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Evolution in a continuum

Aim: Model the evolution of the genetic composition of a
geographically structured population. Space is continuous (and in
2 dimensions, most of the time).



Main characteristics

I Reproduction happens more or less locally;
I At ‘stationarity’, local population sizes are regulated;
I Individuals have a finite pool of potential parents (⇒ multiple

mergers in the genealogies);
I Rare but severe bottlenecks can occur and affect potentially

large regions.

Questions of interest

I Behaviour under the hypothesis of neutrality?
I Spatial decay of correlations between local genetic diversities?
I Signature of a deviation from “local rep. + neutrality”?

↪→ large but rare extinction/recolonisation events;
↪→ selection and selective sweeps;
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And also...

I Which are the quantities summarizing the evolution?
I How can we infer them from data?
I Can we detect deviations from neutrality?



Remarks

I Already well-studied: Wright’s island model, the stepping-stone
model.

I We shall obtain equivalent results in continuous space, under
equivalent assumptions;

I But we can accommodate many other scenarii than the ‘classical
ones’.

I For the rest of the talk, imagine a population of plants.



An event-based model

I Fix λ > 0 and a measure ξ(dr ,du) on (0,∞)× [0,1].
I Reproduction events: given by a Poisson point process on

[0,∞)× R2 × (0,∞)× [0,1] with intensity measure
dt ⊗ dx ⊗ ξ(dr ,du).

In words, we define a random sequence {(ti , xi , ri ,ui), i ∈ I} of
times, centres, radii and impacts.

We start from a Poissonian cloud of indv. At the time ti of an event, if
B(xi , ri) is empty, then do nothing. Otherwise, within the ball

1. Choose a parent uniformly at random;

2. Each indv. within the ball dies with proba ui , indep. of each other;

3. Add a Poissonian cloud of new indv. with density λui . All of them
have the same allele as the parent.
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A few comments

I Objectives met: In a populated region, each individual
reproduces rarely⇒ sort of logistic regulation. Other
characteristics included as well.

I A flexible framework: replace the balls by Gaussian kernels, or
any mechanism preserving the average local density of indv.

I Berestycki, Etheridge & Hutzenthaler (2010): If λ is large
enough, the population survives and has a stationary distribution.

I But: Genealogies are not easy to describe, since the presence
of an individual gives us information on the past (not a simple
time reversal). Forwards-in-time model not very tractable either.

To cope with the last issue, we let the density λ tend to infinity.
⇒ In the limit, the population covers the whole plane R2.



The spatial Λ-Fleming-Viot process

Type/allele space : K compact.

Population at time t : Measure Mt on Rd × K whose first marginal is
Lebesgue measure (uniform density of indv.). That is,

Mt(dx ,dk) = dx ρt(x ,dk).

A possible interpretation: The ‘real’ population is a Poisson point process with
(random) intensity measure Mt (Wakolbinger & V., 2012).

Evolution : same Poisson point process of events. If ti is the time of
an event, the reproduction event occurs within B(xi , ri).

I A parent is chosen uniformly at random from B(xi , ri) [location z,
type κ];

I For every y ∈ B(xi , ri), ρti (y ,dk) = (1− ui)ρti−(y ,dk) + uiδκ.
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Duality relations

I The genealogical process ({ξ1
s , . . . , ξ

Ns
s })s≥0 is a system of a

priori correlated (symmetric) jump processes that coalesce when
they are affected by the same event.

I Take K = {0,1} and wt(x) := ρt(x , {1}). Then, we have: for
every j ≥ 1 and ψ ∈ Cc((Rd )j),

Ew0

[ ∫
(Rd )j

ψ(x1, . . . , xj )

{ j∏
i=1

wt (xi )

}
dx1 · · · dxj

]

=

∫
(Rd )j

ψ(x1, . . . , xj )E{x1,...,xj}

[ Nt∏
i=1

w0
(
ξi

t
)]

dx1 · · · dxj .

In particular,

Ew0

[ j∏
i=1

wt (xi )

]
= E{x1,...,xj}

[ Nt∏
i=1

w0
(
ξi

t
)]
, Lebesgue-a.e.



A first application: large-scale behaviour

Initial configuration:

Simulations by H. Saadi. Fixed radius, u ≡ 1.
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After 5.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: Rd , Type space: {0, 1}

I Case 1: Fixed radii
We fix R > 0 and u ∈ (0,1]. All events have radius R and impact
u.
↪→ Most natural first case...
↪→ Asymptotic behaviour equivalent to that of the nearest-neighbour

stepping-stone model.

I Case 2: Radii with an α-stable distribution
We fix an impact u ∈ (0,1], α ∈ (1,2) and take as a measure on
radii

µ(dr) =
1{r>1}

rd+1+α
dr .

↪→ Allows very large but very rare events.
↪→ Rescaled ancestral lineages are well-understood.
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Zoom-out

I Case 1: Fixed radius and impact
I Case 2: Fixed impact and intensity of radii r−(d+α+1) dr

Set α = 2 in case 1, and for all n ≥ 1,

wn
t (x) := wnt(n1/αx).

Initial condition: w0(x) = 1H(x), where H = {x(1) ≤ 0}.

Questions: What does wn
t look like when n is large? Width of the

interface? Pattern of genetic diversity? Roughness of the interface?
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Answer for fixed radius, d = 1

u = 0.8, r = 0.033 and n = 103. Initial condition, after 105 events, after 107 events.
(Simulations by J. Kelleher)



That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

I There exists a measure valued process (M(2)
t , t ≥ 0) such that

Mn (fdd′s)−→ M(2), as n→∞.

I Moreover, one can find σ̃2 > 0 such that, if X denotes BM and

p(2)
t (x) := P

[
Xuσ̃2t ∈ H

]
, then

↪→ If d = 1 : for every t > 0, w (2)
t is a random field of correlated

Bernoulli r.v.’s with
E
[
w (2)

t (x)
]

= p(2)
t (x).

↪→ If d ≥ 2 : for every t ≥ 0, w (2)
t (x) = p(2)

t (x) Lebesgue-a.e.
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Case of stable radii, d = 1

u = 0.8, α = 1.3 and n = 104.
(a) Initial condition, (b-c) after 100 events, (d-e) after 106 events.



Case of stable radii, d = 2

u = 0.8, α = 1.3 and n = 103. After 105, 106 and 107 events.



Asymptotic behaviour in the presence of large events

Theorem 2 [Berestycki, Etheridge & V. (2012)]

I There exists a measure valued process (M(α)
t , t ≥ 0) such that

Mn (fdd′s)−→ M(α), as n→∞.

I Moreover, there exists a symmetric α-stable process X (α) such that, if

p(α)
t (x) := P

[
X (α)

ut ∈ H
]

then in any dimension, for every t > 0, w (α)
t is a random field of

correlated Bernoulli r.v.’s with

E
[
w (α)

t (x)
]

= p(α)
t (x).



Conclusions

I No coexistence of types unless d ≥ 2 and reproduction is
‘purely local’.

I The impact u appears only in the limiting speed of evolution
(same pattern of allele frequencies for all u ∈ (0,1]);

I The correlations between local frequencies are given by the
genealogical process. Correlation length:

I
√

n when only small events,
I n1/α when mixture of events.

I Since n1/α �
√

n, this neutral model can explain the correlation
lengths much larger than expected in certain pops.

⇒ Large but rare extinction/recolonization can have a significant
impact on the genetic diversity of a population.



Idea of the proof

I By duality, for every j ≥ 1 and ψ ∈ Cc((Rd )j),

Ewn
0

[ ∫
(Rd )j

ψ(x1, . . . , xj )

{ j∏
i=1

wn
t (xi )

}
dx1 · · · dxj

]

=

∫
(Rd )j
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[ Nt∏
i=1

wn
0
(
ξn,i

t
)]

dx1 · · · dxj ,
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wn

0 = 1H and ξn,i
t = n−1/α ξi

nt .

I These test functions characterize the law of each Mt .
⇒ Understanding the limit of ξn gives the limit of wn.

I Correlations:

Ewn
0

[ j∏
i=1

wn
t (xi )

]
= P{x1,...,xj}

[
ξn,i

t ∈ H, ∀i ∈ {1, . . . ,Nn
t }
]
.
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Genealogies in the limit

Under local events:
1 lineage After rescaling, an ancestral line jumps at rate O(n) at

distance O(1/
√

n)

⇒ A single lineage converges to Brownian motion, with
speed σ2 = uσ̃2.

More lineages Two lineages
↪→ move independently when at distance > 2R/

√
n,

↪→ may coalesce only when at distance ≤ 2R/
√

n.

⇒ The ancestral process converges to a system of
independent Brownian motions which coalesce upon
meeting.

Under mixed events: The ancestral process converges to a system
of coalescing symmetric α-stable processes. A finite sample reaches
its MRCA in finite time a.s.
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Back to original scales

I Under the assumption of local reproduction, the evolution over
large scales depends only on σ2.

I Cannot be the case when we consider small to intermediate
geogr.- and time-scales (coalescence is not instantaneous, e.g.).
⇒ Other quantities summarizing the local evolution?

I Even when large but rare bottlenecks occur, they will not be seen
over sufficiently small scales (genealogies ‘resolved’ in a few
hundred generations only).



The Wright-Malécot formula

As in the stepping-stone model, let us set

Fµ(|x − y |) := E{x,y}
[
e−2µTc

]
.

When reproduction is purely local and µ� 1, Fµ is well-approximated
by the Wright-Malécot formula:

Fµ(|x − y |) ≈ K0(|x − y |/`µ)
N + log(`µ/κ)

, |x − y | > κ

where
I `µ = σ/

√
2µ� 1 is a characteristic length;

I κ is a local scale given by the precise local dynamics;
I N measures the number of potential parents of an individual

(∝ 1/u here).
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Fit between Fµ (plain lines) and the Wright-Malécot formula (dashed lines).

Left: local rep. only; Right: 2 types of events. (Figures by J. Kelleher)



Frequency-based inference

I σ2, N and κ summarize the local evolution of genetic diversities.
I Assume mutation occurs at rate µ� 1 and maintains an average

heterozygosity Hµ over some intermediate spatial scale.
I Using the duality formula, we obtain

Cov(ρ(x), ρ(y))

Hµ
≈ E

[
e−2µTc

]
≈ K0(|x − y |/`µ)
N + log(`µ/κ)

.

I A basis for inference: Call H the average heterozygosity in a sample
taken from nearby sites x1, . . . , xn. If xi 6= xj ,

Cov(ρ(xi), ρ(xj))

H
≈ K0(|xi − xj |/`µ)

N (1)

I Assuming the frequencies are Gaussian fluct. around their mean, (1)
yields a maximum likelihood scheme [Barton et al, 2012].
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Correlations across loci

I Question : We understand well the genealogies at 1 locus, what
about more than 1? A whole genome?

I Main characteristic: Two recombinants may coalesce again
quickly, for ex. due to the next event which overlaps them.
⇒ Creates potentially strong correlations between the allele
frequencies at neighbouring loci.

I Sub-questions:
↪→ Are there regimes of parameters for which decorrelation between

the ancestral lineages of an individual at two (or more) loci can
occur ? What are the local mechanisms maintaining some
correlations?

↪→ Influence of the presence of large extinction/recolonization events?
↪→ Difference with the pattern left behind by a selective sweep? by

recurrent global bottlenecks?
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On the scale of the whole population

Geographical space: R2, Type space: K1 × K2 (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate O(1) by an event of size O(1).

↪→ A random number of parents is chosen;
↪→ A fraction us of the local population is killed.
↪→ A fraction rn of the offspring are recombinants (i.e.,

inherit their types k1, k2 from different parents)

Large ev. Each site is hit at rate φ−1
n by an event of size O(nα), where

α > 0. A fraction uB of the local pop. is replaced, and we
assume no recombination for simplicity.

Regime 1� φn � n2α as n→∞, and (rn)n≥1 is nonincreasing.

Sample 2 individuals at distance xn � nα.

⇒ Joint distribution of the coal. time at the two loci, as n→∞?
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Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

I If we sample 2 individuals at distance xn � nα, the genealogy at
each locus is Kingman’s coalescent when considered on the
timescale

φn n2(t−α), t > α.

I In addition, there exists a critical distance

D∗n ≈ nα
√

1 +
logφn

rnφn

such that when n is large,

↪→ If xn � D∗n , the ancestries at the two loci are independent,
↪→ If xn � D∗n , there is a decorrelation threshold before which the

genealogies are completely correlated, and after which they
become approximately independent.
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Conclusions

I

(φn/n2α) n2t � n2t ,

⇒ Large events generate a faster coalescence, and so (again)
much larger correlation lengths between allele frequencies.

I The second result gives us the sampling distance at which we
should expect to see a decorrelation between the variations in
allele freq. at the two loci, with or without large events.
⇒ Comparison with the effect of sweeps possible.

I But sampling distances must be very large. Locally, the
probability of decorrelation is very small.
⇒ Consider instead many loci (or a long continuous genome).



Length of regions identical in state

I Assume only local reproduction (but robust to rare large events);
I Many loci, with recombination rate r between 2 neighbours;

I Sample 2 individuals at small/medium distance δ.
I Consider the regions of the genetic map where the two individuals are

identical in state, in particular the large blocks generated by early
coalescence.

I Early coalescence means on a timescale of order (δ/σ)2, where σ2 is
the variance of the motion of a lineage.
⇒ for some β > 0, set

µ(β, δ) =
σ2

2βδ2 and Tµ ∼ Exp(2µ).

A coalescence at locus j is early if T j
c ≤ Tµ.
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I Sample 2 individuals at small/medium distance δ.
I Consider the regions of the genetic map where the two individuals are

identical in state, in particular the large blocks generated by early
coalescence.

I Early coalescence means on a timescale of order (δ/σ)2, where σ2 is
the variance of the motion of a lineage.
⇒ for some β > 0, set

µ(β, δ) =
σ2

2βδ2 and Tµ ∼ Exp(2µ).

A coalescence at locus j is early if T j
c ≤ Tµ.



An approximation

Theorem [Barton et al. (2012)]

Let X be the length of a given region of identity in state generated by
an early coal., when the two indv. are sampled at distance δ.

Then X follows approximately a geometric distribution with parameter
γ(δ) given by

γ(δ) =
reff

reff + µ

(
1− K0(1/

√
β)

N + log(
√
β δ/κ)

)
,

where

I κ and N come from the Wright-Malécot approx.,
I reff = r ψ(δ) is an effective recombination rate,
I ψ(δ) is the escape probability of two recombinant lineages.



Simulations (by J. Kelleher)
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Still a lot of work...

I The parameter γ(δ) depends ‘only’ on σ2, N and κ.
⇒ Another route to inference?

I Several problems:

↪→ The empirical CDF overestimates the probability of large regions
(genealogies are embedded in the same pedigree).

↪→ Not easy to relate regions of identity in state between the 2
genomes, and regions of early coalescence. In particular, which β
should we take ?
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Further questions



Natural selection

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and
weight 1 to type 0 indv.
⇒ Dual available, but branches as well (potential selection events).

I Large neighbourhood size: when the impact un and the selection strength sn

tend to 0 appropriately,

↪→ In 1d and with only local rep., the frequency of type 1 individuals (suitably
rescaled) converges to the solution to

dw =
1
2

∆w dt + s̃w(1− w) dt +

√
1

Ne
w(1− w) B(dt , dx),

where B(dt , dx) is a space-time white noise.
↪→ In higher dim., no noise in the limit.
↪→ Equivalent results when large-scale bottlenecks occur, and only the

motion is affected (still a local selection pressure and local coalescence).

(Work in progress with A. Etheridge and F. Yu.)

I Small neighbourhood size: The pattern produced is very different (cf. Nick’s
presentation).
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Range expansion

Extreme case of selection: only type 1’s reproduce.

Expanding population of Pseudomonas aeruginosa (courtesy of Kevin Foster), and a simulation of
the modified SLFV, by J. Kelleher.

(Work in progress with A. Etheridge and J. Kelleher)



Thank you!
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