On the usefulness of genealogical trees

N. Barton, A.M. Etheridge, <u>A. Véber</u> and friends.

CIRM - 13/06/2012

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Evolution in a continuum

<u>Aim:</u> Model the evolution of the genetic composition of a geographically structured population. Space is continuous (and in 2 dimensions, most of the time).

Main characteristics

- Reproduction happens more or less locally;
- At 'stationarity', local population sizes are regulated;
- ► Individuals have a finite pool of potential parents (⇒ multiple mergers in the genealogies);
- Rare but severe bottlenecks can occur and affect potentially large regions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Main characteristics

- Reproduction happens more or less locally;
- At 'stationarity', local population sizes are regulated;
- ► Individuals have a finite pool of potential parents (⇒ multiple mergers in the genealogies);
- Rare but severe bottlenecks can occur and affect potentially large regions.

Questions of interest

- Behaviour under the hypothesis of neutrality?
- Spatial decay of correlations between local genetic diversities?

(ロ) (同) (三) (三) (三) (○) (○)

- Signature of a deviation from "local rep. + neutrality"?
 - \hookrightarrow large but rare extinction/recolonisation events;
 - \hookrightarrow selection and selective sweeps;

And also...

- Which are the quantities summarizing the evolution?
- How can we infer them from data?
- Can we detect deviations from neutrality?

Remarks

- Already well-studied: Wright's island model, the stepping-stone model.
 - We shall obtain equivalent results in continuous space, under equivalent assumptions;
 - But we can accommodate many other scenarii than the 'classical ones'.
- For the rest of the talk, imagine a population of plants.

An event-based model

- Fix $\lambda > 0$ and a measure $\xi(dr, du)$ on $(0, \infty) \times [0, 1]$.
- ▶ **Reproduction events:** given by a Poisson point process on $[0, \infty) \times \mathbb{R}^2 \times (0, \infty) \times [0, 1]$ with intensity measure $dt \otimes dx \otimes \xi(dr, du)$.

In words, we define a random sequence $\{(t_i, x_i, r_i, u_i), i \in \mathcal{I}\}$ of times, centres, radii and impacts.

A D F A 同 F A E F A E F A Q A

An event-based model

- Fix $\lambda > 0$ and a measure $\xi(dr, du)$ on $(0, \infty) \times [0, 1]$.
- ▶ **Reproduction events:** given by a Poisson point process on $[0, \infty) \times \mathbb{R}^2 \times (0, \infty) \times [0, 1]$ with intensity measure $dt \otimes dx \otimes \xi(dr, du)$.

In words, we define a random sequence $\{(t_i, x_i, r_i, u_i), i \in \mathcal{I}\}$ of times, centres, radii and impacts.

We start from a Poissonian cloud of indv. At the time t_i of an event, if $B(x_i, r_i)$ is empty, then do nothing. Otherwise, within the ball

- 1. Choose a parent uniformly at random;
- 2. Each indv. within the ball dies with proba u_i , indep. of each other;
- 3. Add a Poissonian cloud of new indv. with density λu_i . All of them have the same allele as the parent.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

のとの 川 (中) (山) (山) (山) (山)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A few comments

- ► Objectives met: In a populated region, each individual reproduces rarely ⇒ sort of *logistic* regulation. Other characteristics included as well.
- A flexible framework: replace the balls by Gaussian kernels, or any mechanism preserving the average local density of indv.
- Berestycki, Etheridge & Hutzenthaler (2010): If λ is large enough, the population survives and has a stationary distribution.
- But: Genealogies are not easy to describe, since the presence of an individual gives us information on the past (not a simple time reversal). Forwards-in-time model not very tractable either.

To cope with the last issue, we let the density λ tend to infinity. \Rightarrow In the limit, the population covers the whole plane \mathbb{R}^2 .

The spatial **A-Fleming-Viot** process

Type/allele space : K compact.

Population at time *t* : Measure M_t on $\mathbb{R}^d \times K$ whose first marginal is Lebesgue measure (uniform density of indv.). That is,

$$M_t(dx, dk) = dx \, \rho_t(x, dk).$$

A possible interpretation: The 'real' population is a Poisson point process with (random) intensity measure M_t (Wakolbinger & V., 2012).

(ロ) (同) (三) (三) (三) (○) (○)

The spatial **A-Fleming-Viot** process

Type/allele space : K compact.

Population at time *t* : Measure M_t on $\mathbb{R}^d \times K$ whose first marginal is Lebesgue measure (uniform density of indv.). That is,

$$M_t(dx, dk) = dx \, \rho_t(x, dk).$$

A possible interpretation: The 'real' population is a Poisson point process with (random) intensity measure M_t (Wakolbinger & V., 2012).

Evolution : same Poisson point process of events. If t_i is the time of an event, the reproduction event occurs within $B(x_i, r_i)$.

- A parent is chosen uniformly at random from B(x_i, r_i) [location z, type κ];
- ► For every $y \in B(x_i, r_i)$, $\rho_{t_i}(y, dk) = (1 u_i)\rho_{t_i-}(y, dk) + u_i\delta_{\kappa}$.

Duality relations

- ► The genealogical process ({ξ_s¹,...,ξ_s^{N_s}})_{s≥0} is a system of a priori correlated (symmetric) jump processes that coalesce when they are *affected* by the same event.
- ► Take $K = \{0, 1\}$ and $w_t(x) := \rho_t(x, \{1\})$. Then, we have: for every $j \ge 1$ and $\psi \in C_c((\mathbb{R}^d)^j)$,

$$\mathbb{E}_{\mathbf{w}_0} \left[\int_{(\mathbb{R}^d)^j} \psi(\mathbf{x}_1, \dots, \mathbf{x}_j) \left\{ \prod_{i=1}^j w_t(\mathbf{x}_i) \right\} d\mathbf{x}_1 \cdots d\mathbf{x}_j \right]$$
$$= \int_{(\mathbb{R}^d)^j} \psi(\mathbf{x}_1, \dots, \mathbf{x}_j) \mathbf{E}_{\{\mathbf{x}_1, \dots, \mathbf{x}_j\}} \left[\prod_{i=1}^{N_t} w_0(\xi_t^i) \right] d\mathbf{x}_1 \cdots d\mathbf{x}_j.$$

In particular,

$$\mathbb{E}_{w_0}\left[\prod_{i=1}^j w_t(x_i)\right] = \mathbf{E}_{\{x_1,\dots,x_j\}}\left[\prod_{i=1}^{N_t} w_0(\xi_t^i)\right], \quad \text{Lebesgue-a.e.}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Initial configuration:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.

After 2.10⁶ events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.

After 3.10⁶ events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.

After 4.10⁶ events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.

After 5.10⁶ events:

Simulations by H. Saadi. Fixed radius, $u \equiv 1$.

Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: \mathbb{R}^d , Type space: $\{0, 1\}$

Case 1: Fixed radii

We fix R > 0 and $u \in (0, 1]$. All events have radius R and impact u.

- → Most natural first case...
- → Asymptotic behaviour equivalent to that of the nearest-neighbour stepping-stone model.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Large-scale evolution (with N. Berestycki & A.E.)

Geographical space: \mathbb{R}^d , Type space: $\{0, 1\}$

Case 1: Fixed radii

We fix R > 0 and $u \in (0, 1]$. All events have radius R and impact u.

- → Most natural first case...
- → Asymptotic behaviour equivalent to that of the nearest-neighbour stepping-stone model.

Case 2: Radii with an α-stable distribution

We fix an impact $u \in (0, 1]$, $\alpha \in (1, 2)$ and take as a measure on radii

$$\mu(\mathbf{d}\mathbf{r}) = \frac{\mathbf{1}_{\{r>1\}}}{\mathbf{r}^{\mathbf{d}+1+\alpha}} \, \mathbf{d}\mathbf{r}.$$

- \hookrightarrow Allows very large but very rare events.
- \hookrightarrow Rescaled ancestral lineages are well-understood.

Zoom-out

- Case 1: Fixed radius and impact
- Case 2: Fixed impact and intensity of radii $r^{-(d+\alpha+1)} dr$

Set $\alpha = 2$ in case 1, and for all $n \ge 1$,

$$w_t^n(x) := w_{nt}(n^{1/\alpha}x).$$

Zoom-out

- Case 1: Fixed radius and impact
- ► Case 2: Fixed impact and intensity of radii r^{-(d+α+1)} dr

Set $\alpha = 2$ in case 1, and for all $n \ge 1$,

$$w_t^n(x) := w_{nt}(n^{1/\alpha}x).$$

Initial condition: $w_0(x) = \mathbf{1}_H(x)$, where $H = \{x_{(1)} \leq 0\}$.

Questions: What does w_t^n look like when *n* is large? Width of the interface? Pattern of genetic diversity? Roughness of the interface?

Answer for fixed radius, d = 1

u = 0.8, r = 0.033 and $n = 10^3$. Initial condition, after 10^5 events, after 10^7 events. (Simulations by J. Kelleher)

That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

▶ There exists a measure valued process $(M_t^{(2)}, t \ge 0)$ such that

$$M^n \stackrel{(\textit{fdd's})}{\longrightarrow} M^{(2)}, \qquad \text{ as } n \to \infty.$$

• Moreover, one can find $\tilde{\sigma}^2 > 0$ such that, if X denotes BM and

$$p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2 t} \in H], \text{ then }$$

That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

▶ There exists a measure valued process $(M_t^{(2)}, t \ge 0)$ such that

$$M^n \stackrel{(\textit{fdd' s})}{\longrightarrow} M^{(2)}, \qquad \text{ as } n \to \infty.$$

• Moreover, one can find $\tilde{\sigma}^2 > 0$ such that, if X denotes BM and

$$p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2 t} \in H], \text{ then}$$

 $→ If d = 1 : for every t > 0, w_t^{(2)} is a random field of correlated Bernoulli r.v.'s with <math display="block">\mathbb{E}[w_t^{(2)}(x)] = p_t^{(2)}(x).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

That is...

Theorem 1 [Berestycki, Etheridge & V. (2012)]

▶ There exists a measure valued process $(M_t^{(2)}, t \ge 0)$ such that

$$M^n \stackrel{(\textit{fdd' s})}{\longrightarrow} M^{(2)}, \qquad \text{ as } n \to \infty.$$

• Moreover, one can find $\tilde{\sigma}^2 > 0$ such that, if X denotes BM and

$$p_t^{(2)}(x) := \mathbb{P}[X_{u\tilde{\sigma}^2 t} \in H], \text{ then }$$

 $→ If d = 1 : for every t > 0, w_t^{(2)} is a random field of correlated Bernoulli r.v.'s with <math display="block">\mathbb{E}[w_t^{(2)}(x)] = p_t^{(2)}(x).$

 \hookrightarrow If $d \ge 2$: for every $t \ge 0$, $w_t^{(2)}(x) = p_t^{(2)}(x)$ Lebesgue-a.e.

Case of stable radii, d = 1

(a) Initial condition, (b-c) after 100 events, (d-e) after 10^6 events.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(で)

Case of stable radii, d = 2

u = 0.8, $\alpha = 1.3$ and $n = 10^3$. After 10^5 , 10^6 and 10^7 events.

▲ロト ▲圖 と ▲ 国 と ▲ 国 と 二 国

Asymptotic behaviour in the presence of large events

Theorem 2 [Berestycki, Etheridge & V. (2012)]

▶ There exists a measure valued process $(M_t^{(\alpha)}, t \ge 0)$ such that

$$M^n \stackrel{(\textit{fdd's})}{\longrightarrow} M^{(\alpha)}, \qquad \text{ as } n \to \infty.$$

• Moreover, there exists a symmetric α -stable process $X^{(\alpha)}$ such that, if

$$p_t^{(\alpha)}(x) := \mathbb{P}[X_{ut}^{(\alpha)} \in H]$$

then *in any dimension*, for every t > 0, $w_t^{(\alpha)}$ is a random field of correlated Bernoulli r.v.'s with

$$\mathbb{E}\big[w_t^{(\alpha)}(x)\big] = p_t^{(\alpha)}(x).$$

Conclusions

- ► No coexistence of types unless d ≥ 2 and reproduction is 'purely local'.
- ► The impact u appears only in the limiting speed of evolution (same pattern of allele frequencies for all u ∈ (0, 1]);
- The correlations between local frequencies are given by the genealogical process. Correlation length:
 - \sqrt{n} when only small events,
 - $n^{1/\alpha}$ when mixture of events.
- Since $n^{1/\alpha} \gg \sqrt{n}$, this neutral model can explain the correlation lengths much larger than expected in certain pops.

 \Rightarrow Large but rare extinction/recolonization can have a significant impact on the genetic diversity of a population.

Idea of the proof

▶ By duality, for every $j \ge 1$ and $\psi \in C_c((\mathbb{R}^d)^j)$,

$$\mathbb{E}_{\mathbf{w}_0^n} \left[\int_{(\mathbb{R}^d)^j} \psi(x_1, \dots, x_j) \left\{ \prod_{i=1}^j w_t^n(x_i) \right\} dx_1 \cdots dx_j \right]$$

=
$$\int_{(\mathbb{R}^d)^j} \psi(x_1, \dots, x_j) \mathbf{E}_{\{x_1, \dots, x_j\}} \left[\prod_{i=1}^{N_t} w_0^n(\xi_t^{n,i}) \right] dx_1 \cdots dx_j,$$

where

$$w_0^n = \mathbf{1}_H$$
 and $\xi_t^{n,i} = n^{-1/\alpha} \xi_{nt}^i$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► These test functions characterize the law of each M_t.
⇒ Understanding the limit of ξⁿ gives the limit of wⁿ.

Idea of the proof

▶ By duality, for every $j \ge 1$ and $\psi \in C_c((\mathbb{R}^d)^j)$,

$$\mathbb{E}_{\mathbf{w}_0^n} \left[\int_{(\mathbb{R}^d)^j} \psi(\mathbf{x}_1, \dots, \mathbf{x}_j) \left\{ \prod_{i=1}^j \mathbf{w}_t^n(\mathbf{x}_i) \right\} d\mathbf{x}_1 \cdots d\mathbf{x}_j \right]$$
$$= \int_{(\mathbb{R}^d)^j} \psi(\mathbf{x}_1, \dots, \mathbf{x}_j) \mathbf{E}_{\{\mathbf{x}_1, \dots, \mathbf{x}_j\}} \left[\prod_{i=1}^{N_t} \mathbf{w}_0^n(\xi_t^{n,i}) \right] d\mathbf{x}_1 \cdots d\mathbf{x}_j,$$

where

$$w_0^n = \mathbf{1}_H$$
 and $\xi_t^{n,i} = n^{-1/\alpha} \xi_{nt}^i$.

► These test functions characterize the law of each M_t.
⇒ Understanding the limit of ξⁿ gives the limit of wⁿ.

Correlations:

$$\mathbb{E}_{\mathbf{w}_{0}^{n}}\left[\prod_{i=1}^{j} w_{t}^{n}(x_{i})\right] = \mathbf{P}_{\{x_{1},\ldots,x_{j}\}}\left[\xi_{t}^{n,i} \in H, \forall i \in \{1,\ldots,N_{t}^{n}\}\right].$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Genealogies in the limit

Under local events:

1 lineage After rescaling, an ancestral line jumps at rate O(n) at distance $O(1/\sqrt{n})$

 \Rightarrow A single lineage converges to Brownian motion, with speed $\sigma^2 = u\tilde{\sigma}^2$.

More lineages Two lineages

- \hookrightarrow move independently when at distance > $2R/\sqrt{n}$,
- \hookrightarrow may coalesce only when at distance $\leq 2R/\sqrt{n}$.

 \Rightarrow The ancestral process converges to a system of independent Brownian motions which coalesce upon meeting.

A D F A 同 F A E F A E F A Q A

Genealogies in the limit

Under local events:

1 lineage After rescaling, an ancestral line jumps at rate O(n) at distance $O(1/\sqrt{n})$

 \Rightarrow A single lineage converges to Brownian motion, with speed $\sigma^2 = u\tilde{\sigma}^2$.

More lineages Two lineages

- \rightarrow move independently when at distance > $2R/\sqrt{n}$,
- \hookrightarrow may coalesce only when at distance $\leq 2R/\sqrt{n}$.

 \Rightarrow The ancestral process converges to a system of independent Brownian motions which coalesce upon meeting.

Under mixed events: The ancestral process converges to a system of coalescing symmetric α -stable processes. A finite sample reaches its MRCA in finite time a.s.

Back to original scales

- Under the assumption of local reproduction, the evolution over large scales depends only on σ².
- Cannot be the case when we consider small to intermediate geogr.- and time-scales (coalescence is not instantaneous, e.g.).

 \Rightarrow Other quantities summarizing the local evolution?

Even when large but rare bottlenecks occur, they will not be seen over sufficiently small scales (genealogies 'resolved' in a few hundred generations only).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Wright-Malécot formula

As in the stepping-stone model, let us set

$$F_{\mu}(|x-y|) := \mathbf{E}_{\{x,y\}} [e^{-2\mu T_c}].$$

・ロト < 団 > < 三 > < 三 > のへで

The Wright-Malécot formula

As in the stepping-stone model, let us set

$$F_{\mu}(|x-y|) := \mathbf{E}_{\{x,y\}} [e^{-2\mu T_c}].$$

When reproduction is purely local and $\mu \ll 1$, F_{μ} is well-approximated by the *Wright-Malécot formula*:

$$\mathcal{F}_{\mu}(|x-y|) pprox rac{\mathcal{K}_0(|x-y|/\ell_{\mu})}{\mathcal{N} + \log(\ell_{\mu}/\kappa)}, \qquad |x-y| > \kappa$$

where

- $\ell_{\mu} = \sigma / \sqrt{2\mu} \gg 1$ is a characteristic length;
- κ is a *local scale* given by the precise local dynamics;
- \mathcal{N} measures the *number of potential parents* of an individual ($\propto 1/u$ here).

Fit between F_{μ} (plain lines) and the Wright-Malécot formula (dashed lines). Left: local rep. only; Right: 2 types of events. (Figures by J. Kelleher)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Frequency-based inference

- ▶ σ^2 , N and κ summarize the local evolution of genetic diversities.
- Assume mutation occurs at rate $\mu \ll 1$ and maintains an average heterozygosity H_{μ} over some intermediate spatial scale.
- Using the duality formula, we obtain

$$\frac{\operatorname{Cov}(\rho(x),\rho(y))}{H_{\mu}} \approx \mathsf{E}\Big[e^{-2\mu T_c}\Big] \approx \frac{K_0(|x-y|/\ell_{\mu})}{\mathcal{N} + \log(\ell_{\mu}/\kappa)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Frequency-based inference

- σ^2 , \mathcal{N} and κ summarize the local evolution of genetic diversities.
- Assume mutation occurs at rate $\mu \ll 1$ and maintains an average heterozygosity H_{μ} over some intermediate spatial scale.
- Using the duality formula, we obtain

$$\frac{\operatorname{Cov}(\rho(x),\rho(y))}{H_{\mu}} \approx \mathsf{E}\Big[e^{-2\mu T_c}\Big] \approx \frac{K_0(|x-y|/\ell_{\mu})}{\mathcal{N} + \log(\ell_{\mu}/\kappa)}$$

A basis for inference: Call *H* the average heterozygosity in a sample taken from nearby sites x₁,..., x_n. If x_i ≠ x_j,

$$\frac{\operatorname{Cov}(\rho(x_i), \rho(x_j))}{\overline{H}} \approx \frac{K_0(|x_i - x_j|/\ell_{\mu})}{\mathcal{N}}$$
(1)

Assuming the frequencies are Gaussian fluct. around their mean, (1) yields a maximum likelihood scheme [Barton et al, 2012].

Correlations across loci

Correlations across loci

- Question : We understand well the genealogies at 1 locus, what about more than 1? A whole genome?
- Main characteristic: Two recombinants may coalesce again quickly, for ex. due to the next event which overlaps them.

 \Rightarrow Creates potentially strong correlations between the allele frequencies at neighbouring loci.

(ロ) (同) (三) (三) (三) (○) (○)

Correlations across loci

- Question : We understand well the genealogies at 1 locus, what about more than 1? A whole genome?
- Main characteristic: Two recombinants may coalesce again quickly, for ex. due to the next event which overlaps them.

 \Rightarrow Creates potentially strong correlations between the allele frequencies at neighbouring loci.

Sub-questions:

- → Are there regimes of parameters for which decorrelation between the ancestral lineages of an individual at two (or more) loci can occur ? What are the local mechanisms maintaining some correlations?
- → Difference with the pattern left behind by a selective sweep? by recurrent global bottlenecks?

On the scale of the whole population

Geographical space: \mathbb{R}^2 , Type space: $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate O(1) by an event of size O(1).

- \hookrightarrow A random number of parents is chosen;
- \hookrightarrow A fraction u_s of the local population is killed.
- \hookrightarrow A fraction r_n of the offspring are *recombinants* (i.e., inherit their types k_1 , k_2 from different parents)

A D F A 同 F A E F A E F A Q A

On the scale of the whole population

Geographical space: \mathbb{R}^2 , Type space: $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate O(1) by an event of size O(1).

- → A random number of parents is chosen;
- \hookrightarrow A fraction u_s of the local population is killed.
- \hookrightarrow A fraction r_n of the offspring are *recombinants* (i.e., inherit their types k_1 , k_2 from different parents)

Large ev. Each site is hit at rate ϕ_n^{-1} by an event of size $\mathcal{O}(n^{\alpha})$, where $\alpha > 0$. A fraction u_B of the local pop. is replaced, and we assume no recombination for simplicity.

Regime $1 \ll \phi_n \ll n^{2\alpha}$ as $n \to \infty$, and $(r_n)_{n \ge 1}$ is nonincreasing.

On the scale of the whole population

Geographical space: \mathbb{R}^2 , Type space: $K_1 \times K_2$ (2 loci)

Again, 2 types of events:

Small ev. Each site is hit at rate O(1) by an event of size O(1).

- → A random number of parents is chosen;
- \hookrightarrow A fraction u_s of the local population is killed.
- \hookrightarrow A fraction r_n of the offspring are *recombinants* (i.e., inherit their types k_1 , k_2 from different parents)
- Large ev. Each site is hit at rate ϕ_n^{-1} by an event of size $\mathcal{O}(n^{\alpha})$, where $\alpha > 0$. A fraction u_B of the local pop. is replaced, and we assume no recombination for simplicity.

Regime $1 \ll \phi_n \ll n^{2\alpha}$ as $n \to \infty$, and $(r_n)_{n \ge 1}$ is nonincreasing.

Sample 2 individuals at distance $x_n \gg n^{\alpha}$.

 \Rightarrow Joint distribution of the coal. time at the two loci, as $n \rightarrow \infty$?

Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

If we sample 2 individuals at distance x_n ≫ n^α, the genealogy at each locus is Kingman's coalescent when considered on the timescale

 $\phi_n \, n^{2(t-\alpha)}, \, t > \alpha.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Patterns of correlations across loci

Theorem [Etheridge & V. (2012)]

If we sample 2 individuals at distance x_n ≫ n^α, the genealogy at each locus is Kingman's coalescent when considered on the timescale

$$\phi_n n^{2(t-\alpha)}, t > \alpha$$

In addition, there exists a critical distance

$$D_n^* pprox n^lpha \sqrt{1 + rac{\log \phi_n}{r_n \phi_n}}$$

such that when *n* is large,

- \hookrightarrow If $x_n \gg D_n^*$, the ancestries at the two loci are independent,
- ightarrow If *x_n* ≪ *D*^{*}_{*n*}, there is a *decorrelation threshold* before which the genealogies are completely correlated, and after which they become approximately independent.

Conclusions

 $(\phi_n/n^{2\alpha}) n^{2t} \ll n^{2t}$

 \Rightarrow Large events generate a faster coalescence, and so (again) much larger correlation lengths between allele frequencies.

The second result gives us the sampling distance at which we should expect to see a decorrelation between the variations in allele freq. at the two loci, with or without large events.

 \Rightarrow Comparison with the effect of sweeps possible.

 But sampling distances must be very large. Locally, the probability of decorrelation is very small.

 \Rightarrow Consider instead many loci (or a long continuous genome).

Length of regions identical in state

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Assume only local reproduction (but robust to rare large events);
- Many loci, with recombination rate r between 2 neighbours;

Length of regions identical in state

- Assume only local reproduction (but robust to rare large events);
- Many loci, with recombination rate r between 2 neighbours;
- Sample 2 individuals at small/medium distance δ .
- Consider the regions of the genetic map where the two individuals are identical in state, in particular the large blocks generated by *early* coalescence.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Length of regions identical in state

- Assume only local reproduction (but robust to rare large events);
- Many loci, with recombination rate r between 2 neighbours;
- Sample 2 individuals at small/medium distance δ.
- Consider the regions of the genetic map where the two individuals are identical in state, in particular the large blocks generated by *early* coalescence.
- **Early coalescence** means on a timescale of order $(\delta/\sigma)^2$, where σ^2 is the variance of the motion of a lineage.

 \Rightarrow for some $\beta > 0$, set

$$\mu(\beta,\delta) = rac{\sigma^2}{2\beta\delta^2}$$
 and $T_{\mu} \sim \operatorname{Exp}(2\mu).$

A coalescence at locus *j* is *early* if $T_c^j \leq T_{\mu}$.

An approximation

Theorem [Barton et al. (2012)]

Let *X* be the length of a given region of identity in state generated by an early coal., when the two indv. are sampled at distance δ .

Then X follows approximately a geometric distribution with parameter $\gamma(\delta)$ given by

$$\gamma(\delta) = \frac{r_{\rm eff}}{r_{\rm eff} + \mu} \left(1 - \frac{K_0(1/\sqrt{\beta})}{\mathcal{N} + \log(\sqrt{\beta}\,\delta/\kappa)} \right),$$

where

- κ and N come from the Wright-Malécot approx.,
- $r_{\text{eff}} = r \psi(\delta)$ is an effective recombination rate,
- $\psi(\delta)$ is the **escape probability** of two recombinant lineages.

Simulations (by J. Kelleher)

CDF of long conserved blocks, (*left*) from a single sim. and (*right*) from 200 sim. R= 1, u= 0.75, r= 10⁻⁵, $\delta=$ 10 and 50k loci.

Heavy solid line: empirical; <u>Dashed line</u>: Geom($\gamma(\delta)$); <u>Solid line</u>: Geom(\hat{p}).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Still a lot of work...

The parameter γ(δ) depends 'only' on σ², N and κ. ⇒ Another route to inference?

Still a lot of work...

• The parameter $\gamma(\delta)$ depends 'only' on σ^2 , \mathcal{N} and κ .

 \Rightarrow Another route to **inference**?

Several problems:

- → The empirical CDF overestimates the probability of large regions (genealogies are embedded in the same *pedigree*).
- \hookrightarrow Not easy to relate regions of identity in state between the 2 genomes, and regions of early coalescence. In particular, which β should we take ?

(ロ) (同) (三) (三) (三) (○) (○)

Further questions

Natural selection

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and weight 1 to type 0 indv.

 \Rightarrow **Dual available**, but branches as well (potential selection events).

Natural selection

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and weight 1 to type 0 indv.

 \Rightarrow **Dual available**, but branches as well (potential selection events).

- Large neighbourhood size: when the impact u_n and the selection strength s_n tend to 0 appropriately,
 - → In 1*d* and with only local rep., the frequency of type 1 individuals (suitably rescaled) converges to the solution to

$$dw = rac{1}{2} \Delta w \, dt + ilde{s}w(1-w) \, dt + \sqrt{rac{1}{N_e} \, w(1-w)} \, B(dt,dx),$$

A D F A 同 F A E F A E F A Q A

where B(dt, dx) is a space-time white noise.

- \hookrightarrow In higher dim., no noise in the limit.
- ← Equivalent results when large-scale bottlenecks occur, and only the motion is affected (still a local selection pressure and local coalescence).

(Work in progress with A. Etheridge and F. Yu.)

Natural selection

We bias the choice of the parent, by giving a weight 1 + s to type 1 individuals, and weight 1 to type 0 indv.

 \Rightarrow **Dual available**, but branches as well (potential selection events).

- Large neighbourhood size: when the impact u_n and the selection strength s_n tend to 0 appropriately,
 - → In 1*d* and with only local rep., the frequency of type 1 individuals (suitably rescaled) converges to the solution to

$$dw = rac{1}{2} \Delta w \, dt + ilde{s}w(1-w) \, dt + \sqrt{rac{1}{N_e} \, w(1-w)} \, B(dt,dx),$$

where B(dt, dx) is a space-time white noise.

- \hookrightarrow In higher dim., no noise in the limit.
- ← Equivalent results when large-scale bottlenecks occur, and only the motion is affected (still a local selection pressure and local coalescence).

(Work in progress with A. Etheridge and F. Yu.)

Small neighbourhood size: The pattern produced is very different (cf. Nick's presentation).

Range expansion

Extreme case of selection: only type 1's reproduce.

Expanding population of Pseudomonas aeruginosa (courtesy of Kevin Foster), and a simulation of the modified SLFV, by J. Kelleher.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(Work in progress with A. Etheridge and J. Kelleher)

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●