EWENS SAMPLING FORMULA AND RECOMBINATION

Majid Salamat

Contents

(1) Preliminaries
(2) EwEns Sampling formula without recombination
(3) ESF with Recombination for a sample of size $n=2,3$

4 The joint Distribution of T_{L} and T_{R}
(5) A POPULATION OF SIZE $n=3$
(6) GEnERAL CASE

Preliminaries

An example

Kingman's coalescent

How To model the recombination in The PICTURE?

An example for ARG

UA

An example for ARG

Assume that $x>b$ and $x<c, d$.UA

ARG

For each gene we have a different coalescent tree, because of the presence of the recombination. So the ARG contains all these trees.

Ewens Sampling formula without RECOMBINATION

ESF without recombination

- Infinitely-many-alleles mutation scheme, a configuration is considered as $c=\left(c_{1}, \cdots, c_{n}\right)$ $c_{i}=$ number of alleles represented i times
and $|c|=c_{1}+2 c_{2}+\cdots+n c_{n}=n$.
$q(c):=\mathbb{P}($ sample of size $|c|$ taken at stationarity has configuration $c)$, with $q\left(e_{1}\right)=1$.

ESF without recombination

- Infinitely-many-alleles mutation scheme, a configuration is considered as $c=\left(c_{1}, \cdots, c_{n}\right)$
$c_{i}=$ number of alleles represented i times
and $|c|=c_{1}+2 c_{2}+\cdots+n c_{n}=n$.
$q(c):=\mathbb{P}($ sample of size $|c|$ taken at stationarity has configuration $c)$, with $q\left(e_{1}\right)=1$.

Theorem

In a stationary sample of size n, the probability of sample configuration c is

$$
q(c)=\mathbb{P}\left(C_{1}(n)=c_{1}, \cdots, C_{n}(n)=c_{n}\right)=1_{\{|c|=n\}} \frac{n!}{\theta_{(n)}} \Pi_{j=1}^{n}\left(\frac{\theta}{j}\right)^{c_{j}} \frac{1}{c_{j}!}
$$

where $x_{(j)}=x(x+1) \cdots(x+j-1), j=1,2, \cdots$ and
$|c|=c_{1}+2 c_{2}+\cdots+n c_{n}$.

- ESF with recombination for a sample of size

$$
n=2,3
$$

The Model

- 2-locus infinite-alleles model.

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
$T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus $L($ resp. $R)$ finds its MRCA.

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R .
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus $L($ resp. $R)$ finds its MRCA.

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus L (resp. R) finds its MRCA.
- Sample configuration $\left(n_{L}, n_{R}, n_{L R}\right)$,

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus $L($ resp. $R)$ finds its MRCA.
- Sample configuration $\left(n_{L}, n_{R}, n_{L R}\right)$,
- n_{L} the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R ,

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus L (resp. R) finds its MRCA.
- Sample configuration $\left(n_{L}, n_{R}, n_{L R}\right)$,
- n_{L} the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R ,
- n_{R} is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R ,
- $n_{L R}$ is the number of genes with ancestral alleles at both loci.

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R .
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus L (resp. R) finds its MRCA.
- Sample configuration $\left(n_{L}, n_{R}, n_{L R}\right)$,
- n_{L} the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
- n_{R} is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R ,
- $n_{L R}$ is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1 .

The Model

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- $T_{L}\left(\right.$ resp. $\left.T_{R}\right):=$ time that locus L (resp. R) finds its MRCA.
- Sample configuration $\left(n_{L}, n_{R}, n_{L R}\right)$,
- n_{L} the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R ,
- n_{R} is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R ,
- $n_{L R}$ is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1 .
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

A population of size 2

A population of size 2

A population of size 2

A population of size 2

- $X_{t}:=$ Continuous-time Markov chain which starts at state 1 . The waiting time in state i is exponential with parameter λ_{i}. Then the process goes to other states according to its transition matrix P and stops whenever it reaches the state $(0,0,1)$.

$$
\lambda_{1}=1+2 \rho, \lambda_{3}=\lambda_{4}=\lambda_{6}=\lambda_{7}=\lambda_{8}=1, \lambda_{5}=3+\rho, \lambda_{9}=6 .
$$

A population of size 2

- $X_{t}:=$ Continuous-time Markov chain which starts at state 1 . The waiting time in state i is exponential with parameter λ_{i}. Then the process goes to other states according to its transition matrix P and stops whenever it reaches the state $(0,0,1)$.

$$
\lambda_{1}=1+2 \rho, \lambda_{3}=\lambda_{4}=\lambda_{6}=\lambda_{7}=\lambda_{8}=1, \lambda_{5}=3+\rho, \lambda_{9}=6
$$

- The states are

$$
\begin{aligned}
& 1=(0,0,2), 2=(0,0,1), 3=(0,1,1), 4=(1,0,1), 5=(1,1,1) \\
& 6=(1,1,0), 7=(1,2,0), 8=(2,1,0), 9=(2,2,0)
\end{aligned}
$$

The Joint distribution of T_{L} and T_{R}

The joint distribution of T_{L} and T_{R}

The joint distribution of T_{L} and T_{R}

$$
P=\left(\begin{array}{ccccccccc}
0 & \frac{1}{1+2 \rho} & 0 & 0 & \frac{2 \rho}{1+2 \rho} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3+\rho} & 0 & \frac{1}{3+\rho} & \frac{1}{3+\rho} & 0 & 0 & 0 & 0 & \frac{\rho}{3+\rho} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{4}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0
\end{array}\right)
$$

The joint distribution of T_{L} and T_{R}

- $\nu_{i}:=$ the number of visits to state i and $V:=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{9}\right)$ the vector of number of visits.

The joint distribution of T_{L} and T_{R}

- $\nu_{i}:=$ the number of visits to state i and $V:=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{9}\right)$ the vector of number of visits.
- So we have

Table: Number of visits to each states.

case	ν_{1}	ν_{2}	ν_{3}	ν_{4}	ν_{5}	ν_{6}	ν_{7}	ν_{8}	ν_{9}	path
1	≥ 1	1	0	0	$\nu_{1}+\nu_{9}-1$	0	0	0	≥ 0	12
2	≥ 1	1	0	1	$\nu_{1}+\nu_{9}$	0	0	0	≥ 0	$54-42$
3	≥ 1	1	1	0	$\nu_{1}+\nu_{9}$	0	0	0	≥ 0	$53-32$
4	≥ 1	1	0	0	$\nu_{1}+\nu_{9}-1$	1	0	1	≥ 1	$98-862$
5	≥ 1	1	0	0	$\nu_{1}+\nu_{9}-1$	1	1	0	≥ 1	$97-762$

The joint distribution of T_{L} and T_{R}

- $Q(\nu):=\mathbb{P}\left(V=\nu\left(=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{9}\right)\right)\right)$

The joint distribution of T_{L} and T_{R}

- $Q(\nu):=\mathbb{P}\left(V=\nu\left(=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{9}\right)\right)\right)$
- $Q_{i}(\nu)$ be $Q(\nu)$ given case i.

The joint distribution of T_{L} and T_{R}

- $Q(\nu):=\mathbb{P}\left(V=\nu\left(=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{9}\right)\right)\right)$
- $Q_{i}(\nu)$ be $Q(\nu)$ given case i.

Theorem

$Q_{i}(\nu)$'s are given as follows,

$$
\begin{aligned}
& Q_{1}(\nu)=\frac{1}{1+2 \rho} H\left(\nu_{1}-1, \nu_{9}\right), \\
& Q_{2}(\nu)=Q_{3}(V)=H\left(\nu_{1}, \nu_{9}\right) \\
& Q_{4}(\nu)=Q_{5}(\nu)=\frac{\rho}{6} H\left(\nu_{1}, \nu_{9}-1\right),
\end{aligned}
$$

where

$$
H(x, y)=\left(\frac{2 \rho}{(1+2 \rho)(3+\rho)}\right)^{x}\left(\frac{2 \rho}{3(3+\rho)}\right)^{y}\binom{x+y-1}{y} .
$$

- Sketch Of The Proof

Sketch of the proof

- Assume $P_{i, j}$ be the probability of going from state i to state j. We can easily find the following relations.

Sketch of the proof

- Assume $P_{i, j}$ be the probability of going from state i to state j. We can easily find the following relations.
- For case 1

$$
\begin{aligned}
Q_{1}(\nu) & =\mathbb{P}\left(V=\left(\nu_{1}, 1,0,0, \nu_{1}+\nu_{9}-1,0,0,0, \nu_{9}\right)\right) \\
& =\left(P_{15} P_{51}\right)^{\nu_{1}-1}\left(P_{59} P_{95}\right)^{\nu_{9}}\binom{\nu_{1}+\nu_{9}-2}{\nu_{9}} P_{12} \\
& =\frac{1}{1+2 \rho} H\left(\nu_{1}-1, \nu_{9}\right)
\end{aligned}
$$

The joint distribution of T_{L} and T_{R}

$T_{i}:=$ the total time spent in state i.

The joint distribution of T_{L} and T_{R}

$T_{i}:=$ the total time spent in state i.
Given ν_{i}, T_{i} is a sum of ν_{i} i.i.d copies of exponential random variables $t_{i} \sim \mathcal{E} \times p\left(\lambda_{i}\right)$.

The joint distribution of T_{L} and T_{R}

$T_{i}:=$ the total time spent in state i.
Given ν_{i}, T_{i} is a sum of ν_{i} i.i.d copies of exponential random variables $t_{i} \sim \mathcal{E} x p\left(\lambda_{i}\right)$.
$T_{i} \sim \Gamma\left(\nu_{i}, \lambda_{i}\right)$ with the following probability density function

$$
p\left(t ; \nu_{i}, \lambda_{i}\right)=\left\{\begin{array}{cc}
\frac{\lambda_{i}^{\nu_{i}} t^{\nu_{i}-1} \exp \left(-\lambda_{i} t\right)}{\left(\nu_{i}-1\right)!} & t \geq 0 \\
0 & t<0,
\end{array}\right.
$$

The joint distribution of T_{L} and T_{R}

$T_{i}:=$ the total time spent in state i.
Given ν_{i}, T_{i} is a sum of ν_{i} i.i.d copies of exponential random variables $t_{i} \sim \mathcal{E} x p\left(\lambda_{i}\right)$.
$T_{i} \sim \Gamma\left(\nu_{i}, \lambda_{i}\right)$ with the following probability density function

$$
p\left(t ; \nu_{i}, \lambda_{i}\right)=\left\{\begin{array}{cc}
\frac{\lambda_{i}^{\nu_{i}} t^{\nu_{i}-1} \exp \left(-\lambda_{i} t\right)}{\left(\nu_{i}-1\right)!} & t \geq 0 \\
0 & t<0,
\end{array}\right.
$$

where

$$
\lambda_{1}=1+2 \rho, \lambda_{3}=\lambda_{4}=\lambda_{6}=\lambda_{7}=\lambda_{8}=1, \lambda_{5}=3+\rho, \lambda_{9}=6 .
$$

The joint distribution of T_{L} and T_{R}

The joint probability density function of T_{L} and T_{R} given V which is given as follows

The joint distribution of T_{L} and T_{R}

The joint probability density function of T_{L} and T_{R} given V which is given as follows

$$
\Phi_{T_{L}, T_{R} \mid V}(t, s \mid V=\nu)=\left\{\begin{array}{cc}
\delta(t-s) f_{T \mid V}(t \mid V=\nu) & \text { case } 1 \\
1_{\{s<t\}} f_{T \mid V}(s \mid V=\nu) f(t-s) & \text { case } 2 \\
1_{\{t<s\}} f_{T \mid V}(t \mid V=\nu) f(s-t) & \text { case } 3 \\
1_{\{s<t\}} f_{T \mid V}(s \mid V=\nu) f(t-s) & \text { case } 4 \\
1_{\{t<s\}} f_{T \mid V}(t \mid V=\nu) f(s-t) & \text { case } 5
\end{array}\right.
$$

where $f \sim \mathcal{E} \times p(1)$.

The joint distribution of T_{L} and T_{R}

- So we have to find the distribution of $T:=T_{1}+T_{5}+T_{9}$.

The joint distribution of T_{L} and T_{R}

- So we have to find the distribution of $T:=T_{1}+T_{5}+T_{9}$.
- If $\nu_{5}=\nu_{9}=0$, the only possibility is when $\nu_{1}=1$. Therefore

$$
f_{T \mid V}(t \mid V=\nu)=(1+2 \rho) \exp (-(1+2 \rho) t)
$$

The joint distribution of T_{L} and T_{R}

- So we have to find the distribution of $T:=T_{1}+T_{5}+T_{9}$.
- If $\nu_{5}=\nu_{9}=0$, the only possibility is when $\nu_{1}=1$. Therefore

$$
f_{T \mid V}(t \mid V=\nu)=(1+2 \rho) \exp (-(1+2 \rho) t)
$$

- If $\nu_{5} \geq 1, \nu_{9}=0$, we have $\nu_{5}=\nu_{1}-1$. So the distribution of T given V is given as follows

$$
f_{T \mid V}(t \mid V=\nu)=\frac{\lambda_{1}^{\nu_{1}} \lambda_{5}^{\nu_{1}-1} \exp \left(-\lambda_{5} t\right)}{\left(\nu_{1}-1\right)!\left(\nu_{1}-2\right)!} \sum_{k=0}^{\nu_{1}-1} \sum_{r=0}^{\infty}\binom{\nu_{1}-1}{k} \frac{(-1)^{k}(2-\rho)^{r}}{r!\left(\nu_{1}+k+r\right)} t^{2 \nu_{1}+r-2}
$$

The joint distribution of T_{L} and T_{R}

- So we have to find the distribution of $T:=T_{1}+T_{5}+T_{9}$.
- If $\nu_{5}=\nu_{9}=0$, the only possibility is when $\nu_{1}=1$. Therefore

$$
f_{T \mid V}(t \mid V=\nu)=(1+2 \rho) \exp (-(1+2 \rho) t)
$$

- If $\nu_{5} \geq 1, \nu_{9}=0$, we have $\nu_{5}=\nu_{1}-1$. So the distribution of T given V is given as follows

$$
f_{T \mid V}(t \mid V=\nu)=\frac{\lambda_{1}^{\nu_{1}} \lambda_{5}^{\nu_{1}-1} \exp \left(-\lambda_{5} t\right)}{\left(\nu_{1}-1\right)!\left(\nu_{1}-2\right)!} \sum_{k=0}^{\nu_{1}-1} \sum_{r=0}^{\infty}\binom{\nu_{1}-1}{k} \frac{(-1)^{k}(2-\rho)^{r}}{r!\left(\nu_{1}+k+r\right)} t^{2 \nu_{1}+r-2}
$$

- If $\nu_{5} \neq 0, \nu_{9} \neq 0$, the distribution of T given V is given by

$$
\begin{aligned}
f_{T \mid V}(t \mid V=\nu)= & \frac{\lambda_{1}^{\nu_{1}} \lambda_{5}^{\nu_{1}+\nu_{9}-1} \lambda_{9}^{\nu_{9}} \exp \left(-\lambda_{1} t\right)}{\left(\nu_{1}-1\right)!\left(\nu_{1}+\nu_{9}-2\right)!\left(\nu_{9}-1\right)!} t^{2\left(\nu_{1}+\nu_{9}-1\right)} \sum_{r=0}^{\infty} \sum_{k=0}^{\nu_{1}+\nu_{9}-2} \sum_{j=0}^{\infty} \sum_{i=0}^{\nu_{9}-1} \\
& \binom{\nu_{1}+\nu_{9}-2}{k}\binom{\nu_{9}-1}{i} \frac{(-1)^{k+i}(\rho-2)^{r}(\rho-3)^{j}}{r!j!\left(\nu_{9}+k+r\right)\left(2 \nu_{9}+\nu_{1}+r+i+j-1\right)} t^{r+j} .
\end{aligned}
$$

The joint distribution of T_{L} and T_{R}

Theorem

The joint distribution of T_{L} and T_{R} is given as follows

$$
\begin{aligned}
\mathbb{P}(d s, d t) & =\sum_{\nu_{1}=1}^{\infty} \sum_{\nu_{9}=0}^{\infty} Q_{1}(V) \delta(t-s) f_{T \mid V}(t \mid V=\nu) d t \\
& +\sum_{\nu_{1}=1}^{\infty} \sum_{\nu_{9}=0}^{\infty} Q_{2}(V)\left(\exp (-(t-s)) f_{T \mid V}(s \mid V=\nu) 1_{\{s<t\}}+\exp (-(s-t)) f_{T \mid V}(t \mid V=\nu) 1_{\{t<s\}}\right) d t d s \\
& +\sum_{\nu_{1}=1}^{\infty} \sum_{\nu_{9}=1}^{\infty} Q_{4}(V)\left(\exp (-(t-s)) f_{T \mid V}(s \mid V=\nu) 1_{\{s<t\}}+\exp (-(s-t)) f_{T \mid V}(t \mid V=\nu) 1_{\{t<s\}}\right) d t d s .
\end{aligned}
$$

The joint distribution of T_{L} and T_{R}

- $L_{i}\left(\right.$ resp. $\left.R_{i}\right):=$ locus $L($ resp. R) for the i-th individual

The joint distribution of T_{L} and T_{R}

- $L_{i}\left(\right.$ resp. $\left.R_{i}\right):=$ locus L (resp. R) for the i-th individual
- $L_{i}=L_{j}$ (resp. $R_{i}=R_{j}$) := i-th and the j-th individuals are identical at locus L (resp. R).

The joint distribution of T_{L} and T_{R}

- $L_{i}\left(\right.$ resp. $\left.R_{i}\right):=$ locus L (resp. R) for the i-th individual
- $L_{i}=L_{j}$ (resp. $R_{i}=R_{j}$) := i-th and the j-th individuals are identical at locus L (resp. R).

$$
\begin{aligned}
\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right) & =\mathbb{E}\left(\mathbb{P}\left(L_{i}=L_{j} \mid T_{L}\right) \mathbb{P}\left(R_{i}=R_{j} \mid T_{R}\right)\right) \\
& =\mathbb{E}\left(\exp (-2 \theta T) 1_{\left\{T_{L}=T=T_{R}\right\}}\right)+\mathbb{E}\left(\exp \left(-\theta\left(T_{L}+T_{R}\right) 1_{\left\{T_{L}<T_{R}\right\}}\right)\right. \\
& +\mathbb{E}\left(\exp \left(-\theta\left(T_{L}+T_{R}\right) 1_{\left\{T_{R}<T_{L}\right\}}\right)\right.
\end{aligned}
$$

A population of size 2

Theorem

$$
\begin{aligned}
& \mathbb{P}\left(L_{1}=L_{2}, R_{1}=R_{2}\right)=\frac{2 \rho^{2}+\left(\theta^{2}+6 \theta+13\right) \rho+2 \theta^{3}+11 \theta^{2}+18 \theta+9}{(1+\theta)\left[2(1+\theta) \rho^{2}+\left(6 \theta^{2}+19 \theta+13\right) \rho+(1+2 \theta)(3+2 \theta)(3+\theta)\right]} \\
& \mathbb{P}\left(L_{1}=L_{2}, R_{1} \neq R_{2}\right)=\frac{2 \theta \rho^{2}+\left(5 \theta^{2}+13 \theta\right) \rho+2 \theta^{3}+9 \theta^{2}+9 \theta}{(1+\theta)\left[2(1+\theta) \rho^{2}+\left(6 \theta^{2}+19 \theta+13\right) \rho+(1+2 \theta)(3+2 \theta)(3+\theta)\right]} \\
& \mathbb{P}\left(L_{1} \neq L_{2}, R_{1} \neq R_{2}\right)=\frac{2 \theta^{2} \rho^{2}+\left(6 \theta^{3}+14 \theta^{2}\right) \rho+4 \theta^{4}+18 \theta^{3}+18 \theta^{2}}{(1+\theta)\left[2(1+\theta) \rho^{2}+\left(6 \theta^{2}+19 \theta+13\right) \rho+(1+2 \theta)(3+2 \theta)(3+\theta)\right]}
\end{aligned}
$$

Remarks

Remarks

- $\rho=0, \mathbb{P}\left(L_{1}=L_{2}, R_{1}=R_{2}\right)=\frac{1}{1+2 \theta}$, and the probability that these two individuals are not of the same type is $\frac{2 \theta}{1+2 \theta}$. - When $\frac{\theta}{2}$, the mutation rate per individual per locus is zero,

Remarks

Remarks

- $\rho=0, \mathbb{P}\left(L_{1}=L_{2}, R_{1}=R_{2}\right)=\frac{1}{1+2 \theta}$, and the probability that these two individuals are not of the same type is $\frac{2 \theta}{1+2 \theta}$.
- If $\rho \rightarrow \infty$ then $\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right) \rightarrow\left(\frac{1}{1+\theta}\right)^{2}$.

Remarks

Remarks

- $\rho=0, \mathbb{P}\left(L_{1}=L_{2}, R_{1}=R_{2}\right)=\frac{1}{1+2 \theta}$, and the probability that these two individuals are not of the same type is $\frac{2 \theta}{1+2 \theta}$.
- If $\rho \rightarrow \infty$ then $\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right) \rightarrow\left(\frac{1}{1+\theta}\right)^{2}$.
- When $\frac{\theta}{2}$, the mutation rate per individual per locus is zero, $\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right)=1$.

Remarks

Remarks

- $\rho=0, \mathbb{P}\left(L_{1}=L_{2}, R_{1}=R_{2}\right)=\frac{1}{1+2 \theta}$, and the probability that these two individuals are not of the same type is $\frac{2 \theta}{1+2 \theta}$.
- If $\rho \rightarrow \infty$ then $\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right) \rightarrow\left(\frac{1}{1+\theta}\right)^{2}$.
- When $\frac{\theta}{2}$, the mutation rate per individual per locus is zero, $\mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right)=1$.
- When $\frac{\theta}{2} \rightarrow \infty, \mathbb{P}\left(L_{i}=L_{j}, R_{i}=R_{j}\right) \rightarrow 0$.

A POPULATION OF SIZE $n=3$

A population of size $n=3$

- $D:=$ the number of different types for the individuals in the population, so $D \in\{1,2,3\}$.

A population of size $n=3$

- $D:=$ the number of different types for the individuals in the population, so $D \in\{1,2,3\}$.
- $T_{1}:=$ time to the first coalescent and $T_{2}:=$ be the time to the second coalescent, so $T_{1} \sim \mathcal{E} \times p(3)$ and $T_{2} \sim \mathcal{E} \times p(1)$.

A population of size $n=3$

- $D:=$ the number of different types for the individuals in the population, so $D \in\{1,2,3\}$.
- $T_{1}:=$ time to the first coalescent and $T_{2}:=$ be the time to the second coalescent, so $T_{1} \sim \mathcal{E} \times p(3)$ and $T_{2} \sim \mathcal{E} \times p(1)$.

A population of size $n=3$

For $D=3$.

- At least one mutation on the branch indexed by 1 (or 2) and at least one mutation on the branches indexed by 3 .
mutation on 3

A population of size $n=3$

For $D=3$.

- At least one mutation on the branch indexed by 1 (or 2) and at least one mutation on the branches indexed by 3 .
- At least one mutation on the branches labeled by 1 and 2 and no mutation on 3.

$$
\begin{aligned}
\mathbb{P}(D=3 \mid \mathcal{T}) & =1-\exp \left(-\theta T_{1}\right)-2 \exp \left(\theta\left(T_{1}+T_{2}\right)\right) \\
& +2 \exp \left(-\frac{3 \theta T_{1}}{2}-\theta T_{2}\right)
\end{aligned}
$$

A population of size $n=3$

- For $D=2$. So for this case we can impose at least one mutation either on the branch called 1, or on the branch called 2, or 3 . So

$$
\mathbb{P}(D=2 \mid \mathcal{T})=\exp \left(-\theta T_{1}\right)-\exp \left(-\theta\left(T_{1}+T_{2}\right)\right)-2 \exp \left(-\frac{3 \theta}{2} T_{1}-\theta T_{2}\right)
$$

A population of size $n=3$

- For $D=2$. So for this case we can impose at least one mutation either on the branch called 1, or on the branch called 2, or 3. So

$$
\mathbb{P}(D=2 \mid \mathcal{T})=\exp \left(-\theta T_{1}\right)-\exp \left(-\theta\left(T_{1}+T_{2}\right)\right)-2 \exp \left(-\frac{3 \theta}{2} T_{1}-\theta T_{2}\right)
$$

- For $D=1$. This case can happen only if we have no mutation neither on 1 nor on 2 nor on 3 . So

$$
\mathbb{P}(D=1 \mid \mathcal{T})=\exp \left(-\frac{\theta}{2}\left(2 T_{2}+3 T_{1}\right)\right)
$$

A population of size $n=3$

Assume D_{L} (resp. D_{R}) is the same as D for locus L (resp. R) and \mathcal{T}^{L} (resp. \mathcal{T}^{R}) is the same as \mathcal{T} for locus L (resp. R). So for $i, j \in\{1,2,3\}$ we have

$$
\begin{aligned}
\mathbb{P}\left(D_{L}=i, D_{R}=j\right) & =\mathbb{E}\left(\mathbb{P}\left(D_{L}=i, D_{R}=j \mid A R G\right)\right) \\
& =\mathbb{E}\left(\mathbb{P}\left(D_{L}=i \mid \mathcal{T}^{L}\right) \mathbb{P}\left(D_{R}=j \mid \mathcal{T}^{R}\right)\right)
\end{aligned}
$$

A population of size $n=3$

$$
\begin{aligned}
& 1=(0,0,3), 2=(0,0,2), 3=(0,1,2), 4=(1,0,2), 5=(1,1,2), 6=(0,0,1) \\
& 7=(0,1,1), 8=(0,2,1), 9=(1,0,1), 10=(1,1,1), 11=(1,2,1) \\
& 12=(2,0,1), 13=(2,1,1), 14=(2,2,1), 15=(1,1,0), 16=(1,2,0) \\
& 17=(1,3,0), 18=(2,1,0), 19=(2,2,0), 20=(2,3,0), 21=(3,1,0) \\
& 22=(3,2,0), 23=(3,3,0) .
\end{aligned}
$$

A population of size $n=3$

General case

General case n

Assume we have a population of size n. As before we consider the 2-locus infinite-alleles model, $n^{2}+\sum_{k=1}^{n} k^{2}$ different states

The probability that all individuals are of the same type for fixed ρ

The probability that all individuals are of the same type for fixed θ

Thanks for your attention.

