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Sources of Randomness in Population Genetics

1. Survival, Movement, Finding a Mate, Reproduction

Complicated: the fundamental parameters and rules are not
well known. Ultimately, these produce a population pedigree,
or set of family relationships.

2. Genetic Transmission

In diploid organisms, genetic transmission follows Mendel’s
Laws, which are well known.

3. Mutation (also Recombination)

DNA replication error seems Markovian and has a very low
rate, ∼ 10−8/site/generation in humans.



Questions of This Talk

I General: To what extent can Mendelian inheritance alone
account for the randomness in times to common ancestry that
is observed among loci within genomes?

I New and preliminary:

What are the effects of very large families or selective sweeps
on coalescence times, as mediated by pedigrees?

Are standard coalescent predictions for two loci with
recombination accurate when the pedigree is fixed?



Population Genetic Models (e.g. Wright-Fisher Model)

We combine Mendelian inheritance with assumptions about
survival, reproduction, etc., to model the dynamics of genetic
variation over time. Simple models typically assume:

1. The organism is haploid (or diploid and hermaphroditic).

2. The population is closed and well mixed (randomly mating).

3. The population size N is large and constant over time.

4. Genetic variation is selectively neutral.

Wright, Fisher, Kimura, and others developed a diffusion theory to
predict changes in allele frequencies over time. Kingman, Hudson,
Tajima, and others developed backward-time coalescent theory.



Exchangeable Population Models of Cannings (1974)

The number of “gene copies” 2N is constant over time. The
“offspring numbers” (ν1, . . . , ν2N) are exchangeable random
variables, with the requirement that

∑2N
i=1 νi = 2N.

t+1   Past 

  t   Present

0 3 0 1 0 2 1 1

The Wright-Fisher model (of diploid hermaphrodites) can be
reduced to a (haploid) Cannings model.



Buri (1956) Experiment: Application of Diffusion Theory
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Experimental results, following
allele frequencies over 19
generations in 108 independent
populations, each with N = 16.
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Prediction of single-locus
diffusion theory about the
future of one population,
with “effective” size N = 9.



Application of Coalescent Theory to Genetic Data

Kingman’s coalescent has been used to explain variation in levels
of polymorphism among loci within genomes.

# SNPs Poisson Coalescent Observed

0 8256 8767 8796
1 3040 2332 2247
2 617 663 668
3 99 200 214
4 16 66 102

Table 3 of The International SNP Map Working Group (2001) A
map of human genome sequence variation containing 1.42 million
single nucleotide polymorphisms. Nature 409:928-933.



Interpretation: Independent Loci, Independent Genealogies

Exponential distribution of
pairwise coalescence times
(among loci).
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(Also, there is variation due to the random process of mutation.)



Two Conceptually Different Random Experiments

1. Repetition of the entire population process in independent
replicate populations (as in Buri’s laboratory experiment).

2. Repetition of the process of Mendelian inheritance among
different genetic loci within a single population pedigree.

For natural populations (1) is entirely hypothetical, whereas (2) is
realized when we take samples from different genetic loci.



Averaging in Kingman’s Coalescent

Kingman obtained the coalescent in the limit N →∞, from a
time-homogeneous Markov model (subset of Cannings’ model).

P(coal) = E

[
2N∑
i=1

νi (νi − 1)

2N(2N − 1)

]
=

E [ν1(ν1 − 1)]

2N − 1

Homogeneity is achieved, as above, by averaging over the process
of reproduction (i.e. over the pedigree in diploid biparental models).

As an aside, note that here Ne = N/σ2, where σ2 is Var[ν1].



A Small Piece of the Human Population Pedigree

Elizabeth
of Castile

Ferdinand
of Aragon

Mary
of Aragon

Manuel I
of Portugal

King Philip IJoanna I
of Aragon

Isabella
of Portugal

John III
of Portugal

King Charles I

Catherine

Mary
of Portugal

King Philip II

Alvarez et al (PLoS One, 2009 4:e5174) paper about Spanish
Habsburg King Charles II (F = 0.254).



Pedigree-Coalescent Simulations

1. Three different pedigree simulations based on the two-sex
Wright-Fisher model.

2. Pedigrees generated using 19th-century data from seven
parishes in Sweden:

All men married between 1824 and 1840 and all of their
descendants, and all spouses, up to 1896.

512 extended families were chopped into 1884 two-generation
families containing a total of 4451 parents and 7889 offspring.



Simulations of Diploid, Two-Sex Reproduction

For this talk: random-mating (WF) and constant, equal sex ratio.

Previous 
generation

Current 
generation

1. Generate the pedigree of the population (×30N generations).

2. Sample two individuals and follow gene copies back through
the pedigree (they go 50:50 to mother or father).



Simulations of Coalescence Times (n = 2) for 1000 Loci

“WF ind pairs”

1000 coalescence times for 1000 pairs of individuals.

“WF same pair”

1000 coalescence times for a single pair of individuals.

“cyclical WF”

Same as “WF same pair” but using a single realization
of a one-generation pedigree 30N times.

“SF same pair”

Like “WF same pair” but using Swedish families, and
attempting to account for (no) sib and cousin mating.



The Power to Reject the Kingman Coalescent
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H0: The pairwise coalescence times for the 1000 simulated loci are
i.i.d. exponential random variables. (χ2 test with α = 0.05)

P(reject) is the proportion of pedigree-samples (out of 2000 total)
for which the null model is rejected.



Simulations of Coalescence-Probability Distributions

1. Generate 10000 pedigrees under two-sex Wright-Fisher model.

2. Sample one pair of individuals.

3. For each pedigree and sample-pair (1 & 2):

Simulate 108 coalescence times.

Record the fraction of times that coalescence
occurred in each of the past 20 generations.

4. Make a histogram of these probabilites for each generation.



Population Size and Coalescence-Probability Distributions
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The probability of coalescence is highly variable in the recent past.

After about log2(2N) generations it becomes nearly homogeneous.



Pedigree-Coalescence Times v. Geometric Times
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Left: Pairwise times on Wright-Fisher pedigrees with N = 105.

Right: Times from a geometric distribution with p = 1/(2× 105).



Coalescence-Probability Trajectories for 5 Single Pedigrees
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Within a single pedigree, the coalescence probability jumps wildly
in the initial ∼ log2(2N) generations, then settles near 1/(2Ne) in
the more distant past.



Modeling Variation in Coalescence-Probabilities
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Conclusions

1. Kingman’s coalescent does a surprisingly good job at
predicting the distribution of coalescence times among
independent loci on a variety of kinds of fixed pedigrees.

2. Even so, a closer look at distributions of coalescence times
uncovers structure, in the most recent ∼ log2 2N generations,
that is inconsistent with the coalescent.

3. The population pedigree may constrain coalescence times in
ways not predicted by standard models.

4. Current and future work:

More on large families, selection, recombination.

Migration, bottlenecks, range expansions.

Understand why the coalescent works so well.
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