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Motivation

? Interacting Populations systems:
models for ecology, epidemiology and molecular reaction
networks

? Dynamics leading to on/off or all/nothing values:
switching between them - (quasi)bistability

? In gene expression (cellular differentiation, development) and
cell signaling (enzyme kinetics, metabolic pathways):
modeled deterministically using positive feedback switches

? Stochastic models for reaction systems in biology:
- needed due to visibly noisy outcomes



Time-scales for switching vary over:

? 1 per 108 generations (lysogenic state of E/coli)

? 1 per 8.33 generations (epigenetic states of S.cerevisiae)

Memory of previous state vanishes within:

? single generation; to

? thousands of generations

Relevant questions:

? How long will a cell stay in the same state before
spontaneously switching to an alternative one?

? What features of the underlying interaction network
determine this stability?

? Is stability independent of specific details of interaction
network?



Yeast cells switch between expressing and nonexpressing states –
’Heritable Stochastic Switching Revealed by Single Cell Genealogy’,
Kaufmann, B.B., Yang, Q., Mettetal, J.T., van Oudenaarden, A.,
PLOS Biology, 5(9), 2007



Additional noise in gene expression from partitioning of the cells –
’Non-genetic heterogeneity from stochastic partitioning at cell division’,
Huh, D., Paulsson, J., Nature Genetics, 43(2), 2011



Reaction Networks

◦ Simple interaction system:

{aiA + biB
κab

ζ−→ (ai + ζi )A + (bi − ζi )B}i=1,...,I

1-dim system in terms of the population size of species A

◦ {1, . . . , I} = set of different interactions
◦ conservation law between A and B - environment or space

limitations; or species can only one of two forms

◦ Density dependent Markov chain model:

X (t) = X (0) +
I∑

i=1

ζiYi

(∫ t

0
λi (X (s),N − X (s))ds

)
◦ {Yi}i=1,...,I independent Poisson processes
◦ λi (·, ·) interaction rate - depends on the population size of A



◦ Additional noisy mechanism:

X (t) = X (0) +

∫ t

0
(Z (X (s−), s)− X (s−))dYγ(s)

error due to resampling/splitting

◦ Yγ a counting process with state-dependent rate γ(x ,N)
◦ {Z (x , s)}0≤x≤N,s≥0 independent with distribution px .

◦ Effects of additional noisy mechanism examined based on:

◦ different orders of magnitude of rate γ(x ,N)
◦ different variance of ’resampling’ distributions px



Assumptions on interaction dynamics:

1. the amount of species X (t) ∈ {0, . . . ,N} has finite capacity;

2. the drift at the boundaries 0 and N is reflecting

d

dt
E[XA(t)|XA(t) = 0] > 0,

d

dt
E[XA(t)|XA(t) = N] < 0;

3. the form of rate for aiA + biB
κi→ (ai + ζi )A + (bi − ζi )B is

λi (X (t)) = κab
ζ (XA(t))ai (XB(t))bi

where (x)a = x(x − 1) · · · (x − a + 1) is the falling factorial

4. the effect of any other species on an interaction is reflected
only in the value of its interaction rate κab

ζ ;



Assumptions on splitting/resampling mechanism:

5. overall rate is γ(x ,N), which depends both on current state x
and on the scaling parameter N

6. the distribution px has absorbing boundaries
p0(0) = 1, pN(N) = 1 and is unbiased

∑
y ypx(y) = x

For some results we will also assume:

7.∗ the jump sizes are asymptotically uniformly bounded

∆ > 0, sup
x

γ(x ,N)
∑

y :N−1|y−x |≥∆

px(y) → 0 as N →∞

the variance is asymptotically given by

sup
x

∣∣γ(x ,N)N−2
∑
y

(y−x)2px(y)−γ̃2σ̃2(N−1x)
∣∣→ 0 as N →∞,

where σ̃2 is continuous σ̃2(x) ≥ 0, and σ̃2(0) = σ̃2(1) = 0.



Conventional Scaling

◦ Rescaled species amounts: XN(t) = N−1X (t)

◦ Balanced interactions: Ibal ⊂ I∑
(a,b,ζ)∈Ibal

ζλa,b
ζ (x) = 0 ∀x ⇔ ∃(a, b) ∈ Ibal :

∑
(a,b,ζ)∈Ibal

ζκab
ζ = 0.

◦ Biased interactions: Ibia ⊂ I = I − Ibal

◦ Relationship between mean and variance:

d

dt
E
[
XN(t)|Ft

]
=
∑

(ζ,a,b)∈Ibia

Na+b−1ζ κab
ζ XN(t)a,N(1− XN(t))b,N

d

dt
E
[
(XN(t)−E[XN(t)])2|Ft

]
=
∑

(ζ,a,b)∈Ibal∪Ibia

Na+b−2ζ κab
ζ XN(t)a,N(1− XN(t))b,N

+

∫ t

0
N−2

(
Z (NXN(s−), s)− NXN(s−)

)2
dYγ(s)

constrains the possibilities for limitting behavior



LLN:

κ̃ab
ζ := lim

N→∞
Na+b−1κab

ζ (N) (’mass-action’ scaling)

∀T > 0,∀ε > 0 P[ sup
0≤t≤T

|XN(t)− X (t)| ≥ ε] → 0

dX (t) = φ̃(X (t))dt, φ̃(x) =
∑

(ζ,a,b)∈Ibia

ζ κ̃ab
ζ xa(1− x)b

FCLT:

γ̃2σ̃2(x) := lim
N→∞

γ(Nx ,N)
∑
y

(y − x)2pNx(Ny) (7∗. holds)

(
XN(t)

)
0≤t≤T

⇒ (X̃ (t))0≤t≤T

dX̃ (t) = φ̃(X̃ (t))dt + γ̃σ̃(X̃(t))dW̃ (t)



Effects of additional mechanism

◦ nonlinear dynamics needs to have 2 stable equilibria:

0<x1 <x2 <x3 <1 : φ̃(xi ) = 0, φ̃′(x1) < 0, φ̃′(x2) > 0, φ̃′(x3) < 0

moving between enabled by noise of additional mechanism

◦ if γ̃ := ε is small (perturbation) then LD for diffusions apply:

Ixi ,x2(φ̃, σ̃) = inf
s>0

inf
ϕ

{∫ s

0
L(ϕ(u), ϕ′(u))du

∣∣ϕ ∈ C 1([0, s]),

ϕ(0) = xi , ϕ(s) = x2

}
is the ’quasipotential’ with the action functional

L(ϕ, ϕ′) =

(
ϕ′ − φ̃(ϕ)

σ̃(ϕ)

)2

◦ have explicit form:

Ixi ,x2(φ̃, σ̃) = −
∫ x2

xi

φ̃(x)

σ̃2(x)
dx , i = 1, 3



LD for diffusion

◦ transitions T̃0 = inf{t ≥ 0 : XN(t) = Bc(x3)}, for i ≥ 1:

Ti = inf{t > T̃i−1 : X̃ (t) ∈ Bc(x1)}, T̃i = inf{t > Ti : X̃ (t) ∈ Bc(x3)}

◦ time scales βγ̃ , and β̃γ̃ :

P[T1 > βγ̃ | X̃ (0) = x3] = e−1, P[T̃ > β̃γ̃ | X̃ (0) = x1] = e−1

Theorem (Wentzell ’78 + Galves-Olivieri-Vares ’87)

If φ̃ has two stable equilibria x1 < x3 and one unstable equilibrium
x2, then transitions of X̃ from D3 = (x2, 1] and D1 = [0, x2) satisfy:

(i) lim
γ̃→0

P[T > t βγ̃ | X̃ (0) ∈ D3] = e−t , lim
γ̃→0

P[T̃ > t β̃γ̃ | X̃ (0) ∈ D1] = e−t

(ii) lim
γ̃→0

γ̃2 lnβγ̃ = Ix3,x2(φ̃, σ̃), lim
γ̃→0

γ̃2 ln β̃γ̃ = Ix1,x2(φ̃, σ̃).



◦ occupation measure: bdd conts f , Rγ̃ →∞ s.t.
Rγ̃

βγ̃
→ 0

ν γ̃
t (f ) =

1

Rγ̃

∫ βγ̃t+Rγ̃

βγ̃t
f (X̃γ̃(s))ds

Theorem (Wentzell ’78 + Galves-Olivieri-Vares ’87)

(i) (Metastability) If −
∫ x1 φ̃(x)

σ̃2(x)
dx < −

∫ x3 φ̃(x)
σ̃2(x)

dx, then

(ν γ̃
t )t≥0 ⇒ (νt)t≥0 where, with T an exponential mean 1 r.v.

νt =

{
δx3 , t < T
δx1 , t ≥ T

(ii) (Bistability) If −
∫ x1 φ̃(x)

σ̃2(x)
dx = −

∫ x3 φ̃(x)
σ̃2(x)

dx, then

(ν γ̃
t )t≥0 ⇒ (νt)t≥0 where, with Ti , i ≥ 0 Poisson rate 1 times

νt =

{
δx3 , T2i ≤ t < T2i+1

δx1 , T2i+1 ≤ t < T2i+2
i = 0, 1, 2, . . .



Effects of finite system size

◦ transitions between equilibria can be due to finite system size

assume XN(t) is birth-death chain with rates Nr̃+(
x

N
),Nr̃−(

x

N
)

◦ if N is large then LD for Markov jump processes apply:

ıxi ,x2(r̃+, r̃−) = inf
T>0

inf
ϕ

{∫ T

0
`(ϕ(u), ϕ′(u))du

∣∣ϕ ∈ C 1([0,T ]),

ϕ(0) = xi , ϕ(T ) = x2

}
is ’quasipotential’ with action functional in variational form

`(x , y) = sup
θ

{
θy −

(
r̃+(x)(eθ − 1) + r̃−(x)(e−θ − 1)

)}
◦ for birth-death process have explicit form:

ıxi ,x2(r̃+, r̃−) =

∫ x2

xi

log

(
r̃−(x)

r̃+(x)

)
dx , x = 1, 3



LD for jump Markov process

Theorem (Wentzell ’78 + uniform conv rates)

If the transition rates of birth-death process XN satisfy

r+(Nx)/N → r̃+(x), r−(Nx)/N → r̃−(x) uniformly in [0, 1]

and φ̃ = r̃+ − r̃− has two stable equilibria x1 < x3 and one unstable
x2, then transitions of XN from D3 = (x2, 1] and D1 = [0, x2) have
mean times βN and β̃N , respectively, which satisfy:

(i) lim
N→∞

P[T> tβN |XN(0) ∈ D3] = e−t, lim
N→∞

P[T̃> tβ̃N |XN(0) ∈ D1] = e−t

(ii) lim
N→∞

1

N
lnβN = ıx3,x2(r̃+, r̃−), lim

N→∞

1

N
ln β̃N = ıx1,x2(r̃+, r̃−).



Comparison of effects

? are the transitions more often due to additional (small
noise) mechanism or due to finite system size effects?

Theorem
If the rates of interactions scale as ’mass-action’ and have
limiting drift φ̃ with two stable and one unstable equilibria, and if
additional resampling/splitting mechanism has rate 1

Nγ(x, N)
where γ(x ,N) satisfies Assumption 7.∗ then, transitions between
stable equilibria are more often due to finite system size effects
than due to the effects of additional mechanism, that is,

ıxi ,x2(r̃+, r̃−) ≤ Ixi ,x2(φ̃, σ̃).

? threshold is when perturbation parameter γ̃2 = 1
N

when parameter γ̃2 � 1
N - interaction noise wins

when parameter γ̃2 � 1
N - noise of additional mechanism wins



Proof.

Let rN
+ (x) = r+(Nx)/N, and rN

− (x) = r−(Nx)/N then

rN
+ (x) =

∑
(a,b,1)∈I

Na+b−1κab
1 (N)xa,N(1− x)b,N +

1

2
N−2γ(Nx ,N),

rN
− (x) =

∑
(a,b,−1)∈I

Na+b−1κab
−1(N)xa,N(1− x)b,N +

1

2
N−2γ(Nx ,N).

Since by Assumption 7.∗, |N−2γ(Nx ,N)− σ̃2(x)| → 0 uniformly,
the birth-death rates converge uniformly to

r̃+(x) =
∑

(a,b,1)∈I

κ̃ab
1 xa(1− x)b +

1

2
σ̃2(x)

r̃−(x) =
∑

(a,b,−1)∈I

κ̃ab
−1x

a(1− x)b +
1

2
σ̃2(x)



Let ω(x) = 1− r̃−(x)
r̃+(x) , since ıxi ,x2(r̃+, r̃−) =

∫ x2

xi
log
(
1− ω(x)

)
dx

−
∫ x2

xi

φ̃(x) dx∑
(a,b,−1)∈I

κ̃ab
−1x

a(1− x)b + 1
2 γ̃2σ̃2(x)

≤ ıxi ,x2(r̃+, r̃−) ≤ −
∫ x2

xi

φ̃(x) dx∑
(a,b,1)∈I

κ̃ab
1 xa(1− x)b + 1

2 γ̃2σ̃2(x)
.

hence

Ixi ,x2(φ̃, σ̃) = −
∫ x2

xi

φ̃(x) dx
1
2 γ̃2σ̃2(x)

≥ ıxi ,x2(r̃+, r̃−)

and the expected values of the time scales satisfy

lnβγ̃ ≈
1

γ̃2
Ixi ,x2(φ̃, σ̃) & Nıxi ,x2(r̃+, r̃−) ≈ lnβεN

.



Figure: Sample path of XN for a system of interactions with double-well
potential drift and small perturbative resampling/splitting mechanism.
parameters: N = 500, γ̃2 = 2 · 10−4, γ(x ,N) = 1

2 γ̃2N2 = 25: γ̃2 � 1
N



0.25 0.75

Figure: Sample path of XN for a system of interactions with double-well
potential drift and small perturbative resampling/splitting mechanism.
parameters: N = 1500, γ̃2 = 2 · 10−2, γ(x ,N) = 22.5 · 103: γ̃2 � 1

N



Features of Bistability

Bistability due to small additional noise or finite size effects:

? occupation time has ’smooth’ bimodal distribution

? exponentially long time scale of transitions (in N or 1/γ̃2)

? almost no correlation between the transition times in
parent/daughter cells

Can bistability be stochastically induced in other ways?

? the interaction drift may not be a double-well potential

? the occupation time may have sharp two state distribution

? the parent/daughter cells may have transition times that
are highly correlated



Unconventional Scaling

◦ Rates of (unscaled) Markov jump process X :

ri ,j =
∑

(a,b,j−i)∈I

κab
j−i (N)ia(N − i)b + γ(i ,N)pi ,j .

◦ By Assumption 2. the boundary is not absorbing, ∃j , j ′ s.t.:

r0j =
∑

(0,b,j)∈I

κ0j
j (N)Nb 6= 0, rNj ′ =

∑
(a,0,N−j ′)∈I

κa0
N−j ′(N)Na 6= 0

◦ Excursions between boundaries, τ0,N =inf{t ≥ 0 : XA(t)∈{0,N}}:

ej0 := E[τ0,N |XA(0) = j ,XA(τ0,N) = 0]

ejN := E[τ0,N |XA(0) = j ,XA(τ0,N) = N]

πjN := P[XA(τ0,N) = N|XA(0) = j ]



Conditions on γ(i, N)

(?): for some ωN →∞, βN > 0, ∃r̃+, r̃−, r̃01, r̃10 ∈ (0,∞)

1

ωN

∑
j

r0j → r̃+,
1

ωN

∑
j

rNj → r̃−

βN

∑
j

r0j πjN → r̃01, βN

∑
j

rNj πj0 → r̃10

1

βNωN

∑
j

r0j ejN ,
∑

j

r0j ej0,
1

βNωN

∑
j

rNj ej0,
∑

j

rNj ejN → 0

◦ transition times T̃ 0
N = inf{t ≥ 0 : X (t) = 0}, for i ≥ 1

T i
N = inf{t > T̃ i−1

N : X (t) = N}, T̃ i
N = inf{t > T i

N : X (t) = 0}

◦ occupation measure: any f , ρN > 0 s.t. ρN
βN
→ 0

νN
t (f ) =

1

ρN

∫ βN t+ρN

βN t
f (XN(s))ds



Theorem
If the rates of X satisfy (?), then

lim
N→∞

P
[
T i

N−T̃ i−1
N > tβN

]
= e−r̃01t, lim

N→∞
P
[
T i+1

N −T̃ i
N > tβN

]
= e−r̃10t

and (νN
t )t≥0 ⇒ (νt)t≥0 where

νt =

{
δ0, T2i ≤ t < T2i+1

δ1, T2i+1 ≤ t < T2i+2
i ≥ 0

with {T2i+1 − T2i}i≥0, {T2i+2 − T2i+1}i≥0 independent sequences
of i.i.d exponential variables with rates r̃01 and r̃10 respectively.

? occupation measure of X ⇒ 2-state Markov jump process

? not pathwise, X makes almost successful transition attempts



Lemma
If X is a birth-death chain whose rates r+, r− satisfy:

r+(0)

N
→ r̃+ ∈ (0,∞),

r−(N)

N
→ r̃− ∈ (0,∞)

N−1∑
i=1

∣∣∣∣ r−(i)

r+(i)
− 1

∣∣∣∣→ 0

N−1∑
i=1

N − i

r+(i)
→ 0,

N−1∑
i=1

i

r−(i)
→ 0.

then (?) holds with ωN = N, βN = 1 and r̃01 = r̃+, r̃10 = r̃−.



Theorem
If the rates of interactions scale as ’mass-action’ with drift away
from the boundary, and if the additional resampling/splitting
mechanism has rates γ(i, N) = piγ(N),pi = O(1),γ(N) satisfies:

N

γ(N)

N−1∑
i=1

1

pi
→ 0,

1

γ(N)

N−1∑
i=1

i

pi
→ 0,

1

γ(N)

N−1∑
i=1

N − i

pi
→ 0

then results based on conditions (?) hold with

βN = 1, and r̃01 =
∑

(0,b,1)∈I κ̃0b
1 , r̃10 =

∑
(a,0,−1)∈I κ̃a0

−1

? time scale of transitions is βN=1

? the only rates whose precise value is relevant are at the
boundary



Figure: Sample path of XN for the same system of interactions as before,
with additional fast noisy resampling/splitting mechanism.
parameters: N = 200, γ(N) = 4N2, pi = 1

2 , γ(i ,N) = 8 · 104: γ(N) � N2



Summary

Rates of additional mechanism lead to different features of
bistability: if system has increments of size {+1,−1} only and the
rate γ(x ,N) = pxγ(N) with px = O(1), then

◦ if γ(N) � N bistability is caused by large deviations of the
Markov jump process, transitions between neighbourhoods of
drift equilibirum points on a time scale of order
eN(γ(N))−1ıxi,x2 , no correlations in transitions times;

◦ if γ(N) ∼ γ̃2N2 bistability is caused by large deviations of a
diffusion with a small perturbation coefficient, transitions
between neighbourhoods of drift equilibirum points on a
time scale of order eε−2Ixi,x2 , no correlations in transition
times;

◦ if γ(N) � N2 log N bistability is caused by excessive noise,
and transitions between the boundaries on a time scale of
order 1, highly correlated transition times
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