e>0 where, with T;,i > 0 Poisson rate 1 times

< ;
ut:{ o Tastelan g,

Oxs Toig1 <t < Tojyo



Effects of finite system size

o transitions between equilibria can be due to finite system size

X

assume Xp(t) is birth-death chain with rates Nr+(N) Nr_(N)

o if N is large then LD for Markov jump processes apply:
- 1
el 7) = Inf inf { / (p(u), ¢ (u))dulp € C1([0. T
0(0) = xi, o(T) = x2}
is "quasipotential’ with action functional in variational form

Uxy) = sup {by = (F((e" = 1) +7-(q)(e™ ~ 1))}

o for birth-death process have explicit form:

X2 ~
N e




LD for jump Markov process

Theorem (Wentzell '78 4 uniform conv rates)
If the transition rates of birth-death process Xy satisfy

re(Nx)/N — ¥ (x), r—(Nx)/N — F_(x) uniformly in [0, 1]

and ¢ = Fy — F— has two stable equilibria x; < x3 and one unstable
xp, then transitions of Xy from D3 = (x2,1] and D1 = [0, x2) have
mean times By and By, respectively, which satisfy:

(i) JimP[T> tfy| X(0) € D3] = e—ENumP[?> tBn| Xn(0) € D1] = et

| . N L -
(”) I\Ilinooﬁ In By = ’LX3,X2(r+)r*)7 I\Ilinooﬁ In By = 1X1,X2(r+7r*)‘



Comparison of effects

* are the transitions more often due to additional (small
noise) mechanism or due to finite system size effects?

Theorem

If the rates of interactions scale as 'mass-action’ and have
limiting drift (Z) with two stable and one unstable equilibria, and if
additional resampling /splitting mechanism has rate %'y(x, N)
where y(x, N) satisfies Assumption T* then, transitions between
stable equilibria are more often due to finite system size effects
than due to the effects of additional mechanism, that is,

in7X2(F+7 F—) < IX;,X2(¢7 &)'
* threshold is when perturbation parameter 4% = %

when parameter ’72 < = - interaction noise wins

2/=2|=

when parameter 5% > & - noise of additional mechanism wins



Proof.
Let r¥(x) = ri(Nx)/N, and rV(x) = r_(Nx)/N then
1
D> NPT (N)x N (1 — X)bn + EN_Z’y(NX, N),
(a,b,1)eT

1
rN(x) = E Natb=1iab (N )XaN(l—x)bN—i— N=2~(Nx, N).
(a,b,—1)eT

Since by Assumption 7%, |N=2v(Nx, N) — &%(x)| — 0 uniformly,
the birth-death rates converge uniformly to
1
Fr(x) = Z R3bx?(1 — x)P + 202(X)
(a,b,1)eT

Fo(x) = Z ,z;a_b x?(1 — x)? 4+ Z5%(x)



Let w(x)=1- =% since o (Fis 7o) = [ log (1 — w(x))dx
(%) 2 x

/ () dx
T e
(a,b,—1)eZ
B(x) dx
< ZX,,Xz I’+, — / Z Habxa(l —X) + %:)'/25'2()().

(a,b,1)€T

hence

. dx Y
IXi,X2(¢7U) = _/ 1~ 2~) > 7'Xi7><2(r+7 r—)
xi 3770 ( )
and the expected values of the time scales satisfy

1 7 L
Inﬁ7 "2 XHXZ(qb ) 2 NZXf,Xz(r-Hr—) ~ lnﬁs,\,-
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Figure: Sample path of Xp for a system of interactions with double-well
potential drift and small perturbative resampling/splitting mechanism.
parameters: N =500, 2 =2-107%, y(x, N) = 372N? = 25: 4% < +
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Figure: Sample path of Xy for a system of interactions with double-well
potential drift and small perturbative resampling/splitting mechanism.
parameters: N = 1500, 42 =2-1072, 4(x,N) = 22.5-10% 5% > &



Features of Bistability

Bistability due to small additional noise or finite size effects:
* occupation time has 'smooth’ bimodal distribution
* exponentially long time scale of transitions (in N or 1/5?)

* almost no correlation between the transition times in
parent/daughter cells

Can bistability be stochastically induced in other ways?
* the interaction drift may not be a double-well potential
* the occupation time may have sharp two state distribution

* the parent/daughter cells may have transition times that
are highly correlated



Unconventional Scaling

o Rates of (unscaled) Markov jump process X:

rj= > KZ(N)iR(N = i)+ (i, N)pij.
(a,b,j—i)ET

o By Assumption 2. the boundary is not absorbing, 3j, /" s.t.:

nj = Z Iijqj(N)Nb#O, rnjr = Z K/NJ( )N 750

(0,b)eT (a,0,N—j")eT
o Excursions between boundaries, 7o y=inf{t > 0: Xa(t){0, N}}:
€jo -—= E[T()’N’ XA(O) :j,XA(T(),N) = O]

ein := E[mon| Xa(0) = Jj, Xa(mon) = N]
min = P[Xa(7o,n) = N| Xa(0) = j]



Conditions on ~(i, N)
(%): for some wy — oo, By > 0, IFy, 7, Fo1, Fio € (0, 00)

— rhj — I — E rng — r—
wy =TT oy e
j J
Bn E roj Tin — To1, Bn E rnj Tio — To
J

1
E roj €N § roj €jo, NWNE INj €jo, E rnj ein — 0
J J

ﬁNwN

o transition times T = inf{t >0: X(t) =0}, for i > 1
Th = inf{t > T\t X(¢) = N}, Thy =inf{t > Tj : X(t) =0}

o occupation measure: any f, py > 0 s.t. g—x —0

N 1 [Outton
O IO



Theorem
If the rates of X satisfy (), then

lim P[TI’;I_?II;/_I > tﬂN] = e*ﬁnf lim P[T,';f_l—?_,(, > tﬂN] — g hot
and (v))e>0 = (vt)e=0 where

b do, Toi <t < Thin i>0
t — =
01, Toit1 <t < Tojgo

with { Taix1 — Tai}is0, { T2iv2 — Toit1}is0 independent sequences
of i.i.d exponential variables with rates fo1 and o respectively.

* occupation measure of X = 2-state Markov jump process

* not pathwise, X makes almost successful transition attempts



Lemma
If X is a birth-death chain whose rates ry, r_ satisfy:

r*,EIO) — ¥, € (0,00), rI(VN) — 7 € (0,00)
5| =0)
,Z; r(/) - ‘ —0
NIy

then (x) holds with wy = N, By =1 and o1 = ¥4, 1o = F—.



Theorem

If the rates of interactions scale as 'mass-action’ with drift away
from the boundary, and if the additional resampling/splitting
mechanism has rates (i, N) = piv(N), pi = O(1),~v(N) satisfies:

N—-1

1 N 1 N—i
—0, —— — — 0, —0
pi v(N) ; pi 7(N) ; pi

then results based on conditions () hold with

N _ ~ ~0b % 7:a0
6% =1, and Fo1 = Z(O,b,l)e.’[ K17, no = 2(3,0,71)61 k=1

x time scale of transitions is V=1

* the only rates whose precise value is relevant are at the
boundary
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Figure: Sample path of Xy for the same system of interactions as before,
with additional fast noisy resampling/splitting mechanism.
parameters: N = 200, y(N) = 4N?, p; = 3, ~(i, N) = 8- 10% ~(N) > N?



Summary

Rates of additional mechanism lead to different features of
bistability: if system has increments of size {+1, —1} only and the
rate y(x, N) = pxy(N) with p, = O(1), then

o if 7(N) < N bistability is caused by large deviations of the
Markov jump process, transitions between neighbourhoods of
drift equilibirum points on a time scale of order
eNO(N) "' no correlations in transitions times:

o if 7(N) ~ 52N? bistability is caused by large deviations of a
diffusion with a small perturbation coefficient, transitions
between neighbourhoods of drift equilibirum points on a
time scale of order e %2, no correlations in transition
times;

o if 7(N) > N2 log N bistability is caused by excessive noise,
and transitions between the boundaries on a time scale of
order 1, highly correlated transition times
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