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Motivation

% Structured populations: individuals are characterized by variables that
affect their reproducing and survival capacities. Here: trait x € X ¢ RY
that is inherited from a parent to its offspring.

Continuous time birth-death processes, stochastic evolution based on
individual dynamics with past dependence and competition.

% Purpose here: Modelling of genealogies and ancestral paths
Ex: Application to the modelling of social interactions based on kin
relations (cooperative breeding).



The biological assumptions

Large population,
Fixed amount of resources: small individuals with density dependence,

Fast births and deaths: allometric demographies (lifetimes and
gestation lengths are proportional to individual biomass),

however the demographic balance is preserved.

% Asexual reproduction,

% Small mutation steps: mutant offspring look like their parent.



Genealogies and ancestral paths



Births and ancestral lineages

Trait at birth:
» With probability 1 — p, the trait of the parent x is inherited.
» With probability p, there is a mutation. The new trait is x + h

where h~> ©"(h)dh, 7" being a Gaussian kernel with expectation 0
and variance (02/n)ld.

We define:
K"(dh) = p w"(h)dh + (1 — p) do(dh).
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% We consider the ancestral path or lineage:
y: = trait of the ancestor living at time t

y € Dya = D(R,, RY) embedded with the Skohorod topology.
Notation: y;, y* = y.a:, (v|s|w)



Particle system
% Recall: y € Dpo = D(R,,RY)
Notation: y;, y' =y a¢, (¥|s|w)

% Population:
N
n 1 :
XP(dy) =~ 0y, (dy)
i=1

in M(Dg«) embedded with the weak convergence topology. Thus
X" e DRy, Mg(Dgy)), embedded with the Skorohod topology.

Related works

% Historical Processes: Dawson-Perkins (1991), Perkins (1995),

Etheridge (2000)

% Coalescent: Berestycki N. (book: 2009), Schweinsberg (2000), M&hle

Sagitov (2001)

% Tree-valued processes: Greven Pfaffelhuber Winter (2009,2010)
Superprocess renormalization: Dynkin (1991), Dawson (1991).



An example of evolving genealogies
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Individual dynamics



Birth and death rates: examples

Allometric birth and death rates:

nr(t,y) + b(t,y)
nr(t,y)+d(t,y, X/[)

Birth rate: nr(t,y)+ b(t,y) with

b(t,y) = B / Ve svs(ds))

[0,1)

> I/b(ds) = 50((/5)
> vp(ds) = e **ds

% Death rate: nr(t,y)+ d(t,y,X) with

oty X) = ab(t) + | t [ 0ty X )

10



Examples

% Dieckmann-Doebeli: r(t,y) =1 and

_ (e —2) _ (ye —¥i)? '
ble.y) = e (= ). d(ey.X) = e (=255 ) X(d)
Adler's fattened goats:

U(t,y.y") Ye);

d(t,y, X / / Xs(dy')e™ (=9 ds,
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Population evolution and historical superprocess limit
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Evolution equation
K SUP e E((Xé’, 1)3) < 400, = SUP - E(SUPte[o,T] (X7, 1>3) < +00.

For bounded test functions ¢ of y € Dpa:
t
M7 = 0o -0 - [ [ Xatan o]
0 JDyg
nr(s, y) /Rd (p(vIslys +h) = (y)) K" (ys, dh)
+b(s.) [ olylslys + DK(ye dh) = d(s. . (X)) )]

is a square integrable martingale starting from 0 with quadratic variation:

n,p 1 ‘ n
(M%), = — X2(dy) ds|
0 Iy

n

(r(s.) + blsy)) [ @(yislye-+ AIK"(re, o)

(s ) +dlsy, (XNNSW)]



Test functions
Dawson, Dynkin, Perkins use the following class of test functions:

o(y) = H&'(yf,-)

formeN*,0<t; <---<tyandVje€[l,m],g €Ci(RR).
However these functions are not necessarily continuous for
discontinuous y’s.
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Test functions

Dawson, Dynkin, Perkins use the following class of test functions:

formeN*  0<t;<---<tymandVje[l,m],g EC%(RC’,R).
However these functions are not necessarily continuous for
discontinuous y’s.

For a real C2-function g on R x R9 and a real C3-function G on R,
we define the continuous function G, as

Ggy) = G(/OTg(says)d5>~

% Lemma: Let @ be a test function of the 1st form. Then, there exists
a sequence of test functions of the second form (¢gq)qen+ such that for
every y € Drs and every t € Ry at which y is continuous,

lim pq(y) = @(y)-

q—+00

(choose G(x) = e* and gy(s,ys) = >_1"; log gi(ys)k9(t; — 5))

14



Superprocess limit
Prop 1: The sequence (X"),en+ converges in law in D(Ry, Mg(Dga))
to the superprocess X € C(Ry, Mfg(Dga)) characterized as follows, for
test functions ¢ of y € Dga:

MQD: <)_(ta X07<)0 / / D @Gg(s .y)

+ {b(s,y) - dw xs)} o)) Xs(dy) s

is a square integrable martingale where:

T T
D*pc (t.y)= G’(/ g(syys)dS)/ A, g(s,y:)ds
0 t

T d T 5
+G"(/ g(s,ys)dS) > (/ GXig(s,yt)d5> :
JO i—1 Jt
with quadratic variation:

(M¥$6e), = /0 /D 2 r(s,y)g2(p%_,g(y))_<s(d}/) ds.
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Martingale problem for the tests functions of Dawson

For the Laplacian A of RY, a path y € Dga, a time t > 0 and a test
function ¢ of the product form:

m—1 m
Ap(ty) =D 1 ot (Hg, yo)A(T] gj)(}/t)>
k=0

j=k+1
with tp = 0 and t,11 = t.
% Prop 2: The solutions of the MP of Prop 1 satisfy the MP:

M = (Xe, ) — (Xo, ) — // pr(s,y) As&(sy)
Dgd

{b(s y)—d(s, y,X)}p( ))X(dy)d

the bracket being as in Prop 1.
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Martingale problem for the tests functions of Dawson

For the Laplacian A of RY, a path y € Dga, a time t > 0 and a test
function ¢ of the product form:

m—1 m
Ap(ty) =D 1 ot (Hg, yo)A(T] gj)(}/t)>
k=0

j=k+1
with tp = 0 and t,11 = t.
% Prop 2: The solutions of the MP of Prop 1 satisfy the MP:

M = (Xe, ) — (Xo, ) — // pr(s,y) A»@(sy)
Dgd

+ [b(s,y) — d(s, y,x)]so( )) Xs(dy) ds,
the bracket being as in Prop 1.

% Idea of the proof of the Prop 1:
Tightness of the sequence (X").
Uniqueness of the solution of the MP of Prop 2.



Tightness criterion
Prop: from [Dawson-Perkins, (Ethier-Kurtz)] (X"),en- is tight in
D(R+7MF(]D)Rd)) if:
() VT >0, Ve > 0, 3K C D compact,

sup P(3t € [0, T], X[ (K$) > ¢) <e,
neN*

where
Kr={y'y" | ye K, t€[0,T]} C Dgo. (1)

(i) Yo € Cp(Dge, Ry ), the family ((X", ©))nen- is tight in Dg, .
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Tightness criterion

Prop: from [Dawson-Perkins, (Ethier-Kurtz)] (X"),en- is tight in
D(R+7MF(]D)Rd)) if:
() VT >0, Ve > 0, 3K C D compact,

sup P(3t € [0, T], X[ (K$) > ¢) <e,
neN*

where
Kr={y'y" | ye K, t€[0,T]} C Dgo. (1)

(ii) Ve € Co(Dga, R+ ), the family (X", ©))nerr- is tight in D, .

% Let us define S”=inf{t > 0, X/(K$) > ¢}.

B(S7 < T)=P(SI < T, X¢((KT)") > 5 ) +B(SE < T, X3((KT)) <
<ZE(XR(KTY)) + (ST < (1)

Then:

B(s" < T) < 22K

Ui

c
2

)
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Upperbound of P(S7 < T, X#((KT)°) < 5)

traits

The mass of particles started at S” and corresponding to trajectories
y% ¢ K*: is approximated by:

ot ot
Vi = Vo + / (B — d)Vsds + / /o(5)VsdB,
JO JO

where 2r < p(s) < 2F is defined by the limit of the quadratic variation.
* T{:(infsg[oj] ys > :/2) > 0.
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Uniqueness

% By Dawson-Girsanov's theorem, we can find a probability measure Q
on C([0, T], Mg(Dgs)) under which:

~ — — t r 0% ~ —
Mf:<Xt,s0>—<Xo,<p>—/o/D %A@(s,y)xs(dy)ds

rd

is a martingale with the same bracket as above.
s Pathwise existence and uniqueness for the SDE in R¢:

ot
Y:= Yo+ / Vv a?pr(s, Ys)dBs.
Jo

Wi = Y" and Ss¢0(y) = EQ(¢(Wt) | Ws = ys).
We have that

E®(exp(—(Xe, ) | Xs = 0,:) = e VorelV)

where V; 1o(y) is the unique solution of:

Vattl) = Seso) = [ 25 S0 ) (Va1 ).



Lineages’ distributions

Perkins' representation:
Under QQ, we have in distribution:

V) = Y0 + | T )y

Ko, (Keg) = / S(Y(y)") Hi(dy)

rd

where (Hy(dy))ter, is under Q a historical Brownian superprocess.
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Lineages’ distributions: case of constant r and b — d's

* (e, 0) = (Xi,0)/(X;,1). When r and b — d are constant:

(Blp). ) = (B(uo)) + (E(), pro®Bep(s..)) ds.

b —d = 0: historical super Brownian motion (Dawson Perkins 91).

% For the historical super Brownian motion, we have a very precise
description of the probabilistic structure of the genealogies.

21



Lineages’ distributions: case of constant r and b — d's

* (e, 0) = (Xi,0)/(X;,1). When r and b — d are constant:

(Blp). ) = (B(uo)) + (E(), pro®Bep(s..)) ds.

b —d = 0: historical super Brownian motion (Dawson Perkins 91).

% For the historical super Brownian motion, we have a very precise
description of the probabilistic structure of the genealogies.

Let ¢(1) = (@ p,0) = Jp, I, P8y, 2)e(dy)pe(dz) and
AP p(y,z) = Aly — oy, 2)) + A(z = ¢(y, z)). We recover
Fleming-Viot generator:

LFY 6(X) :pr02<< X X 5(2)¢>

2 \ XD C X 1)
r02
X </ o) ) e ® o 9)
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Numerical examples
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Adler’s fattening goats

r(t,y)=1,  b(t,y) = b,
ErOK(y'(s) - y(t

and d(t,y,X) = / / st(dy/, dc/) e—(t=s) s
0 JRre K
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