Tree valued spatial Λ -Cannings and Λ -Fleming-Viot dynamics

Anita Winter, Universität Duisburg-Essen

(with Andreas Greven (Erlangen) and Anton Klimovsky (EURANDOM))

Marseille, CIRM Luminy, 15th June 2012 Probability, Population Genetics and Evolution

A resampling model

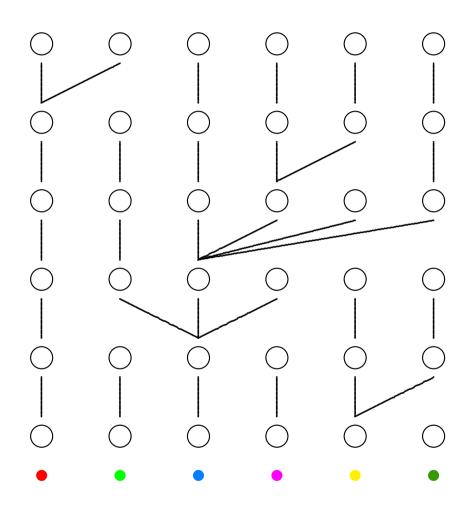
Type space K, compact

We consider a multi-type asexual population of fixed size N.

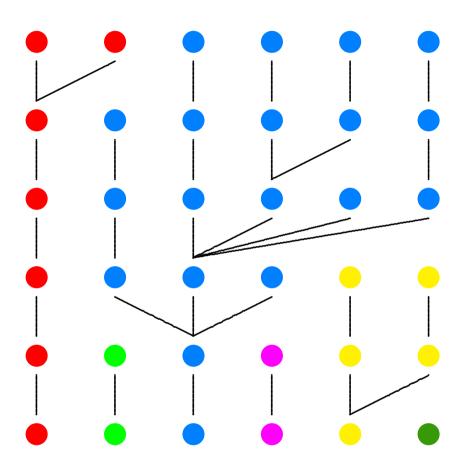
For each $k \in \{2, ..., N\}$ at rate $\lambda_{N,k}$,

- a k-tuple $\{i_1,...,i_k\}$ of individuals is killed, and
- replaced by k copies of the individual i_{ℓ} chosen at random among $\{i_1, ..., i_k\}$. That is, the offspring inherits the type from i_{ℓ} .

$\Lambda\text{-Cannings dynamics}$



$\Lambda\text{-Cannings dynamics}$



Consequences of consistency

Consistency. (= same dynamics is observed in any sample)

$$\lambda_{N,k} = \lambda_{N+1,k} + \lambda_{N+1,k+1}.$$

Pitman 1999, Sagitov 1999

There exists a finite measure Λ on [0,1] with

$$\lambda_{N,k} := \int_0^1 \Lambda(\mathrm{d}x) \, x^{k-2} (1-x)^{n-k}.$$

Examples of Λ **-Cannings.**

 $\Lambda = \delta_0$ (Kingman coalescent); $\Lambda = \delta_1$ (star-shaped)

From particle model to diffusion limits

Interesting functional.

 $X_t^{N,\Lambda}:=$ empirical type distribution at time t

Bertoin & Le Gall (2003)

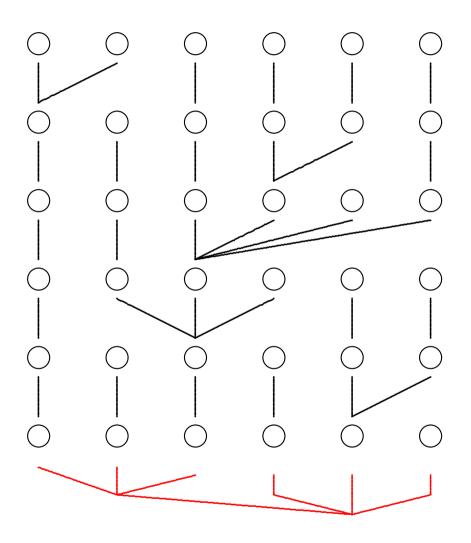
Measure-valued process $(N \to \infty)$. X^{Λ} is a strong Markov process with values in $\mathcal{M}_1(K)$ whose generator acts on functions of the form

$$\mu \mapsto \prod_{i=1}^{n} \langle \mu, \psi_i \rangle = \langle \mu^{\otimes n}, \prod_{i=1}^{n} \psi_i \rangle$$

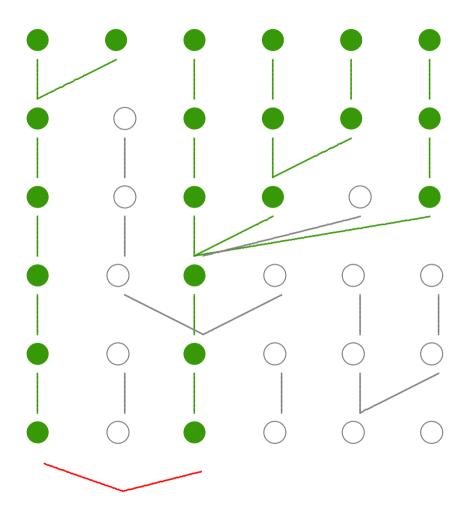
as follows:

$$\Omega_{\Lambda-\text{FV}} \prod_{i=1}^{n} \langle \cdot, \psi_i \rangle (\mu)
= \sum_{\substack{J \subseteq \{1, 2, ..., n\} \\ \#J > 2}} \lambda_{n, \#J} (\langle \cdot, \prod_{j \in J} \psi_j \rangle - \prod_{j \in J} \langle \cdot, \psi_j \rangle) \cdot \prod_{i \in \{1, 2, ..., n\} \setminus J} \langle \cdot, \psi_i \rangle (\mu).$$

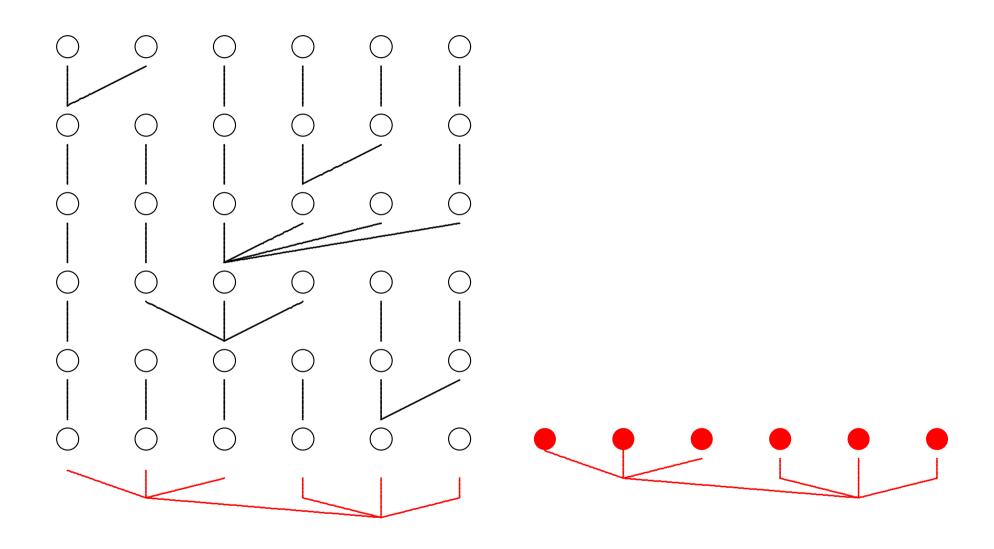
Tracing back ancestry

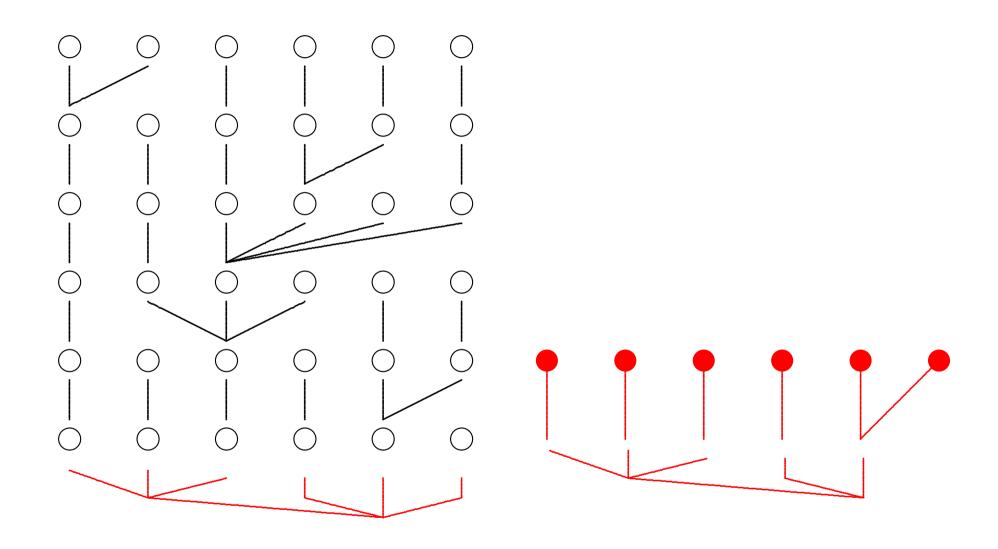


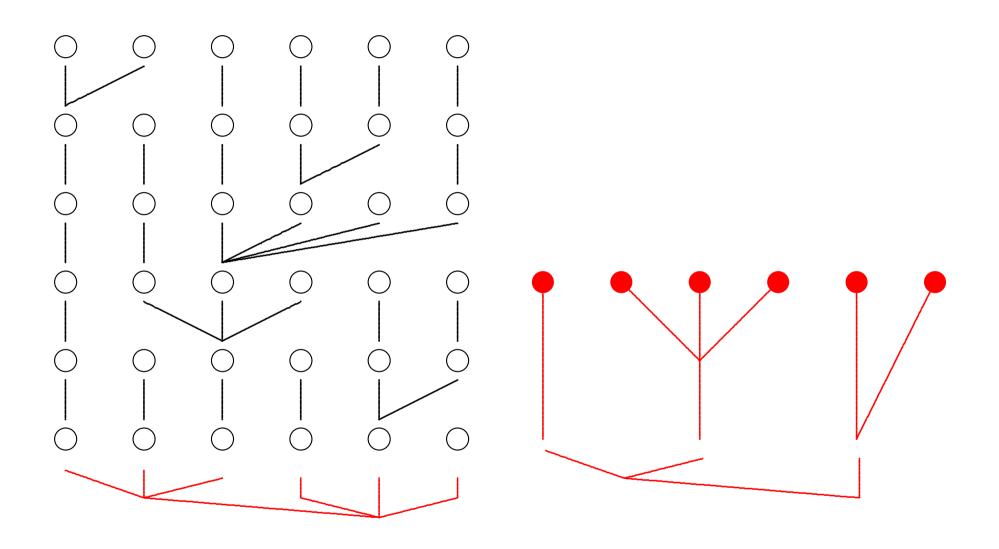
Tracing back ancestry

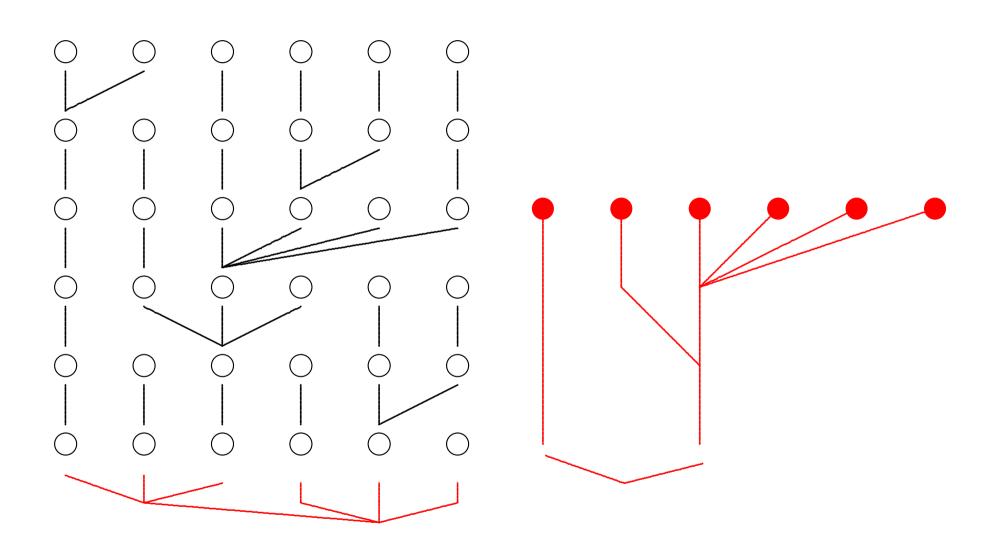


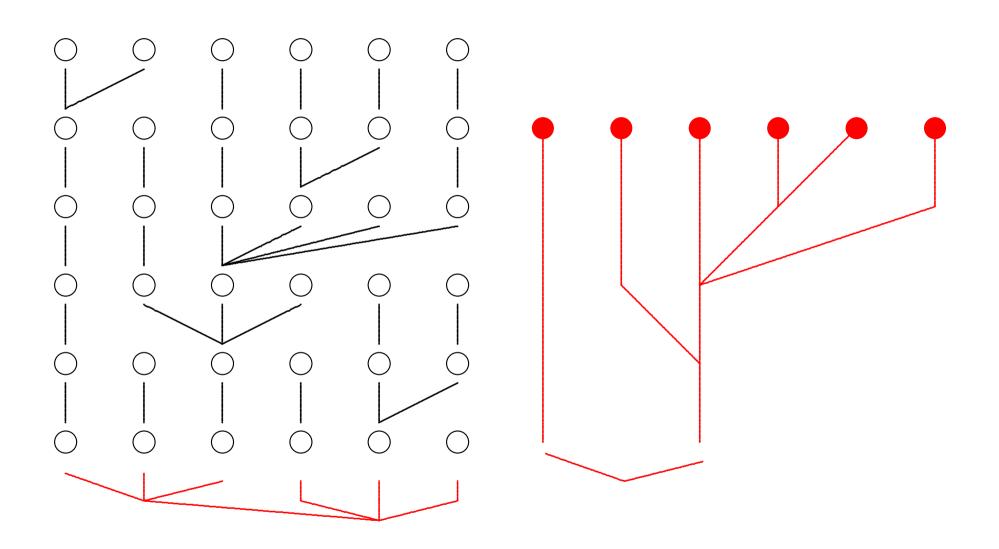
 Λ -coalescent (in backward picture) given n ancestral lines, k of them merge at rate $\lambda_{n,k}$

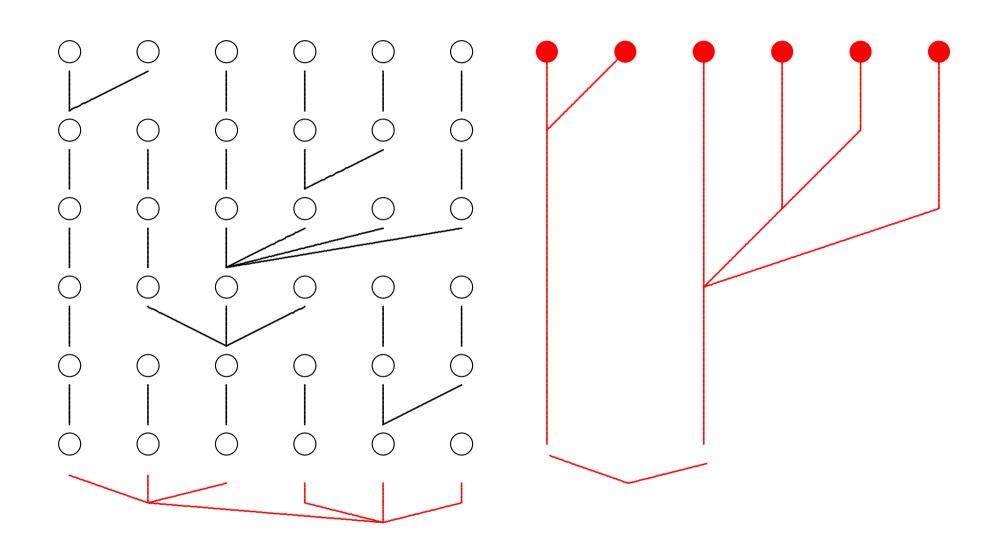












Encoding genealogies ...

We aim to describe the **genealogical tree** of the **whole population** while making ancestral lines of **all possible samples explicit**.

We encode our genealogies by
$$(U, r, \mu)$$

set of individuals

genealogical distances

genealogical distances

appling measure

and evaluate samples via test functions of the form

$$\Phi^{n,\phi}(U,r,\mu) := \int_{U^n} \mu^{\otimes n}(\underline{\mathrm{d}}\underline{u}) \,\phi\big((r(u_i,u_j))_{1 \le i < j \le n}\big).$$

Such test functions are referred to as polynomials.

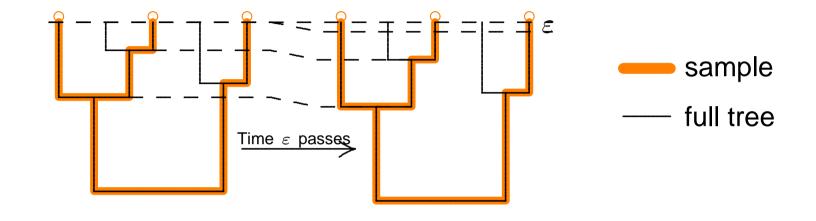
The state space: more formal

 $\mathbb{U} := \{\text{isometry classes of ultra metric probability spaces}\}.$

Gromov (2000); Greven, Pfaffelhuber & Winter (2009)

We equip U with the **Gromov-weak topology** which means convergence in the sense of **convergence of all polynomials** (with continuous bounded test functions).

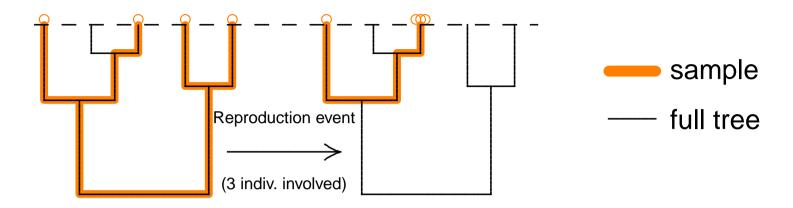
Tree growth



$$\Omega_{\text{growth}}^{N,\Lambda} \Phi(U, r, \mu)
= 2 \int_{U^n} \mu^{\otimes n} (\underline{d}\underline{u}) \sum_{1 \leq i < j \leq n} \frac{\partial \phi}{\partial r_{i,j}} ((r(u_i, u_j))_{1 \leq i < j \leq n}) + \mathcal{O}(\frac{1}{N}),$$

where the error term comes from multiples in a sample.

Reproduction



$$\begin{split} &\Omega_{\text{repro}}^{N,\Lambda} \Phi(U,r,\mu) \\ &= \sum_{J \subset \{1,2,...,n\}, \#J > 2} \lambda_{n,\#J} \int_{U^n} \mu^{\otimes n} (\mathrm{d}u) \, \frac{1}{\#J} \sum_{j_0 \in J} \big\{ R_J^{j_0} \phi - \phi \big\} \big((r(u_i,u_j))_{1 \le i < j \le n} \big) + \mathcal{O} \big(\frac{1}{N} \big) \end{split}$$

with the replacement operator

$$R_J^{j_0} \phi \left((r_{i,j})_{1 \le i < j \le n} \right) := \phi \left((r_{\tilde{i}, \tilde{j}})_{1 \le i < j \le n} \right)$$

where for all $1 \leq i \leq n$,

$$ilde{i} := \left\{ egin{array}{ll} j_0, & ext{if } i \in J, \ i, & ext{if } i
ot\in J. \end{array}
ight.$$

The tree-valued generalized Λ -FV

Consider the limiting operator

$$\begin{split} \Omega^{\Lambda} \Phi \big(U, r, \mu \big) &:= \Omega^{\Lambda}_{\text{repro}} \Phi (U, r, \mu) + \Omega^{\Lambda}_{\text{growth}} \Phi (U, r, \mu) \\ &= \sum_{J \subseteq \{1, 2, ..., n\}, \#J \ge 2} \lambda_{n, \#J} \int_{U^n} \mu^{\otimes n} (\mathrm{d}u) \, \frac{1}{\#J} \sum_{j_0 \in J} \big\{ R_J^{j_0} \phi - \phi \big\} \big((r(u_i, u_j))_{1 \le i < j \le n} \big) \\ &+ 2 \int_{U^n} \mu^{\otimes n} (\mathrm{d}\underline{u}) \sum_{1 < i < j < n} \frac{\partial \phi}{\partial r_{i,j}} \big((r(u_i, u_j))_{1 \le i < j \le n} \big) \end{split}$$

acting on the set

 $\Pi^1 :=$ polynomials with differentiable, bounded test functions.

Theorem 1. (Greven, Klimovsky & W.) Let $\mathbf{P_0}$ be a probability measure on \mathbb{U} . The $(\mathbf{P_0}, \Omega^{\Lambda}, \Pi^1)$ -martingale problem is well-posed provided that the "dust-free" property holds, i.e., $\int_0^1 \Lambda(\mathrm{d}x) \frac{1}{x} = \infty$. The solution \mathcal{U}^{Λ} is a strong Markov process with the Feller property.

Existence: Particle Approximation

Theorem 2. (Greven, Klimovsky & W.) Let $\mathcal{U}^{N,\Lambda}$ the tree-valued Λ -Cannings dynamics with population size N. Assume that the initial conditions convergence in $\mathcal{U}_0 \in \mathbb{U}$. Then

$$(\mathcal{U}_t^{N,\Lambda})_{t\geq 0} \underset{N\to\infty}{\Longrightarrow} (\mathcal{U}_t^{\Lambda})_{t\geq 0}.$$

Keys in proof. Convergence of generators + Compact containment

For population models with "ancestor-descendant" relationships whose type proportions evolve as a martingale, **compact containment follows** already **from convergence of 1-dimensional marginals**.

The Λ -coalescent measure tree

- run a Λ-coalescent
- ullet equip $\mathbb N$ with genealogical distance, r_{gen} (and complete as a metric space)

For each $n \in \mathbb{N}$ put, consider

$$\mathcal{U}_n^{\Lambda,\downarrow} := \left((\bar{\mathbb{N}}, r_{\mathrm{gen}}), \frac{1}{n} \sum_{i=1}^n \delta_i \right)$$

Gromov (2000); Greven, Pfaffelhuber & W. (2009)

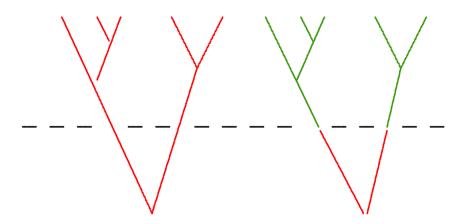
Fact. Provided the dust-free property holds there exists $\mathcal{U}_{\infty}^{\Lambda,\downarrow} \in \mathbb{U}$ such that

$$\mathcal{U}_n^{\Lambda,\downarrow} \underset{n\to\infty}{\Longrightarrow} \mathcal{U}_{\infty}^{\Lambda,\downarrow}.$$

 $\mathcal{U}_{\infty}^{\Lambda,\downarrow}$ is called Λ -coalescent measure tree.

Uniqueness of MP = Tree-valued duality

generalized Λ -FV $(U, r^{\uparrow}, \mu)_t$ dual to Λ -coalescent $(K, r^{\downarrow})_t$



Greven, Pfaffelhuber, W. (2012)

Theorem 3. [Greven, Klimovsky, W.]

$$\mathbf{E} \Big[\int \mu_t^{\otimes n} (\mathrm{d}\underline{u}) \phi \big((\mathbf{r}_t^{\uparrow}(\mathbf{u}_i, \mathbf{u}_j))_{1 \leq i < j \leq n} \big) \Big]$$

$$= \mathbf{E} \Big[\int \prod_{\varpi \in K_t} \mu_0 (\mathrm{d}v_{\varpi}) \phi \big((\mathbf{r}_t^{\downarrow}(i, j) + \mathbf{r}_0^{\uparrow}(\mathbf{v}_{\varpi(i)}, \mathbf{v}_{\varpi(j)}))_{1 \leq i < j \leq n} \big) \Big]$$

The infinitely old population

Theorem 4. (Greven, Klimovsky & W.) Assume that Λ satisfies the dust-free property. Then

$$\mathcal{U}_t^{\Lambda} \underset{t \to \infty}{\Longrightarrow} \mathcal{U}_{\infty}^{\Lambda,\downarrow}.$$

Proof. It is enough to show that

$$\mathbb{E}\left[\Phi\left(\mathcal{U}_{t}^{\Lambda}\right)\right]\underset{t\to\infty}{\longrightarrow}\mathbb{E}\left[\Phi\left(\mathcal{U}_{\infty}^{\Lambda,\downarrow}\right)\right],$$

for all polynomials $\Phi \in \Pi^1$.

This, however, follows by duality.

Adding mutation

A resampling model with mutation

Type space K, compact

We consider a multi-type asexual population of fixed size N.

For each $k \in \{2, ..., N\}$ at rate $\lambda_{N,k}$,

- k-individuals $\{i_1, ..., i_k\}$ are killed, and
- are replaced by k copies of the individual i_{ℓ} chosen at random among $\{i_1, ..., i_k\}$. That is, the offspring inherits the type from i_{ℓ} .

For each individual of type x, at rate m

• the type **mutates** from x to y with probability M(x, dy).

Enriching the state space with types ...

We aim to describe the **genealogical tree** of the **whole population** while making ancestral lines and types of all possible samples explicit.

We encode our genealogies by
$$(U, r, \mu, \kappa)$$

set of individuals set of individuals sampling measure genealogical distances sampling measure samples via test functions of the form

and evaluate samples via test functions of the form

$$\Phi^{n,\phi,f}(X,r,\mu,\kappa) := \int_{U^n} \mu^{\otimes n}(\underline{\mathrm{d}}\underline{u}) \big((\phi \circ \underline{\underline{r}}) \cdot (f \circ \kappa) \big) (\underline{u}).$$

with

$$\underline{\underline{r}} : \underline{u} \mapsto (r(u_i, u_j))_{1 \le i < j \le n}$$

The state space including types: more formal

 $\mathbb{U}^K := \{ \text{mark function invariant isometry classes of ultra metric probability spaces} \}.$

Depperschmidt, Greven & Pfaffelhuber (2011)

We equip \mathbb{U}^K with the marked Gromov-weak topology which means convergence in the sense of convergence of all polynomials (with continuous bounded test functions).

Well-posed martingale problem

Consider the operator

$$\Omega^{\Lambda,M}\Phi\big(U,r,\mu,\kappa\big):=\Omega_{\mathrm{repro}}^{\Lambda,M}\Phi(T,r,\mu,\kappa)+\Omega_{\mathrm{growth}}^{\Lambda,M}\Phi(T,r,\mu,\kappa)+\Omega_{\mathrm{mutation}}^{\Lambda,M}\Phi(T,r,\mu,\kappa)$$

acting on the set

 $\Pi^1 := \text{polynomials with "smooth" bounded test functions } \phi \text{ and } f$,

where

$$\begin{split} &\Omega_{\mathrm{mut}}^{\Lambda,M} \Phi(T,r,\mu,\kappa) \\ &:= m \cdot \int \mu^{\otimes n} (\mathrm{d}u) \, \phi \circ \underline{\underline{r}}(\underline{u}) \cdot \int_{K} M(\kappa(u_{i}),\mathrm{d}y_{i}) \big\{ f(\kappa(u_{1}),...,y_{i},...,\kappa(u_{n})) - f(\kappa(u_{1}),...,\kappa(u_{i}),...,\kappa(u_{n})) \big\}. \end{split}$$

Theorem 5. (Greven, Klimovsky & W.) Let $\mathbf{P_0}$ be a probability measure on \mathbb{U}^K . The $(\mathbf{P_0}, \Omega^{\Lambda,M}, (\Pi^K)^1)$ -martingale problem is well-posed provided that the "dust-free" property holds. The solution $\mathcal{U}^{\Lambda,M}$ is a strong Markov process with the Feller property.

The equilibrium with mutation

Assume that $M(\cdot, \cdot)$ is **ergodic**, i.e., there is a probability measure $\pi \in \mathcal{M}_1(K)$ with $\pi M = \pi$ and $M^{(n)}(x, \cdot) \Longrightarrow_{n \to \infty} \pi$, for al $x \in K$.

Theorem 6. Greven, Klimovsky & W. Under these assumptions, the sequence

$$\left(\mathcal{U}_t^{\Lambda,M}\right)_{t\geq 0}$$

converges for all initial $\mathcal{U}_0^{\Lambda,M}$, as $t \to \infty$.

The equilibrium $\mathcal{U}_{\infty}^{\Lambda,M,\downarrow}$ can be represented by first realizing the the Λ -coalescent tree $\mathcal{U}_{\infty}^{\Lambda}$, and then given the latter, realizing a tree-indexed mutation random walk in equilibrium.

Note. The rate of convergence will dependent on the measure Λ .

Question. Do the tree-length decrease stochastically in Λ ?

Adding migration

The spatial Λ -Cannings model

Geographic space. G, discrete

We consider a multi-type asexual population of fixed size N which individuals placed at a site $x \in G$

- Migration. The individuals perform independently rate 1 random walks with transition kernel a(x,y)
- Reproduction. At each site $x \in G$, for each $k \in \{2, ..., N\}$ at rate $\lambda_{N,k}$,
 - k-individuals $\{i_1, ..., i_k\}$ currently situated in G are killed, and
 - replaced by k copies of the individual i_{ℓ} chosen at random among $\{i_1, ..., i_k\}$. That is, the offspring inherits the type from i_{ℓ} .
- Mutation. For each individual of type x, at rate m, the type mutates from x to y with probability M(x, dy).

... and its dual spatial Λ -coalescent

Spatial Λ -coalescent is a strong Markov process which takes values in the set of partitions of all individuals where each partition element is assigned a site in G such that any "locally finite" subpopulation/-partition behaves as follows:

- Migration. Partition elements change their position according to a rate 1 random walk with transition probabilities $\bar{a}(x,y) := a(y,x)$.
- Λ -coalescence. Each local partition performs a Λ -coalescent.

Constructions of the Λ -coalescent.

- Limic & Sturm (2006) for finite G
- via Donnelly & Kurtz (1990ies)'s look-down

Observing genealogies

For observing the genealogies as marked metric measure spaces, we have different choices:

- Global point of view (*G* finite necassary). One sampling measure for the whole population.
 - Start with locally finite populations on a finite G.
 - Take the uniform distribution μ on all individuals.
 - Let the local intensity tend to infinity.
- Local point of view. One sampling measure for each local population.
 - Start with locally finite populations on possible infinite G.
 - Take in each site $x \in G$ the uniform distribution μ_x on all individuals placed at site x.
 - Let the local intensity tend to infinity.

Global point of view

Well-posed martingale problem; G finite

Consider the operator

$$\Omega^{\Lambda,M,a} = \Omega^{\Lambda,M} + \Omega^a_{\text{migration}}$$

with $\kappa:U\to K\times G$ and

$$\Omega_{\text{migration}}^{a} \Phi^{n,\phi,f} (U, r, \mu, \kappa) := \int \mu^{\otimes n} (du) \, \phi \circ \underline{\underline{r}}(\underline{u}) \cdot \sum_{i=1}^{n} A^{(i)} f \circ \kappa(\underline{u})$$

and $A^{(i)}$ being the generator of a single individual random walk acting on the n^{th} individual in the sample.

Theorem 7. (Greven, Klimovsky & W.) For each initial tree in $\mathbb{U}^{K\times G}$, the $(\Omega^{\Lambda,M,a},(\Pi^{K\times G})^1)$ -martingale problem is well-posed.

Call its solution $\mathcal{U}^{\Lambda,M,a}$ the spatial tree-valued Λ -Fleming-Viot.

"Wrapping around torus"; $d \ge 3$

$$G_N := [-N, N]^d \cap \mathbb{Z}^d, \ a_N(x, y) := \sum_{z: z=y \bmod G_N} a(0, z)$$

 $\widehat{\mathcal{U}}^{\Lambda,a_N} := \text{rescaled tree-valued spatial } \Lambda\text{-Fleming-Viot dynamics:}$

- speed up time by a factor $(2N+1)^d$
- scale down distances by a factor of $(2N+1)^{-d}$

$$\kappa := 2 \cdot \left(\rho + \frac{2}{\lambda_{2,2}}\right)^{-1}, \qquad \rho := \text{escape probability on } \mathbb{Z}^d$$

Greven, Limic & W. (2005), Limic & Sturm (2006)

For all
$$t > 0$$
, $\Phi \in \Pi^1$, $\mathbb{E}\left[\Phi\left(\widehat{\mathcal{U}}_t^{\Lambda, a_N}\right)\right] \xrightarrow[N \to \infty]{} \mathbb{E}\left[\Phi\left(\mathcal{U}_t^{\kappa \delta_0}\right)\right]$.

Theorem 8. (Greven, Klimovsky and W.) If the initial states converges in \mathbb{U} and $\sum_{x \in \mathbb{Z}^d} \hat{a}(0,x)|x|^{2+d} < \infty$, then

$$(\widehat{\mathcal{U}}_t^{\Lambda,a_N})_{t\geq 0} \underset{N\to\infty}{\Longrightarrow} (\mathcal{U}_t^{\kappa\delta_0})_{t\geq 0}.$$

proof uses techniques from Dawson, Greven & Vaillancourt (1995)

Diffusive clustering of genealogies in d=2

$$G_N := [-N, N]^2 \cap \mathbb{Z}^2, \ a_N(x, y) := \sum_{z: z=y \bmod G_N} a(0, z), \ \alpha \in (0, 1]$$

 $\widehat{\mathcal{U}}^{\Lambda,a_N} := \text{rescaled tree-valued spatial } \Lambda\text{-Fleming-Viot dynamics:}$

- observe at times $N^{\frac{2}{\alpha}}$
- stretch distances (non-linearly) via $\tau^{\alpha}(s) := \frac{\log(1+s)}{2\log N}$

Greven, Limic & W., Heuer & Sturm

For all
$$\alpha \in (0,1]$$
, $\Phi \in \Pi^1$, $\mathbb{E}\left[\Phi(\widehat{\mathcal{U}}_{\alpha}^{\Lambda,a_N})\right] \xrightarrow[N \to \infty]{} \mathbb{E}\left[\Phi(\mathcal{U}_{-\log \alpha}^{\delta_0})\right]$.

Theorem 9. (Greven, Klimovsky and W.) If the initial states converges in \mathbb{U} and $\sum_{x \in \mathbb{Z}^d} \hat{a}(0,x)e^{\lambda x} < \infty$ for some $\lambda > 0$, then

$$(\widehat{\mathcal{U}}_{\alpha}^{\Lambda,a_N})_{\alpha\in(0,1]} \overset{\text{f.d.d.}}{\Longrightarrow} (\mathcal{U}_{-\log\alpha}^{\delta_0})_{\alpha\in(0,1]}.$$

Local point of view

Infinite geographic space

Countable infinite geographic space requires σ -finite sample measures.

Localization. Fix a sequence $G_n \uparrow G$ with $\#G_n < \infty$. We refer to (U, r, μ, κ) as marked mm-space iff for every $n \in \mathbb{N}$, the restriction (U_n, r_n, κ_n) to all individuals with a spatial mark in G_n together with $\mu_n := \frac{1}{\#G_n} \mu\big|_{U_n}$ is a marked metric probability space.

Define the spatial tree-valued Λ -Fleming-Viot

$$(\mathcal{U}_t^{\Lambda,M,a})_{t\geq 0} := ((U_t, r_t, \{\mu_t^x; x \in G\}, \kappa_t))_{t\geq 0}$$

via the look-down process and local approximation.

The associated measure-valued Λ -Fleming-Viot

 $\overline{\mathcal{U}^{\Lambda,M}}$, a; tree-valued Λ -Fleming-Viot.

Put for each $x \in G$,

$$X_t^{\Lambda,M,a,x} := \mu_t \{ u \in U_t : \kappa_t(u) = \cdot \times \{x\} \} \in \mathcal{M}_1(K).$$

Theorem 10. (Greven, Klimovsky & W.) Assume that the underlying symmetrized random walk is irreducible, and that $\{X_0^{\Lambda,M,a,x}; x \in G\}$ is translation invariant and ergodic with intensity $\theta \in \mathcal{M}_1(K)$. Then there is a translation invariant measure ν_{θ} with intensity θ such that

$$X_t^{\Lambda,M,a} \Longrightarrow_{t\to\infty} \nu_{\theta}.$$

Dichotomy

Transient symmetrized walks imply ν_{θ} is spatially ergodic.

Recurrent symmetrized walk. $\nu_{\theta} = \int_{K} \theta(\mathrm{d}k) (\delta_k)^{\otimes G}$.

Tree-valued equilibrium (including mutation)

since distances can tend to ∞ , put $\tilde{r}_t(x,y) := 1 - e^{-r(x,y)}$

write $\widetilde{U}_t^{\Lambda,M,a}$ for the tree-valued dynamics with shrinked distances

Theorem 10. (Greven, Klimovsky & W.) For every intensity $\theta \in \mathcal{M}_1(K)$ there is a invariant measure

$$\widetilde{\mathcal{U}}_{\infty}^{\Lambda,M,a,\downarrow,\theta}$$
.

If the associate measure-valued process of the initial state is **translation invariant and ergodic** with intensity measure θ , then

$$\widetilde{U}_t^{\Lambda,M,a} \Longrightarrow_{t \to \infty} \widetilde{\mathcal{U}}_{\infty}^{\Lambda,M,a,\downarrow,\theta}.$$

Representation. Here again we can read of the genealogiy of an infinitely old population from the look-down representation of the spatial Λ -coalescent measure tree, and then assign every "tree" a type in K by sampling i.i.d. from θ .

The local finite system scheme; $d \ge 3$

Theorem 11. (Greven, Klimovsky & W.) If the associated measure-valued process is initially translation invariant and ergodic with intensity θ , then for all t > 0,

$$\left(\widetilde{\mathcal{U}}_{t\cdot(2N+1)^d+s}^{\Lambda,M,a_N}\right)_{s\geq 0}\underset{N\to\infty}{\Longrightarrow} \mathcal{L}^{\widetilde{\mathcal{U}}_{\infty}^{\Lambda,M,a,\downarrow,\theta_t}}\left[\left(\widetilde{\mathcal{U}}_s^{\Lambda,M,a}\right)_{s\geq 0}\right],$$

where the intensity θ_t of the equilibrium equals in law a (non-spatial) rate κ s Fleming-Viot started in θ .

Many thanks