Historical processes and their diffusion limits for modelling populations with past dependence

TRAN Viet Chi

Labo P. Painlevé, Université des Sciences et Technologies Lille 1 joint work with Sylvie Méléard (CMAP, Ec. Polytechnique)

Probability, Population Genetics and Evolution - CIRM - 13/06/2012

This work has been supported by ANR MANEGE and Chaire MMB.

Motivation

* Structured populations: individuals are characterized by variables that affect their reproducing and survival capacities. Here: trait $x \in \mathcal{X} \subset \mathbb{R}^d$ that is inherited from a parent to its offspring.

★ Continuous time birth-death processes, stochastic evolution based on individual dynamics with past dependence and competition.

★ Purpose here: Modelling of genealogies and ancestral paths Ex: Application to the modelling of social interactions based on kin relations (cooperative breeding).

The biological assumptions

- ★ Large population,
- ★ Fixed amount of resources: small individuals with density dependence,
- ★ Fast births and deaths: allometric demographies (lifetimes and gestation lengths are proportional to individual biomass), however the demographic balance is preserved.
- ★ Asexual reproduction,
- ★ Small mutation steps: mutant offspring look like their parent.

Genealogies and ancestral paths

Births and ancestral lineages

- ★ Trait at birth:
 - \triangleright With probability 1-p, the trait of the parent x is inherited.
 - ▶ With probability p, there is a mutation. The new trait is x + hwhere $h \sim \pi^n(h)dh$, π^n being a Gaussian kernel with expectation 0 and variance (σ^2/n) Id.

We define:

$$K^n(dh) = p \pi^n(h)dh + (1-p) \delta_0(dh).$$

Births and ancestral lineages

- ★ Trait at birth:
 - ▶ With probability 1 p, the trait of the parent x is inherited.
 - ▶ With probability p, there is a mutation. The new trait is x + h where $h \sim \pi^n(h)dh$, π^n being a Gaussian kernel with expectation 0 and variance (σ^2/n) Id.

We define:

$$K^{n}(dh) = p \pi^{n}(h)dh + (1-p) \delta_{0}(dh).$$

★ We consider the ancestral path or lineage:

 y_t = trait of the ancestor living at time t

 $y \in \mathbb{D}_{\mathbb{R}^d} = \mathbb{D}(\mathbb{R}_+, \mathbb{R}^d)$ embedded with the Skohorod topology.

Notation: y_t , $y^t = y_{. \wedge t}$, (y|s|w)

Particle system

 \bigstar Recall: $y \in \mathbb{D}_{\mathbb{R}^d} = \mathbb{D}(\mathbb{R}_+, \mathbb{R}^d)$

Notation: y_t , $y^t = y_{. \wedge t}$, (y|s|w)

★ Population:

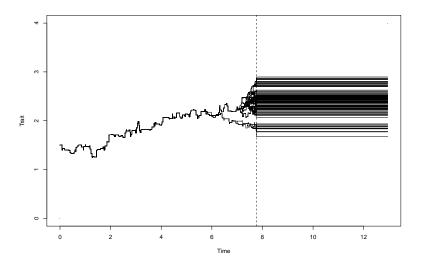
$$X_t^n(dy) = \frac{1}{n} \sum_{i=1}^{N_t^n} \delta_{y_{\cdot,\wedge t}^i}(dy)$$

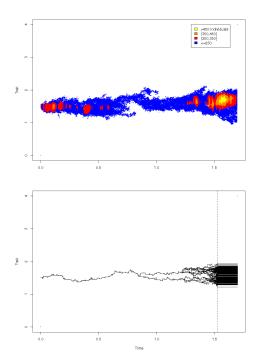
in $\mathcal{M}(\mathbb{D}_{\mathbb{R}^d})$ embedded with the weak convergence topology. Thus $X^n \in \mathbb{D}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$, embedded with the Skorohod topology.

Related works

- ★ Historical Processes: Dawson-Perkins (1991), Perkins (1995), Etheridge (2000)
- ★ Coalescent: Berestycki N. (book: 2009), Schweinsberg (2000), Möhle Sagitov (2001)
- ★ Tree-valued processes: Greven Pfaffelhuber Winter (2009,2010)
- ★ Superprocess renormalization: Dynkin (1991), Dawson (1991).

An example of evolving genealogies





Individual dynamics

Birth and death rates: examples

* Allometric birth and death rates:

$$nr(t,y) + b(t,y)$$

$$nr(t,y) + d(t,y,X_t^n)$$

 \star Birth rate: n r(t, y) + b(t, y) with

$$b(t,y) = B\left(\int_{[0,t)} y_{t-s} \nu_b(ds)\right)$$

- $\triangleright \nu_b(ds) = \delta_0(ds)$
- $\nu_h(ds) = e^{-\alpha s} ds$
- **Death rate:** nr(t,y) + d(t,y,X) with

$$d(t, y, X) = d_0(t, y) + \int_0^t \int_{\mathbb{D}} U(t, y, y') X_{t-s}(dy') \nu_d(ds)$$

Examples

\star Dieckmann-Doebeli: r(t, y) = 1 and

$$b(t,y) = \exp\left(-\frac{(y_t - 2)^2}{2\sigma_b^2}\right), \quad d(t,y,X) = \int_{\mathbb{D}} \exp\left(-\frac{(y_t - y_t')^2}{2\sigma_U^2}\right) X(dy')$$

★ Adler's fattened goats:

$$\begin{split} &U(t,y,y') = K_{\varepsilon}(y_t - y_t'), \\ &d(t,y,X) = \int_0^t \int_{\mathbb{D}_{\mathbb{R}^d}} K_{\varepsilon}(y_t - y_s') X_s(dy') e^{-\alpha(t-s)} ds. \end{split}$$

Population evolution and historical superprocess limit

Evolution equation

$$\bigstar \sup\nolimits_{n \in \mathbb{N}^*} \mathbb{E} \big(\langle X_0^n, 1 \rangle^3 \big) < +\infty, \Rightarrow \sup\nolimits_{n \in \mathbb{N}^*} \mathbb{E} \big(\sup\nolimits_{t \in [0, T]} \langle X_t^n, 1 \rangle^3 \big) < +\infty.$$

 \star For bounded test functions φ of $y \in \mathbb{D}_{\mathbb{R}^d}$:

$$\begin{aligned} M_t^{n,\varphi} &= \langle X_t^n, \varphi \rangle - \langle X_0^n, \varphi \rangle - \int_0^t \int_{\mathbb{D}_{\mathbb{R}^d}} X_s^n(dy) \, ds \Big[\\ & nr(s,y) \int_{\mathbb{R}^d} \left(\varphi(y|s|y_s + h) - \varphi(y) \right) K^n(y_s, dh) \\ & + b(s,y) \int_{\mathbb{R}^d} \varphi(y|s|y_s + h) K^n(y_s, dh) - d(s,y,(X^n)^s) \varphi(y) \Big] \end{aligned}$$

is a square integrable martingale starting from 0 with quadratic variation:

$$\langle M^{n,\varphi} \rangle_{t} = \frac{1}{n} \int_{0}^{t} \int_{\mathbb{D}_{\mathbb{R}^{d}}} X_{s}^{n}(dy) ds \Big[$$

$$(nr(s,y) + b(s,y)) \int_{\mathbb{R}^{d}} \varphi^{2}(y|s|y_{s} + h)K^{n}(y_{s}, dh)$$

$$+ (nr(s,y) + d(s,y,(X^{n})^{s}))\varphi^{2}(y) \Big].$$

Test functions

★ Dawson, Dynkin, Perkins use the following class of test functions:

$$\varphi(y) = \prod_{j=1}^m g_j(y_{t_j})$$

for $m \in \mathbb{N}^*$, $0 \le t_1 < \cdots < t_m$ and $\forall j \in [\![1,m]\!]$, $g_j \in \mathcal{C}^2_b(\mathbb{R}^d,\mathbb{R})$. However these functions are not necessarily continuous for discontinuous y's.

Test functions

★ Dawson, Dynkin, Perkins use the following class of test functions:

$$\varphi(y) = \prod_{j=1}^m g_j(y_{t_j})$$

for $m \in \mathbb{N}^*$, $0 \le t_1 < \cdots < t_m$ and $\forall j \in [\![1,m]\!]$, $g_j \in \mathcal{C}^2_b(\mathbb{R}^d,\mathbb{R})$. However these functions are not necessarily continuous for discontinuous y's.

 \star For a real \mathcal{C}_b^2 -function g on $\mathbb{R}_+ \times \mathbb{R}^d$ and a real \mathcal{C}_b^2 -function G on \mathbb{R} , we define the continuous function G_g as

$$G_g(y) = G\Big(\int_0^T g(s, y_s)ds\Big).$$

Test functions

★ Dawson, Dynkin, Perkins use the following class of test functions:

$$\varphi(y) = \prod_{j=1}^m g_j(y_{t_j})$$

for $m \in \mathbb{N}^*$, $0 \le t_1 < \cdots < t_m$ and $\forall j \in [1, m], g_i \in \mathcal{C}_b^2(\mathbb{R}^d, \mathbb{R})$. However these functions are not necessarily continuous for discontinuous y's.

 \star For a real \mathcal{C}_b^2 -function g on $\mathbb{R}_+ \times \mathbb{R}^d$ and a real \mathcal{C}_b^2 -function G on \mathbb{R} , we define the continuous function G_g as

$$G_g(y) = G\Big(\int_0^T g(s, y_s)ds\Big).$$

 \star Lemma: Let φ be a test function of the 1st form. Then, there exists a sequence of test functions of the second form $(\varphi_q)_{q\in\mathbb{N}^*}$ such that for every $y \in \mathbb{D}_{\mathbb{R}^d}$ and every $t \in \mathbb{R}_+$ at which y is continuous,

$$\lim_{q\to+\infty}\varphi_q(y)=\varphi(y).$$

(choose
$$G(x) = e^x$$
 and $g_q(s, y_s) = \sum_{j=1}^m \log g_j(y_s) k^q(t_j - s)$)

Superprocess limit

Prop 1: The sequence $(X^n)_{n\in\mathbb{N}^*}$ converges in law in $\mathbb{D}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ to the superprocess $\bar{X}\in\mathcal{C}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ characterized as follows, for test functions φ of $y\in\mathbb{D}_{\mathbb{R}^d}$:

$$M_{t}^{\varphi} = \langle \bar{X}_{t}, \varphi \rangle - \langle \bar{X}_{0}, \varphi \rangle - \int_{0}^{t} \int_{\mathbb{D}_{\mathbb{R}^{d}}} \left(p \, r(s, y) \frac{\sigma^{2}}{2} \, D^{2} \varphi_{G,g}(s, y) + \left[b(s, y) - d(s, y, \bar{X}_{s}) \right] \varphi(y) \right) \bar{X}_{s}(dy) \, ds$$

is a square integrable martingale where:

$$D^{2}\varphi_{G,g}(t,y) = G'\left(\int_{0}^{T} g(s,y_{s})ds\right) \int_{t}^{T} \Delta_{x}g(s,y_{t})ds$$
$$+G''\left(\int_{0}^{T} g(s,y_{s})ds\right) \sum_{i=1}^{d} \left(\int_{t}^{T} \partial_{x_{i}}g(s,y_{t})ds\right)^{2}.$$

with quadratic variation:

$$\langle M^{\varphi_{G,g}} \rangle_t = \int_0^t \int_{\mathbb{D}_{n,d}} 2 \, r(s,y) \sigma^2 \varphi_{G,g}^2(y) \bar{X}_s(dy) \, ds.$$

Martingale problem for the tests functions of Dawson

 \star For the Laplacian Δ of \mathbb{R}^d , a path $y \in \mathbb{D}_{\mathbb{R}^d}$, a time t > 0 and a test function φ of the product form:

$$\widetilde{\Delta}\varphi(t,y) = \sum_{k=0}^{m-1} \mathbf{1}_{[t_k,t_{k+1}]}(t) \Big(\prod_{j=1}^k g_j(y_{t_j}) \Delta \Big(\prod_{j=k+1}^m g_j\Big)(y_t)\Big)$$

with $t_0 = 0$ and $t_{m+1} = t$.

Prop 2: The solutions of the MP of Prop 1 satisfy the MP:

$$\begin{split} M_t^{\varphi} &= \langle \bar{X}_t, \varphi \rangle - \langle \bar{X}_0, \varphi \rangle - \int_0^t \int_{\mathbb{D}_{\mathbb{R}^d}} \Big(\textit{pr}(s, y) \frac{\sigma^2}{2} \widetilde{\Delta} \varphi(s, y) \\ &+ \Big[\textit{b}(s, y) - \textit{d}(s, y, \bar{X}_s) \Big] \varphi(y) \Big) \bar{X}_s(dy) \, ds, \end{split}$$

the bracket being as in Prop 1.

Martingale problem for the tests functions of Dawson

 \bigstar For the Laplacian Δ of \mathbb{R}^d , a path $y \in \mathbb{D}_{\mathbb{R}^d}$, a time t > 0 and a test function φ of the product form:

$$\widetilde{\Delta}\varphi(t,y) = \sum_{k=0}^{m-1} \mathbf{1}_{[t_k,t_{k+1}]}(t) \Big(\prod_{j=1}^k g_j(y_{t_j}) \Delta \Big(\prod_{j=k+1}^m g_j\Big)(y_t)\Big)$$

with $t_0 = 0$ and $t_{m+1} = t$.

Prop 2: The solutions of the MP of Prop 1 satisfy the MP:

$$\begin{split} M_t^{\varphi} &= \langle \bar{X}_t, \varphi \rangle - \langle \bar{X}_0, \varphi \rangle - \int_0^t \int_{\mathbb{D}_{\mathbb{R}^d}} \Big(\textit{pr}(s, y) \frac{\sigma^2}{2} \widetilde{\Delta} \varphi(s, y) \\ &+ \Big[\textit{b}(s, y) - \textit{d}(s, y, \bar{X}_s) \Big] \varphi(y) \Big) \bar{X}_s(dy) \, ds, \end{split}$$

the bracket being as in Prop 1.

★ Idea of the proof of the Prop 1:

Tightness of the sequence (X^n) .

Uniqueness of the solution of the MP of Prop 2.

Prop: from [Dawson-Perkins, (Ethier-Kurtz)] $(X^n)_{n \in \mathbb{N}^*}$ is tight in

 $\mathbb{D}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ if:

(i) $\forall T > 0, \ \forall \varepsilon > 0, \ \exists K \subset \mathbb{D}_{\mathbb{R}^d} \text{ compact},$

$$\sup_{n\in\mathbb{N}^*}\mathbb{P}\left(\exists t\in[0,T],\,X^n_t(K^c_T)>\varepsilon\right)\leq\varepsilon,$$

where

$$K_T = \left\{ y^t, y^{t_-} \mid y \in K, \ t \in [0, T] \right\} \subset \mathbb{D}_{\mathbb{R}^d}. \tag{1}$$

(ii) $\forall \varphi \in \mathcal{C}_b(\mathbb{D}_{\mathbb{R}^d}, \mathbb{R}_+)$, the family $(\langle X_.^n, \varphi \rangle)_{n \in \mathbb{N}^*}$ is tight in $\mathbb{D}_{\mathbb{R}_+}$.

Prop: from [Dawson-Perkins, (Ethier-Kurtz)] $(X^n)_{n\in\mathbb{N}^*}$ is tight in

 $\mathbb{D}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ if:

(i) $\forall T > 0, \ \forall \varepsilon > 0, \ \exists \mathcal{K} \subset \mathbb{D}_{\mathbb{R}^d} \ \mathsf{compact},$

$$\sup_{n\in\mathbb{N}^*}\mathbb{P}\left(\exists t\in[0,T],\,X^n_t(K^c_T)>\varepsilon\right)\leq\varepsilon,$$

where

$$K_T = \left\{ y^t, y^{t_-} \mid y \in K, \ t \in [0, T] \right\} \subset \mathbb{D}_{\mathbb{R}^d}. \tag{1}$$

(ii) $\forall \varphi \in \mathcal{C}_b(\mathbb{D}_{\mathbb{R}^d}, \mathbb{R}_+)$, the family $(\langle X_.^n, \varphi \rangle)_{n \in \mathbb{N}^*}$ is tight in $\mathbb{D}_{\mathbb{R}_+}$.

 \bigstar Let us define $S_{\varepsilon}^{n} = \inf\{t \geq 0, \ X_{t}^{n}(K_{T}^{c}) > \varepsilon\}.$

$$\mathbb{P}(S_{\varepsilon}^{n} < T) = \mathbb{P}\left(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) > \frac{\varepsilon}{2}\right) + \mathbb{P}\left(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) \leq \frac{\varepsilon}{2}\right)$$

Prop: from [Dawson-Perkins, (Ethier-Kurtz)] $(X^n)_{n\in\mathbb{N}^*}$ is tight in

 $\mathbb{D}(\mathbb{R}_+, \mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ if:

(i) $\forall T > 0, \forall \varepsilon > 0, \exists K \subset \mathbb{D}_{\mathbb{R}^d}$ compact,

$$\sup_{n\in\mathbb{N}^*}\mathbb{P}\left(\exists t\in[0,T],\,X^n_t(K^c_T)>\varepsilon\right)\leq\varepsilon,$$

where

$$K_T = \left\{ y^t, y^{t_-} \mid y \in K, \ t \in [0, T] \right\} \subset \mathbb{D}_{\mathbb{R}^d}. \tag{1}$$

(ii) $\forall \varphi \in \mathcal{C}_b(\mathbb{D}_{\mathbb{R}^d}, \mathbb{R}_+)$, the family $(\langle X^n, \varphi \rangle)_{n \in \mathbb{N}^*}$ is tight in $\mathbb{D}_{\mathbb{R}_+}$.

 \star Let us define $S_c^n = \inf\{t > 0, X_t^n(K_\tau^c) > \varepsilon\}$.

$$\begin{split} \mathbb{P}(S_{\varepsilon}^{n} < T) = & \mathbb{P}\Big(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) > \frac{\varepsilon}{2}\Big) + \mathbb{P}\Big(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) \le \frac{\varepsilon}{2}\Big) \\ \leq & \frac{2}{\varepsilon}\mathbb{E}\big(X_{T}^{n}((K^{T})^{c})\big) + \mathbb{P}(S_{\varepsilon}^{n} < T)(1 - \eta) \end{split}$$

Prop: from [Dawson-Perkins, (Ethier-Kurtz)] $(X^n)_{n\in\mathbb{N}^*}$ is tight in

 $\mathbb{D}(\mathbb{R}_+,\mathcal{M}_{F}(\mathbb{D}_{\mathbb{R}^d}))$ if:

(i) $\forall T > 0, \ \forall \varepsilon > 0, \ \exists K \subset \mathbb{D}_{\mathbb{R}^d} \ \mathsf{compact},$

$$\sup_{n\in\mathbb{N}^*}\mathbb{P}\left(\exists t\in[0,T],\,X^n_t(K^c_T)>\varepsilon\right)\leq\varepsilon,$$

where

$$K_T = \left\{ y^t, y^{t_-} \mid y \in K, \ t \in [0, T] \right\} \subset \mathbb{D}_{\mathbb{R}^d}. \tag{1}$$

(ii) $\forall \varphi \in \mathcal{C}_b(\mathbb{D}_{\mathbb{R}^d}, \mathbb{R}_+)$, the family $(\langle X_.^n, \varphi \rangle)_{n \in \mathbb{N}^*}$ is tight in $\mathbb{D}_{\mathbb{R}_+}$.

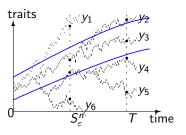
 \bigstar Let us define $S_{\varepsilon}^{n} = \inf\{t \geq 0, \ X_{t}^{n}(K_{T}^{c}) > \varepsilon\}.$

$$\begin{split} \mathbb{P}(S_{\varepsilon}^{n} < T) = & \mathbb{P}\Big(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) > \frac{\varepsilon}{2}\Big) + \mathbb{P}\Big(S_{\varepsilon}^{n} < T, \ X_{T}^{n}((K^{T})^{c}) \le \frac{\varepsilon}{2}\Big) \\ \leq & \frac{2}{\varepsilon}\mathbb{E}\big(X_{T}^{n}((K^{T})^{c})\big) + \mathbb{P}(S_{\varepsilon}^{n} < T)(1 - \eta) \end{split}$$

Then:

$$\mathbb{P}(S_{\varepsilon}^n < T) \leq \frac{2\mathbb{E}(X_T^n((K^T)^c))}{\varepsilon n}.$$

Upperbound of $\mathbb{P}\left(S_{\varepsilon}^n < T, \ X_T^n((K^T)^c) \leq \frac{\varepsilon}{2}\right)$



★ The mass of particles started at S_{ε}^{n} and corresponding to trajectories $y^{S_{\varepsilon}^{n}} \notin K^{S_{\varepsilon}^{n}}$ is approximated by:

$$\mathcal{Y}_t = \mathcal{Y}_0 + \int_0^t (\bar{b} - \underline{d}) \mathcal{Y}_s ds + \int_0^t \sqrt{\rho(s) \mathcal{Y}_s} dB_s$$

where $2\underline{r} \leq \rho(s) \leq 2\overline{r}$ is defined by the limit of the quadratic variation.

$$\bigstar \mathbb{P}_{\varepsilon}(\inf_{s\in[0,T]}\mathcal{Y}_s>\varepsilon/2)>0.$$

Uniqueness

 \bigstar By Dawson-Girsanov's theorem, we can find a probability measure \mathbb{Q} on $\mathcal{C}([0,T],\mathcal{M}_F(\mathbb{D}_{\mathbb{R}^d}))$ under which:

$$\widetilde{M}_t^{\varphi} = \langle \bar{X}_t, \varphi \rangle - \langle \bar{X}_0, \varphi \rangle - \int_0^t \int_{\mathbb{D}_{\mathbb{R}^d}} \frac{pr(s, y)\sigma^2}{2} \widetilde{\Delta} \varphi(s, y) \bar{X}_s(dy) \, ds$$

is a martingale with the same bracket as above.

 \star Pathwise existence and uniqueness for the SDE in \mathbb{R}^d :

$$Y_t = Y_0 + \int_0^t \sqrt{\sigma^2 pr(s, Y^s)} dB_s.$$

$$W_t = Y_t^t$$
 and $S_{s,t}\varphi(y) = \mathbb{E}^{\mathbb{Q}}(\varphi(W_t) | W_s = y^s)$.

★ We have that

$$\mathbb{E}^{\mathbb{Q}}ig(\exp(-\langle ar{X}_t,arphi
angle)\,|\,ar{X}_s=\delta_{y^s}ig)=e^{-V_{s,t}arphi(y)}$$

where $V_{s,t}\varphi(y)$ is the unique solution of:

$$V_{s,t}\varphi(y) = S_{s,t}\varphi(y) - \int_{s}^{t} \frac{p\sigma^{2}}{2} S_{s,u}\Big(r(u,.)\big(V_{u,t}\varphi(.)\big)^{2}\Big)(y)du.$$

Lineages' distributions

★ Perkins' representation:

Under \mathbb{Q} , we have in distribution:

$$Y_t(y) = Y_0(y) + \int_0^t \sqrt{\sigma^2 pr(s, Y^s(y))} dy_s$$

 $\bar{X}_0, \qquad \langle \bar{X}_t, \varphi \rangle = \int_{\mathbb{D}_{nd}} \varphi(Y(y)^t) H_t(dy)$

where $(H_t(dy))_{t\in\mathbb{R}_+}$ is under \mathbb{Q} a historical Brownian superprocess.

Lineages' distributions: case of constant r and b - d's

 $\bigstar \langle \mu_t, \varphi \rangle = \langle \bar{X}_t, \varphi \rangle / \langle \bar{X}_t, 1 \rangle$. When r and b - d are constant:

$$\langle \mathbb{E}(\mu_t), \varphi \rangle = \langle \mathbb{E}(\mu_0), \varphi \rangle + \int_0^t \langle \mathbb{E}(\mu_s), pr\sigma^2 \widetilde{\Delta} \varphi(s,.) \rangle \ ds.$$

b-d=0: historical super Brownian motion (Dawson Perkins 91).

★ For the historical super Brownian motion, we have a very precise description of the probabilistic structure of the genealogies.

Lineages' distributions: case of constant r and b - d's

 $\bigstar \langle \mu_t, \varphi \rangle = \langle \bar{X}_t, \varphi \rangle / \langle \bar{X}_t, 1 \rangle$. When r and b - d are constant:

$$\langle \mathbb{E}(\mu_t), arphi
angle = \langle \mathbb{E}(\mu_0), arphi
angle + \int_0^t \langle \mathbb{E}(\mu_s), \mathit{pr}\sigma^2 \widetilde{\Delta} arphi(s,.)
angle \; \mathit{ds}.$$

b-d=0: historical super Brownian motion (Dawson Perkins 91).

★ For the historical super Brownian motion, we have a very precise description of the probabilistic structure of the genealogies.

$$\star$$
 Let $\phi(\mu) = \langle \mu \otimes \mu, \varphi \rangle = \int_{\mathbb{D}_{\mathbb{R}^d}} \int_{\mathbb{D}_{\mathbb{R}^d}} \varphi(t, y, z) \mu_t(dy) \mu_t(dz)$ and

 $\widetilde{\Delta}^{(2)}\varphi(y,z) = \widetilde{\Delta}(y\mapsto \varphi(y,z)) + \widetilde{\Delta}(z\mapsto \varphi(y,z))$. We recover Fleming-Viot generator:

$$\begin{split} L^{FV}\phi(X) = & \frac{\textit{pr}\sigma^2}{2} \Big\langle \frac{X}{\langle X, 1 \rangle} \otimes \frac{X}{\langle X, 1 \rangle}, \widetilde{\Delta}^{(2)} \varphi \Big\rangle \\ & + \frac{2\textit{r}\sigma^2}{\langle X, 1 \rangle} \Big(\int_{\mathbb{D}_{2d}} \varphi(y, y) \frac{X(\textit{d}y)}{\langle X, 1 \rangle} - \Big\langle \frac{X}{\langle X, 1 \rangle} \otimes \frac{X}{\langle X, 1 \rangle}, \varphi \Big\rangle \Big) \end{split}$$

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 夕 Q G

Introduction

Genealogies and ancestral paths

Individual dynamics

Population evolution and historical superprocess limit

Numerical examples

Adler's fattening goats

$$r(t,y)=1, \qquad b(t,y)=b,$$
 and $d(t,y,X)=\int_0^t\int_{\mathbb{R}^d}rac{K_{arepsilon}ig(y'(s)-y(t)ig)}{K}X_s(dy',dc')\,e^{-lpha(t-s)}ds$

