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Evolution in a continuum

Aim: Model the evolution of the genetic composition of a

geographically structured population. Space is continuous (and in
2 dimensions, most of the time).
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Main characteristics

Reproduction happens more or less locally;
At ‘stationarity’, local population sizes are regulated;

Individuals have a finite pool of potential parents (= multiple
mergers in the genealogies);

Rare but severe bottlenecks can occur and affect potentially
large regions.



Main characteristics

Reproduction happens more or less locally;

» At ‘stationarity’, local population sizes are regulated;

Individuals have a finite pool of potential parents (= multiple
mergers in the genealogies);

Rare but severe bottlenecks can occur and affect potentially
large regions.

Questions of interest

Behaviour under the hypothesis of neutrality?
» Spatial decay of correlations between local genetic diversities?

» Signature of a deviation from “local rep. + neutrality’?

— large but rare extinction/recolonisation events;
— selection and selective sweeps;



And also...

» Which are the quantities summarizing the evolution?
» How can we infer them from data?
» Can we detect deviations from neutrality?




Remarks

» Already well-studied: Wright’s island model, the stepping-stone
model.

» We shall obtain equivalent results in continuous space, under
equivalent assumptions;

» But we can accommodate many other scenarii than the ‘classical
ones’.

» For the rest of the talk, imagine a population of plants.




An event-based model

» Fix A > 0 and a measure £(dr, du) on (0, c0) x [0, 1].

» Reproduction events: given by a Poisson point process on
[0,00) x R2 x (0, 00) x [0, 1] with intensity measure
dt ® dx @ &(dr, du).

In words, we define a random sequence {(t, x;, rj, u;), i € Z} of
times, centres, radii and impacts.
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» Fix A > 0 and a measure £(dr, du) on (0, c0) x [0, 1].

» Reproduction events: given by a Poisson point process on
[0,00) x R2 x (0, 00) x [0, 1] with intensity measure
dt ® dx @ &(dr, du).

In words, we define a random sequence {(t, x;, rj, u;), i € Z} of
times, centres, radii and impacts.

We start from a Poissonian cloud of indv. At the time t; of an event, if
B(x;, r;) is empty, then do nothing. Otherwise, within the ball

1. Choose a parent uniformly at random;
2. Each indv. within the ball dies with proba u;, indep. of each other;

3. Add a Poissonian cloud of new indv. with density Au;. All of them
have the same allele as the parent.
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A few comments

» Objectives met: In a populated region, each individual
reproduces rarely = sort of logistic regulation. Other
characteristics included as well.

» A flexible framework: replace the balls by Gaussian kernels, or
any mechanism preserving the average local density of indv.

» Berestycki, Etheridge & Hutzenthaler (2010): If \ is large
enough, the population survives and has a stationary distribution.

» But: Genealogies are not easy to describe, since the presence
of an individual gives us information on the past (not a simple
time reversal). Forwards-in-time model not very tractable either.

To cope with the last issue, we let the density A tend to infinity.
= In the limit, the population covers the whole plane R?.



The spatial A-Fleming-Viot process

Type/allele space : K compact.

Population at time ¢ : Measure M; on R? x K whose first marginal is
Lebesgue measure (uniform density of indv.). That is,

M;(dx, dk) = dx p:(x, dk).

A possible interpretation: The ‘real’ population is a Poisson point process with
(random) intensity measure M; (Wakolbinger & V., 2012).




The spatial A-Fleming-Viot process

Type/allele space : K compact.

Population at time ¢ : Measure M; on R? x K whose first marginal is
Lebesgue measure (uniform density of indv.). That is,

M;(dx, dk) = dx p:(x, dk).

A possible interpretation: The ‘real’ population is a Poisson point process with
(random) intensity measure M; (Wakolbinger & V., 2012).

Evolution : same Poisson point process of events. If {; is the time of
an event, the reproduction event occurs within B(x;, r;).

» A parent is chosen uniformly at random from B(x;, r;) [location z,
type xJ;

> Forevery y € B0xi,r),  py(y> ak) = (1 — t)py— (v, oK) + Uid.



Duality relations

» The genealogical process ({¢},... ,gQ’s})SZO is a system of a
priori correlated (symmetric) jump processes that coalesce when
they are affected by the same event.

» Take K = {0,1} and wi(x) := pt(x, {1}). Then, we have: for
every j > 1 and ¢ € C.((RYY)),
i

Ew, |:,/(Rd)j q/;(x1,...,)(j){ H W,(x,')}dx1 ~--dx,}

i=1

. Ny
= /( (Xt X)E ) [H Wo(ff)} dxy - - - dx;.
i1

RAY

In particular,

J Nt
Ew, | [ wt(x,-)} =E(x,...x} {H wo (5;)} , Lebesgue-a.e.

i=1 i=1




A first application: large-scale behaviour

Initial configuration:

50 o0 180 2000 250 300 350 400 450 SO0

Simulations by H. Saadi. Fixed radius, u = 1.
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After 5.108 events:
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Simulations by H. Saadi. Fixed radius, u = 1.



Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: R?, Type space: {0, 1}

» Case 1: Fixed radii
We fix R > 0 and u € (0, 1]. All events have radius R and impact
u.
— Most natural first case...
— Asymptotic behaviour equivalent to that of the nearest-neighbour
stepping-stone model.



Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: R?, Type space: {0, 1}

» Case 1: Fixed radii

We fix R > 0 and u € (0, 1]. All events have radius R and impact
u.
— Most natural first case...
— Asymptotic behaviour equivalent to that of the nearest-neighbour
stepping-stone model.

» Case 2: Radii with an a-stable distribution

We fix an impact u € (0, 1], « € (1,2) and take as a measure on
radii

1
>}
w(dr) = drita dr.

— Allows very large but very rare events.
— Rescaled ancestral lineages are well-understood.



Zoom-out

» Case 1: Fixed radius and impact
> Case 2: Fixed impact and intensity of radii r—(@++1) gr

Seta=2incase 1,and foralln> 1,

w(X) := wne(n'/“x).



Zoom-out

» Case 1: Fixed radius and impact
> Case 2: Fixed impact and intensity of radii r—(@++1) gr

Seta=2incase 1,and foralln> 1,

w(X) := Wne(n"/%x).

Initial condition: wy(x) = 14(x), where H = {x(1) < 0}.

Questions: What does w/" look like when n is large? Width of the
interface? Pattern of genetic diversity? Roughness of the interface?



Answer for fixed radius, d = 1
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u=0.8,r=0.033and n = 10°. Initial condition, after 10° events, after 10” events.
(Simulations by J. Kelleher)



That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

» There exists a measure valued process (Mfz), t > 0) such that

M D) @) as n — oo.

» Moreover, one can find 2 > 0 such that, if X denotes BM and

pP(X) := P[X 52, € H], then
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M D) @) as n — oo.

» Moreover, one can find 52 > 0 such that, if X denotes BM and
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< Ifd =1:forevery t >0, w? is a random field of correlated
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E[w®(x)] = pf? (x).



That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

» There exists a measure valued process (Mfz), t > 0) such that

M D) @) as n — oo.

» Moreover, one can find 2 > 0 such that, if X denotes BM and

pP(X) := P[X 52, € H], then

< Ifd =1:forevery t >0, w? is a random field of correlated
Bernoulli r.vs with
2 2
E[w ()] = A7 (0).

< Ifd>2:forevery t >0, w?(x) = p{(x) Lebesgue-a.e.



Case of stable radii, d = 1
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u=08 a=13andn=10%
(a) Initial condition, (b-c) after 100 events, (d-e) after 10° events.




Case of stable radii, d = 2

(a) (b) (e)

u=0.8,a=1.3andn=10°. After 10%, 10° and 107 events.



Asymptotic behaviour in the presence of large events

Theorem 2 [Berestycki, Etheridge & V. (2012)]

» There exists a measure valued process (M,(D‘), t > 0) such that

M" (fad’s) M(o‘), as n — oo.

» Moreover, there exists a symmetric a-stable process X(*) such that, if

P (x) = P[X(;) € H)

then in any dimension, for every t > 0, W,(“) is a random field of
correlated Bernoulli r.v.’s with

E[w((x)] = p{* ().



Conclusions

No coexistence of types unless d > 2 and reproduction is
‘purely local’.

The impact u appears only in the limiting speed of evolution
(same pattern of allele frequencies for all u € (0, 1]);

The correlations between local frequencies are given by the
genealogical process. Correlation length:

» +/nwhen only small events,

1/a

» n'/* when mixture of events.

Since n'/® > \/n, this neutral model can explain the correlation
lengths much larger than expected in certain pops.

= Large but rare extinction/recolonization can have a significant
impact on the genetic diversity of a population.



Idea of the proof
» By duality, for every j > 1 and ¢ € C.((R?Y),

J
Ewg[/(Rd)jw(X1,...,x,-){ 11 w,"(x,-)}dx1 ---dx,}

where , ,
wl=1y and &' =n"">¢,.

» These test functions characterize the law of each M;.
= Understanding the limit of £¢" gives the limit of w".



Idea of the proof

» By duality, for every j > 1 and ¢ € C;((RY)),

J
Ewg[/(Rd)jw(X1,...,x,-){ 11 w,"(x,-)}dx1 ---dx,}

where , ,
wl=1y and &' =n"">¢,.

» These test functions characterize the law of each M;.
= Understanding the limit of £¢" gives the limit of w".

» Correlations:

.....

E,n
"o




Genealogies in the limit

Under local events:
1 lineage After rescaling, an ancestral line jumps at rate O(n) at
distance O(1/v/n)
= A single lineage converges to Brownian motion, with
speed o2 = us?.
More lineages Two lineages
< move independently when at distance > 2R/+/n,
< may coalesce only when at distance < 2R/+/n.

= The ancestral process converges to a system of
independent Brownian motions which coalesce upon
meeting.



Genealogies in the limit

Under local events:
1 lineage After rescaling, an ancestral line jumps at rate O(n) at
distance O(1/v/n)

= A single lineage converges to Brownian motion, with
speed o2 = us?.

More lineages Two lineages

< move independently when at distance > 2R/+/n,
< may coalesce only when at distance < 2R/+/n.

= The ancestral process converges to a system of
independent Brownian motions which coalesce upon
meeting.

Under mixed events: The ancestral process converges to a system
of coalescing symmetric a-stable processes. A finite sample reaches
its MRCA in finite time a.s.



Back to original scales

» Under the assumption of local reproduction, the evolution over
large scales depends only on o2.

» Cannot be the case when we consider small to intermediate
geogr.- and time-scales (coalescence is not instantaneous, e.g.).

= Other quantities summarizing the local evolution?

» Even when large but rare bottlenecks occur, they will not be seen
over sufficiently small scales (genealogies ‘resolved’ in a few
hundred generations only).



The Wright-Malécot formula

As in the stepping-stone model, let us set

Fu(lx = y1) == Eqxyy [€7247].



The Wright-Malécot formula

As in the stepping-stone model, let us set
FM(|X - }/|) = E{x7y} [672#7—0]-

When reproduction is purely local and 1 < 1, F,, is well-approximated
by the Wright-Malécot formula:

~ Kollx =~ yl/ty)

Fu(|x -yl = N+ |Og(gu/“)’

X —y| >k

where
» (, =0o/v/2u > 1is a characteristic length;
> x is a local scale given by the precise local dynamics;

» N measures the number of potential parents of an individual
(o< 1/u here).
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In pictures
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Fit between F, (plain lines) and the Wright-Malécot formula (dashed lines).
Left: local rep. only; Right: 2 types of events. (Figures by J. Kelleher)
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Frequency-based inference

o2, N and x summarize the local evolution of genetic diversities.

Assume mutation occurs at rate ¢ < 1 and maintains an average
heterozygosity H,, over some intermediate spatial scale.

Using the duality formula, we obtain

Covp). o) g gzu] o Kollx = ¥1/6)
SR R~ ety
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Frequency-based inference

o2, N and x summarize the local evolution of genetic diversities.

Assume mutation occurs at rate ¢ < 1 and maintains an average
heterozygosity H,, over some intermediate spatial scale.

Using the duality formula, we obtain

Cov(p(x), p(¥)) _ e[ a-2u7c] . KollXx —yI/¢0)
et ~E[eT] ~ Nt Tog(tu/m)’

A basis for inference: Call H the average heterozygosity in a sample
taken from nearby sites x1, ..., x». If X; # X,

Cov(p(x), (%)) , Ko(lXi = Xil/¢x)
H N

(1)

Assuming the frequencies are Gaussian fluct. around their mean, (1)
yields a maximum likelihood scheme [Barton et al, 2012].



Correlations across loci



Correlations across loci

» Question : We understand well the genealogies at 1 locus, what
about more than 1? A whole genome?

» Main characteristic: Two recombinants may coalesce again
quickly, for ex. due to the next event which overlaps them.

= Creates potentially strong correlations between the allele
frequencies at neighbouring loci.



Correlations across loci

» Question : We understand well the genealogies at 1 locus, what
about more than 1? A whole genome?

» Main characteristic: Two recombinants may coalesce again
quickly, for ex. due to the next event which overlaps them.

= Creates potentially strong correlations between the allele
frequencies at neighbouring loci.

» Sub-questions:

— Are there regimes of parameters for which decorrelation between
the ancestral lineages of an individual at two (or more) loci can
occur ? What are the local mechanisms maintaining some
correlations?

— Influence of the presence of large extinction/recolonization events?

— Difference with the pattern left behind by a selective sweep? by
recurrent global bottlenecks?



On the scale of the whole population

Geographical space: R?, Type space: K; x Kz (2 loci)
Again, 2 types of events:
Small ev. Each site is hit at rate O(1) by an event of size O(1).
— A random number of parents is chosen;

— A fraction us of the local population is killed.

— A fraction r, of the offspring are recombinants (i.e.,
inherit their types ki1, k> from different parents)
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— A random number of parents is chosen;
— A fraction us of the local population is killed.

— A fraction r, of the offspring are recombinants (i.e.,
inherit their types ki1, k> from different parents)

Large ev. Each site is hit at rate ¢, ' by an event of size O(n*), where
a > 0. A fraction ug of the local pop. is replaced, and we
assume no recombination for simplicity.

Regime 1 < ¢n < N** as n — oo, and (fn)n>1 is nonincreasing.



On the scale of the whole population

Geographical space: R?, Type space: K; x Kz (2 loci)

Again, 2 types of events:
Small ev. Each site is hit at rate O(1) by an event of size O(1).

— A random number of parents is chosen;
— A fraction us of the local population is killed.

— A fraction r, of the offspring are recombinants (i.e.,
inherit their types ki1, k> from different parents)

Large ev. Each site is hit at rate ¢, ' by an event of size O(n*), where
a > 0. A fraction ug of the local pop. is replaced, and we
assume no recombination for simplicity.

Regime 1 < ¢n < N** as n — oo, and (fn)n>1 is nonincreasing.

Sample 2 individuals at distance x, > n“.
= Joint distribution of the coal. time at the two loci, as n — c0?



Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

» If we sample 2 individuals at distance x, > n“, the genealogy at
each locus is Kingman’s coalescent when considered on the
timescale

o Pt > a.



Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

» If we sample 2 individuals at distance x, > n“, the genealogy at
each locus is Kingman’s coalescent when considered on the

timescale
o Pt > a.

» In addition, there exists a critical distance

log ¢n
rn¢n

D:~ 0™y |1+

such that when n is large,

— If x, > D, the ancestries at the two loci are independent,

— If X, < Dp, there is a decorrelation threshold before which the
genealogies are completely correlated, and after which they
become approximately independent.



Conclusions

((bn/nZa) n2t < ,721‘7

= Large events generate a faster coalescence, and so (again)
much larger correlation lengths between allele frequencies.

The second result gives us the sampling distance at which we
should expect to see a decorrelation between the variations in
allele freq. at the two loci, with or without large events.

= Comparison with the effect of sweeps possible.

But sampling distances must be very large. Locally, the
probability of decorrelation is very small.

= Consider instead many loci (or a long continuous genome).



Length of regions identical in state

» Assume only local reproduction (but robust to rare large events);
» Many loci, with recombination rate r between 2 neighbours;
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Assume only local reproduction (but robust to rare large events);
Many loci, with recombination rate r between 2 neighbours;

Sample 2 individuals at small/medium distance §.

Consider the regions of the genetic map where the two individuals are
identical in state, in particular the large blocks generated by early
coalescence.



Length of regions identical in state

Assume only local reproduction (but robust to rare large events);
Many loci, with recombination rate r between 2 neighbours;

Sample 2 individuals at small/medium distance §.

Consider the regions of the genetic map where the two individuals are
identical in state, in particular the large blocks generated by early
coalescence.

Early coalescence means on a timescale of order (5/0)?, where o% is
the variance of the motion of a lineage.

= for some 3 > 0, set

2
o

(B, 9) = 2502 and T, ~ Exp(2p).

A coalescence at locus j is early if Té' < T,..



An approximation

Theorem [Barton et al. (2012)]

Let X be the length of a given region of identity in state generated by
an early coal., when the two indv. are sampled at distance 4.

Then X follows approximately a geometric distribution with parameter
~(9) given by

7(6) =

B Fetr + 14

left 1_ Ko(1/VB)
N +log(v/Bé/k) |’

where

» x and N come from the Wright-Malécot approx.,
> rqe = ri(0) is an effective recombination rate,
> 1(0) is the escape probability of two recombinant lineages.



CDF
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Simulations (by J. Kelleher)
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CDF of long conserved blocks, (/eff) from a single sim. and (right) from 200 sim.
R=1,u=0.75r=10"%,§ = 10 and 50k loci.

Heavy solid line: empirical; Dashed line: Geom(~(4)); Solid line: Geom(p).
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Still a lot of work...

» The parameter () depends ‘only’ on o2, V" and &.
= Another route to inference?



Still a lot of work...

» The parameter () depends ‘only’ on o2, V" and &.
= Another route to inference?

» Several problems:

— The empirical CDF overestimates the probability of large regions
(genealogies are embedded in the same pedigree).

— Not easy to relate regions of identity in state between the 2
genomes, and regions of early coalescence. In particular, which 3
should we take ?



Further questions



Natural selection

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and
weight 1 to type 0 indv.
=- Dual available, but branches as well (potential selection events).
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We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and
weight 1 to type 0 indv.

=- Dual available, but branches as well (potential selection events).

> Large neighbourhood size: when the impact u, and the selection strength sp,
tend to 0 appropriately,

— In 1d and with only local rep., the frequency of type 1 individuals (suitably
rescaled) converges to the solution to

dw = % Awdt +3w(1 — w) dt + \//\1/ w(1 —w) B(dt, dx),
e

where B(dt, dx) is a space-time white noise.
— In higher dim., no noise in the limit.
— Equivalent results when large-scale bottlenecks occur, and only the
motion is affected (still a local selection pressure and local coalescence).
(Work in progress with A. Etheridge and F. Yu.)



Natural selection

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and
weight 1 to type 0 indv.

=- Dual available, but branches as well (potential selection events).

> Large neighbourhood size: when the impact u, and the selection strength sp,
tend to 0 appropriately,

— In 1d and with only local rep., the frequency of type 1 individuals (suitably
rescaled) converges to the solution to

dw = % Awdt +3w(1 — w) dt + \//\1/ w(1 —w) B(dt, dx),
e

where B(dt, dx) is a space-time white noise.
— In higher dim., no noise in the limit.
— Equivalent results when large-scale bottlenecks occur, and only the
motion is affected (still a local selection pressure and local coalescence).
(Work in progress with A. Etheridge and F. Yu.)

» Small neighbourhood size: The pattern produced is very different (cf. Nick’s
presentation).



Range expansion

Extreme case of selection: only type 1’s reproduce.

Expanding population of Pseudomonas aeruginosa (courtesy of Kevin Foster), and a simulation of
the modified SLFV, by J. Kelleher.

(Work in progress with A. Etheridge and J. Kelleher)



Thank you!
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