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An example

Figure:
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How to model the recombination in the
picture?
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An example for ARG
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An example for ARG

Assume that x > b and x < c , d .
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Figure: Marginal Ancestral tree
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ARG

For each gene we have a different coalescent tree, because of the presence
of the recombination. So the ARG contains all these trees.
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Ewens Sampling formula without
recombination
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ESF without recombination

Infinitely-many-alleles mutation scheme, a configuration is considered
as c = (c1, · · · , cn)

ci = number of alleles represented i times

and |c | = c1 + 2c2 + · · ·+ ncn = n.

q(c) := P(sample of size |c | taken at stationarity has configuration c),

with q(e1) = 1.

Theorem

In a stationary sample of size n, the probability of sample configuration c is

q(c) = P(C1(n) = c1, · · · ,Cn(n) = cn) = 1{|c|=n}
n!

θ(n)
Πn
j=1(

θ

j
)cj

1

cj !

where x(j) = x(x + 1) · · · (x + j − 1), j = 1, 2, · · · and
|c | = c1 + 2c2 + · · ·+ ncn.
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ESF with recombination for a sample of size
n = 2, 3
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The Model

2-locus infinite-alleles model.

loci are denoted by L and R.

TL (resp. TR):= time that locus L (resp. R) finds its MRCA.

Sample configuration (nL, nR , nLR),

nL the number of genes with ancestral alleles at locus L and
non-ancestral alleles at locus R,
nR is the number of genes with non-ancestral alleles at locus L and
ancestral alleles at locus R,
nLR is the number of genes with ancestral alleles at both loci.

Recombination rate ρ per individual and the rate of coalescent per
pair is 1.

Remark: Only those recombination events that happen to those
individuals having ancestral alleles at both loci will be taken into
account.
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A population of size 2
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A population of size 2
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A population of size 2

L R L R

RL
L R

L R

(0, 0, 2)

(1, 1, 1)

(1, 0, 1)

(0, 0, 1)
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A population of size 2

Xt := Continuous-time Markov chain which starts at state 1. The
waiting time in state i is exponential with parameter λi . Then the
process goes to other states according to its transition matrix P and
stops whenever it reaches the state (0, 0, 1).

λ1 = 1 + 2ρ, λ3 = λ4 = λ6 = λ7 = λ8 = 1, λ5 = 3 + ρ, λ9 = 6.

The states are

1 = (0, 0, 2), 2 = (0, 0, 1), 3 = (0, 1, 1), 4 = (1, 0, 1), 5 = (1, 1, 1),

6 = (1, 1, 0), 7 = (1, 2, 0), 8 = (2, 1, 0), 9 = (2, 2, 0).
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The joint distribution of TL and TR
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The joint distribution of TL and TR
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Figure: Diagram of the matrix transition P ′.
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The joint distribution of TL and TR

P =



0 1
1+2ρ 0 0 2ρ

1+2ρ 0 0 0 0

0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1

3+ρ 0 1
3+ρ

1
3+ρ 0 0 0 0 ρ

3+ρ

0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 4

6 0 1
6

1
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The joint distribution of TL and TR

νi := the number of visits to state i and V := (ν1, ν2, · · · , ν9) the
vector of number of visits.

So we have

Table: Number of visits to each states.

case ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 path

1 ≥ 1 1 0 0 ν1 + ν9 − 1 0 0 0 ≥ 0 12

2 ≥ 1 1 0 1 ν1 + ν9 0 0 0 ≥ 0 54-42

3 ≥ 1 1 1 0 ν1 + ν9 0 0 0 ≥ 0 53-32

4 ≥ 1 1 0 0 ν1 + ν9 − 1 1 0 1 ≥ 1 98-862

5 ≥ 1 1 0 0 ν1 + ν9 − 1 1 1 0 ≥ 1 97-762
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The joint distribution of TL and TR

Q(ν) := P(V = ν(= (ν1, ν2, · · · , ν9)))
Qi (ν) be Q(ν) given case i .

Theorem

Qi (ν)’s are given as follows,

Q1(ν) =
1

1 + 2ρ
H(ν1 − 1, ν9),

Q2(ν) = Q3(V ) = H(ν1, ν9),

Q4(ν) = Q5(ν) =
ρ

6
H(ν1, ν9 − 1),

where

H(x , y) = (
2ρ

(1 + 2ρ)(3 + ρ)
)x(

2ρ

3(3 + ρ)
)y
(

x + y − 1

y

)
.
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Sketch of the proof
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Sketch of the proof

Assume Pi ,j be the probability of going from state i to state j . We
can easily find the following relations.

For case 1

Q1(ν) = P(V = (ν1, 1, 0, 0, ν1 + ν9 − 1, 0, 0, 0, ν9))

= (P15P51)ν1−1(P59P95)ν9
(
ν1 + ν9 − 2

ν9

)
P12

=
1

1 + 2ρ
H(ν1 − 1, ν9).
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The joint distribution of TL and TR

Ti := the total time spent in state i .
Given νi , Ti is a sum of νi i.i.d copies of exponential random variables
ti ∼ Exp(λi ).
Ti ∼ Γ(νi , λi ) with the following probability density function

p(t; νi , λi ) =

{
λ
νi
i tνi−1 exp (−λi t)

(νi−1)! t ≥ 0

0 t < 0,

where

λ1 = 1 + 2ρ, λ3 = λ4 = λ6 = λ7 = λ8 = 1, λ5 = 3 + ρ, λ9 = 6.
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The joint distribution of TL and TR

The joint probability density function of TL and TR given V which is given
as follows

ΦTL,TR |V (t, s|V = ν) =


δ(t − s)fT |V (t|V = ν) case 1

1{s<t}fT |V (s|V = ν)f (t − s) case 2
1{t<s}fT |V (t|V = ν)f (s − t) case 3
1{s<t}fT |V (s|V = ν)f (t − s) case 4
1{t<s}fT |V (t|V = ν)f (s − t) case 5

where f ∼ Exp(1).
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The joint distribution of TL and TR

So we have to find the distribution of T := T1 + T5 + T9.

If ν5 = ν9 = 0, the only possibility is when ν1 = 1. Therefore

fT |V (t|V = ν) = (1 + 2ρ)exp(−(1 + 2ρ)t),

If ν5 ≥ 1, ν9 = 0, we have ν5 = ν1 − 1. So the distribution of T given
V is given as follows

fT|V (t|V = ν) =
λ
ν1
1 λ

ν1−1
5 exp(−λ5t)

(ν1 − 1)!(ν1 − 2)!

ν1−1∑
k=0

∞∑
r=0

(ν1 − 1

k

) (−1)k (2− ρ)r

r !(ν1 + k + r)
t2ν1+r−2

,

If ν5 6= 0, ν9 6= 0, the distribution of T given V is given by

fT|V (t|V = ν) =
λ
ν1
1 λ

ν1+ν9−1
5 λ

ν9
9 exp(−λ1t)

(ν1 − 1)!(ν1 + ν9 − 2)!(ν9 − 1)!
t2(ν1+ν9−1)

∞∑
r=0

ν1+ν9−2∑
k=0

∞∑
j=0

ν9−1∑
i=0(ν1 + ν9 − 2

k

)(ν9 − 1

i

) (−1)k+i (ρ− 2)r (ρ− 3)j

r !j!(ν9 + k + r)(2ν9 + ν1 + r + i + j − 1)
tr+j

.
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V is given as follows

fT|V (t|V = ν) =
λ
ν1
1 λ

ν1−1
5 exp(−λ5t)

(ν1 − 1)!(ν1 − 2)!

ν1−1∑
k=0

∞∑
r=0

(ν1 − 1

k

) (−1)k (2− ρ)r

r !(ν1 + k + r)
t2ν1+r−2

,

If ν5 6= 0, ν9 6= 0, the distribution of T given V is given by

fT|V (t|V = ν) =
λ
ν1
1 λ

ν1+ν9−1
5 λ

ν9
9 exp(−λ1t)

(ν1 − 1)!(ν1 + ν9 − 2)!(ν9 − 1)!
t2(ν1+ν9−1)

∞∑
r=0

ν1+ν9−2∑
k=0

∞∑
j=0

ν9−1∑
i=0(ν1 + ν9 − 2

k

)(ν9 − 1

i

) (−1)k+i (ρ− 2)r (ρ− 3)j

r !j!(ν9 + k + r)(2ν9 + ν1 + r + i + j − 1)
tr+j

.
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The joint distribution of TL and TR

Theorem

The joint distribution of TL and TR is given as follows

P(ds, dt) =
∞∑
ν1=1

∞∑
ν9=0

Q1(V )δ(t − s)fT|V (t|V = ν)dt

+
∞∑
ν1=1

∞∑
ν9=0

Q2(V )(exp(−(t − s))fT|V (s|V = ν)1{s<t} + exp(−(s − t))fT|V (t|V = ν)1{t<s})dtds

+
∞∑
ν1=1

∞∑
ν9=1

Q4(V )(exp(−(t − s))fT|V (s|V = ν)1{s<t} + exp(−(s − t))fT|V (t|V = ν)1{t<s})dtds.
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The joint distribution of TL and TR

Li (resp. Ri ):= locus L (resp. R) for the i-th individual

Li = Lj (resp. Ri = Rj) := i-th and the j-th individuals are identical
at locus L (resp. R).

P(Li = Lj ,Ri = Rj) = E(P(Li = Lj |TL)P(Ri = Rj |TR))

= E(exp (−2θT )1{TL=T=TR}) + E(exp (−θ(TL + TR)1{TL<TR})

+ E(exp (−θ(TL + TR)1{TR<TL}).
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A population of size 2

Theorem

P(L1 = L2,R1 = R2) =
2ρ2 + (θ2 + 6θ + 13)ρ + 2θ3 + 11θ2 + 18θ + 9

(1 + θ)[2(1 + θ)ρ2 + (6θ2 + 19θ + 13)ρ + (1 + 2θ)(3 + 2θ)(3 + θ)]
,

P(L1 = L2,R1 6= R2) =
2θρ2 + (5θ2 + 13θ)ρ + 2θ3 + 9θ2 + 9θ

(1 + θ)[2(1 + θ)ρ2 + (6θ2 + 19θ + 13)ρ + (1 + 2θ)(3 + 2θ)(3 + θ)]
,

P(L1 6= L2,R1 6= R2) =
2θ2ρ2 + (6θ3 + 14θ2)ρ + 4θ4 + 18θ3 + 18θ2

(1 + θ)[2(1 + θ)ρ2 + (6θ2 + 19θ + 13)ρ + (1 + 2θ)(3 + 2θ)(3 + θ)]
.
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Remarks

Remarks

ρ = 0, P(L1 = L2,R1 = R2) = 1
1+2θ , and the probability that these

two individuals are not of the same type is 2θ
1+2θ .

If ρ→∞ then P(Li = Lj ,Ri = Rj)→ ( 1
1+θ )2.

When θ
2 , the mutation rate per individual per locus is zero,

P(Li = Lj ,Ri = Rj) = 1.

When θ
2 →∞, P(Li = Lj ,Ri = Rj)→ 0.
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A population of size n = 3
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A population of size n = 3

D:=the number of different types for the individuals in the
population, so D ∈ {1, 2, 3}.
T1:=time to the first coalescent and T2:= be the time to the second
coalescent, so T1 ∼ Exp(3) and T2 ∼ Exp(1).

1← 2←

← 3→
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A population of size n = 3

For D = 3.

At least one mutation on the branch indexed by 1 (or 2) and at least
one mutation on the branches indexed by 3.

At least one mutation on the branches labeled by 1 and 2 and no
mutation on 3.

P(D = 3|T ) = 1− exp(−θT1)− 2 exp(θ(T1 + T2))

+ 2 exp(−3θT1

2
− θT2).
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A population of size n = 3

For D = 2. So for this case we can impose at least one mutation
either on the branch called 1, or on the branch called 2, or 3. So

P(D = 2|T ) = exp(−θT1)− exp(−θ(T1 + T2))− 2 exp(−3θ

2
T1 − θT2).

For D = 1. This case can happen only if we have no mutation neither
on 1 nor on 2 nor on 3. So

P(D = 1|T ) = exp(−θ
2

(2T2 + 3T1)).
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A population of size n = 3

Assume DL(resp. DR) is the same as D for locus L (resp. R) and T L (resp.
T R)is the same as T for locus L (resp. R). So for i , j ∈ {1, 2, 3} we have

P(DL = i ,DR = j) = E(P(DL = i ,DR = j |ARG ))

= E(P(DL = i |T L)P(DR = j |T R)).
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A population of size n = 3

1 = (0, 0, 3), 2 = (0, 0, 2), 3 = (0, 1, 2), 4 = (1, 0, 2), 5 = (1, 1, 2), 6 = (0, 0, 1),

7 = (0, 1, 1), 8 = (0, 2, 1), 9 = (1, 0, 1), 10 = (1, 1, 1), 11 = (1, 2, 1)

12 = (2, 0, 1), 13 = (2, 1, 1), 14 = (2, 2, 1), 15 = (1, 1, 0), 16 = (1, 2, 0)

17 = (1, 3, 0), 18 = (2, 1, 0), 19 = (2, 2, 0), 20 = (2, 3, 0), 21 = (3, 1, 0)

22 = (3, 2, 0), 23 = (3, 3, 0).
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A population of size n = 3
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General case
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General case n

Assume we have a population of size n. As before we consider the 2-locus
infinite-alleles model, n2 +

∑n
k=1 k2 different states
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The probability that all individuals are of the same type for fixed ρ

Figure: n=4, here the mutation rate varies between 0 and ∞ and the
recombination rate is fixed. The colour blue is for when ρ = 1, black for ρ = 2,
Cyan for ρ = 3, Gold for ρ = 4, Gray for ρ = 5, Green for ρ = 6, Orange for
ρ = 7, Red for ρ = 8 and Yellow is for ρ = 9.
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The probability that all individuals are of the same type for fixed θ

Figure: n=4, here the recombination rate varies between 0 and ∞ and the
mutation rate is fixed. The colour blue is for when µ = 1, black for µ = 2, Cyan
for µ = 3, Gold for µ = 4, Gray for µ = 5, Green for µ = 6, Orange for µ = 7,
Red for µ = 8 and Yellow is for µ = 9.
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Thanks for your attention.

Majid Salamat (LATP) ANR MANEGE, 18 Oct. 2010 43 / 43


	Preliminaries
	How to model the recombination in the picture?
	Ewens Sampling formula without recombination
	ESF with recombination for a sample of size n=2, 3
	A population of size 2
	The joint distribution of TL and TR
	Sketch of the proof
	A population of size n=3
	General case

