EWENS SAMPLING FORMULA AND RECOMBINATION

Majid Salamat

1 Preliminaries

- 2 Ewens Sampling formula without recombination
- **3** ESF with recombination for a sample of size n = 2, 3
- (4) The joint distribution of T_L and T_R
- **5** A POPULATION OF SIZE n = 3
 - 6 General case

Preliminaries

An example

Kingman's coalescent

How to model the recombination in the picture?

An example for ARG

Majid Salamat (LATP)

An example for ARG

Assume that x > b and x < c, d. MRCA b d с Majid Salamat (LATP) ANR MANEGE, 18 Oct. 2010

For each gene we have a different coalescent tree, because of the presence of the recombination. So the ARG contains all these trees.

EWENS SAMPLING FORMULA WITHOUT RECOMBINATION

ESF without recombination

 Infinitely-many-alleles mutation scheme, a configuration is considered as c = (c₁, · · · , c_n)

 c_i = number of alleles represented i times

and
$$|c| = c_1 + 2c_2 + \cdots + nc_n = n$$
.
 $q(c) := \mathbb{P}(\text{sample of size } |c| \text{ taken at stationarity has configuration } c)$, with $q(e_1) = 1$.

Theorem

In a stationary sample of size n, the probability of sample configuration c is

$$q(c) = \mathbb{P}(C_1(n) = c_1, \cdots, C_n(n) = c_n) = \mathbb{1}_{\{|c|=n\}} \frac{n!}{\theta_{(n)}} \prod_{j=1}^n (\frac{\theta_j}{j})^{c_j} \frac{1}{c_j!}$$

where $x_{(j)} = x(x+1)\cdots(x+j-1), j = 1, 2, \cdots$ and $|c| = c_1 + 2c_2 + \cdots + nc_n$.

Majid Salamat (LATP)

ESF without recombination

 Infinitely-many-alleles mutation scheme, a configuration is considered as c = (c₁, · · · , c_n)

 c_i = number of alleles represented i times

and
$$|c| = c_1 + 2c_2 + \cdots + nc_n = n$$
.
 $q(c) := \mathbb{P}(\text{sample of size } |c| \text{ taken at stationarity has configuration } c)$,
with $q(e_1) = 1$.

Theorem

In a stationary sample of size n, the probability of sample configuration c is

$$q(c) = \mathbb{P}(C_1(n) = c_1, \cdots, C_n(n) = c_n) = \mathbb{1}_{\{|c|=n\}} \frac{n!}{\theta_{(n)}} \prod_{j=1}^n (\frac{\theta_j}{j})^{c_j} \frac{1}{c_j!}$$

where $x_{(j)} = x(x+1)\cdots(x+j-1), j = 1, 2, \cdots$ and $|c| = c_1 + 2c_2 + \cdots + nc_n$.

• ESF with recombination for a sample of size n=2,3

• 2-locus infinite-alleles model.

- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - $\sigma_{\rm L}$ the number of genes with an central alleles at locus L and non-ancestral alleles at locus R
 - n_R is the number of genes with non-ancestral alleles at locus L and ℓ an
 - $\sim n_{LR}$ is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - n₁ the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R;
 - σ_R is the number of genes with non-ancestral alleles at locus L and the number of genes with non-ancestral alleles at locus L and the number of genes that alleles at locus R.
 - n_{ER} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - n_L the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - $s_{\rm c} \eta_{\rm f}$ is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{er} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - *n_L* the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - *n_R* is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{LR} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - *n_L* the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - *n_R* is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{LR} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - *n_L* the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - *n_R* is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{LR} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - *n_L* the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - *n_R* is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{LR} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

- 2-locus infinite-alleles model.
- loci are denoted by L and R.
- T_L (resp. T_R):= time that locus L (resp. R) finds its MRCA.
- Sample configuration (n_L, n_R, n_{LR}) ,
 - *n_L* the number of genes with ancestral alleles at locus L and non-ancestral alleles at locus R,
 - *n_R* is the number of genes with non-ancestral alleles at locus L and ancestral alleles at locus R,
 - n_{LR} is the number of genes with ancestral alleles at both loci.
- Recombination rate ρ per individual and the rate of coalescent per pair is 1.
- Remark: Only those recombination events that happen to those individuals having ancestral alleles at both loci will be taken into account.

A population of size 2

A population of size 2

A population of size 2

• X_t := Continuous-time Markov chain which starts at state 1. The waiting time in state *i* is exponential with parameter λ_i . Then the process goes to other states according to its transition matrix *P* and stops whenever it reaches the state (0, 0, 1).

$$\lambda_1 = 1 + 2\rho, \lambda_3 = \lambda_4 = \lambda_6 = \lambda_7 = \lambda_8 = 1, \lambda_5 = 3 + \rho, \lambda_9 = 6.$$

The states are

1 = (0, 0, 2), 2 = (0, 0, 1), 3 = (0, 1, 1), 4 = (1, 0, 1), 5 = (1, 1, 1), 6 = (1, 1, 0), 7 = (1, 2, 0), 8 = (2, 1, 0), 9 = (2, 2, 0).

• X_t := Continuous-time Markov chain which starts at state 1. The waiting time in state *i* is exponential with parameter λ_i . Then the process goes to other states according to its transition matrix *P* and stops whenever it reaches the state (0, 0, 1).

$$\lambda_1=1+2\rho, \lambda_3=\lambda_4=\lambda_6=\lambda_7=\lambda_8=1, \lambda_5=3+\rho, \lambda_9=6.$$

The states are

1 = (0, 0, 2), 2 = (0, 0, 1), 3 = (0, 1, 1), 4 = (1, 0, 1), 5 = (1, 1, 1), 6 = (1, 1, 0), 7 = (1, 2, 0), 8 = (2, 1, 0), 9 = (2, 2, 0).

- ν_i:= the number of visits to state i and V := (ν₁, ν₂, · · · , ν₉) the vector of number of visits.
- So we have

|--|--|--|--|

- ν_i:= the number of visits to state i and V := (ν₁, ν₂, · · · , ν₉) the vector of number of visits.
- So we have

case	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_9	path
1	≥ 1	1	0	0	$\nu_1 + \nu_9 - 1$	0	0	0	≥ 0	12
2	≥ 1	1	0	1	$ u_1 + \nu_9 $	0	0	0	≥ 0	54-42
3	≥ 1	1	1	0	$ u_1 + \nu_9 $	0	0	0	≥ 0	53-32
4	≥ 1	1	0	0	$ u_1 + \nu_9 - 1 $	1	0	1	≥ 1	98-862
5	≥ 1	1	0	0	$\nu_1 + \nu_9 - 1$	1	1	0	≥ 1	97-762

Table: Number of visits to each states.

•
$$Q(\nu) := \mathbb{P}(V = \nu (= (\nu_1, \nu_2, \cdots, \nu_9)))$$

• $Q_i(\nu)$ be $Q(\nu)$ given case *i*.

l heorem

 $Q_i(\nu)$'s are given as follows,

$$Q_{1}(\nu) = \frac{1}{1+2\rho} H(\nu_{1}-1,\nu_{9}),$$

$$Q_{2}(\nu) = Q_{3}(V) = H(\nu_{1},\nu_{9}),$$

$$Q_{4}(\nu) = Q_{5}(\nu) = \frac{\rho}{6} H(\nu_{1},\nu_{9}-1)$$

where

$$H(x,y) = \left(\frac{2\rho}{(1+2\rho)(3+\rho)}\right)^{x} \left(\frac{2\rho}{3(3+\rho)}\right)^{y} \binom{x+y-1}{y}$$

•
$$Q(\nu) := \mathbb{P}(V = \nu(= (\nu_1, \nu_2, \cdots, \nu_9)))$$

•
$$Q_i(
u)$$
 be $Q(
u)$ given case i .

Theorem

 $Q_i(\nu)$'s are given as follows,

$$Q_{1}(\nu) = \frac{1}{1+2\rho} H(\nu_{1} - 1, \nu_{9}),$$

$$Q_{2}(\nu) = Q_{3}(V) = H(\nu_{1}, \nu_{9}),$$

$$Q_{4}(\nu) = Q_{5}(\nu) = \frac{\rho}{6} H(\nu_{1}, \nu_{9} - 1)$$

where

$$H(x,y) = \left(\frac{2\rho}{(1+2\rho)(3+\rho)}\right)^{x} \left(\frac{2\rho}{3(3+\rho)}\right)^{y} \binom{x+y-1}{y}$$

•
$$Q(\nu) := \mathbb{P}(V = \nu (= (\nu_1, \nu_2, \cdots, \nu_9)))$$

• $Q_i(\nu)$ be $Q(\nu)$ given case *i*.

Theorem

 $Q_i(\nu)$'s are given as follows,

$$\begin{aligned} Q_1(\nu) &= \frac{1}{1+2\rho} H(\nu_1 - 1, \nu_9), \\ Q_2(\nu) &= Q_3(V) = H(\nu_1, \nu_9), \\ Q_4(\nu) &= Q_5(\nu) = \frac{\rho}{6} H(\nu_1, \nu_9 - 1) \end{aligned}$$

where

$$H(x,y) = \left(\frac{2\rho}{(1+2\rho)(3+\rho)}\right)^{x} \left(\frac{2\rho}{3(3+\rho)}\right)^{y} \binom{x+y-1}{y}.$$

• Sketch of the proof

• Assume $P_{i,j}$ be the probability of going from state *i* to state *j*. We can easily find the following relations.

For case 1

$$egin{aligned} \mathcal{Q}_1(
u) &= \mathbb{P}(V = (
u_1, 1, 0, 0,
u_1 +
u_9 - 1, 0, 0, 0,
u_9)) \ &= (P_{15}P_{51})^{
u_1 - 1}(P_{59}P_{95})^{
u_9} inom{
u_1 +
u_9 - 2}{
u_9} P_{12} \ &= rac{1}{1 + 2
ho} H(
u_1 - 1,
u_9). \end{aligned}$$
- Assume $P_{i,j}$ be the probability of going from state *i* to state *j*. We can easily find the following relations.
- For case 1

$$egin{aligned} \mathcal{Q}_1(
u) &= \mathbb{P}(V = (
u_1, 1, 0, 0,
u_1 +
u_9 - 1, 0, 0, 0,
u_9)) \ &= (P_{15}P_{51})^{
u_1 - 1}(P_{59}P_{95})^{
u_9} inom{
u_1 +
u_9 - 2}{
u_9} P_{12} \ &= rac{1}{1 + 2
ho} H(
u_1 - 1,
u_9). \end{aligned}$$

$T_i :=$ the total time spent in state *i*.

Given ν_i , T_i is a sum of ν_i i.i.d copies of exponential random variables $t_i \sim \mathcal{E} \times p(\lambda_i)$.

 $\mathcal{T}_i \sim \Gamma(
u_i, \lambda_i)$ with the following probability density function

$$p(t;
u_i, \lambda_i) = \left\{egin{array}{c} rac{\lambda_i^{
u_i t} t^{
u_i - 1} \exp\left(-\lambda_i t
ight)}{(
u_i - 1)!} & t \geq 0 \ 0 & t < 0, \end{array}
ight.$$

$$\lambda_1 = 1 + 2\rho, \lambda_3 = \lambda_4 = \lambda_6 = \lambda_7 = \lambda_8 = 1, \lambda_5 = 3 + \rho, \lambda_9 = 6.$$

 $T_i :=$ the total time spent in state *i*. Given ν_i , T_i is a sum of ν_i i.i.d copies of exponential random variables $t_i \sim \mathcal{E}xp(\lambda_i)$.

 $T_i \sim \Gamma(\nu_i, \lambda_i)$ with the following probability density function

$$p(t;
u_i, \lambda_i) = \left\{egin{array}{c} \displaystyle rac{\lambda_i^{
u_i t^{
u_i - 1} \exp{(-\lambda_i t)}}{(
u_i - 1)!} & t \geq 0 \ 0 & t < 0, \end{array}
ight.$$

$$\lambda_1 = 1 + 2\rho, \lambda_3 = \lambda_4 = \lambda_6 = \lambda_7 = \lambda_8 = 1, \lambda_5 = 3 + \rho, \lambda_9 = 6.$$

 $T_i :=$ the total time spent in state *i*. Given ν_i , T_i is a sum of ν_i i.i.d copies of exponential random variables $t_i \sim \mathcal{E}xp(\lambda_i)$.

 $T_i \sim \Gamma(\nu_i, \lambda_i)$ with the following probability density function

$$p(t; \nu_i, \lambda_i) = \left\{egin{array}{c} \frac{\lambda_i^{
u_i} t^{
u_i-1} \exp\left(-\lambda_i t
ight)}{(
u_i-1)!} & t \geq 0 \ 0 & t < 0, \end{array}
ight.$$

$$\lambda_1 = 1 + 2\rho, \lambda_3 = \lambda_4 = \lambda_6 = \lambda_7 = \lambda_8 = 1, \lambda_5 = 3 + \rho, \lambda_9 = 6.$$

 $T_i :=$ the total time spent in state *i*. Given ν_i , T_i is a sum of ν_i i.i.d copies of exponential random variables $t_i \sim \mathcal{E}xp(\lambda_i)$.

 $T_i \sim \Gamma(\nu_i, \lambda_i)$ with the following probability density function

$$p(t;
u_i, \lambda_i) = \left\{egin{array}{c} \displaystyle rac{\lambda_i^{
u_i} t^{
u_i-1} \exp{(-\lambda_i t)}}{(
u_i-1)!} & t \geq 0 \ 0 & t < 0, \end{array}
ight.$$

$$\lambda_1 = 1 + 2\rho, \lambda_3 = \lambda_4 = \lambda_6 = \lambda_7 = \lambda_8 = 1, \lambda_5 = 3 + \rho, \lambda_9 = 6.$$

The joint probability density function of T_L and T_R given V which is given as follows

$$\Phi_{T_L, T_R|V}(t, s|V = \nu) = \begin{cases} \delta(t-s)f_{T|V}(t|V = \nu) & \text{case 1} \\ 1_{\{s < t\}}f_{T|V}(s|V = \nu)f(t-s) & \text{case 2} \\ 1_{\{t < s\}}f_{T|V}(t|V = \nu)f(s-t) & \text{case 3} \\ 1_{\{s < t\}}f_{T|V}(s|V = \nu)f(t-s) & \text{case 4} \\ 1_{\{t < s\}}f_{T|V}(t|V = \nu)f(s-t) & \text{case 5} \end{cases}$$

where $f \sim \mathcal{E}xp(1)$.

The joint probability density function of T_L and T_R given V which is given as follows

$$\begin{pmatrix} \delta(t-s)f_{T|V}(t|V=\nu) & \text{case 1} \\ 1 & \text{case } f_{T|V}(s|V=\nu)f(t-s) & \text{case 2} \end{pmatrix}$$

$$\Phi_{T_L,T_R|V}(t,s|V=\nu) = \begin{cases} 1_{\{s$$

where $f \sim \mathcal{E}xp(1)$.

So we have to find the distribution of T := T₁ + T₅ + T₉.
If ν₅ = ν₉ = 0, the only possibility is when ν₁ = 1. Therefore

 $f_{T|V}(t|V=\nu) = (1+2\rho)exp(-(1+2\rho)t),$

• If $\nu_5 \ge 1, \nu_9 = 0$, we have $\nu_5 = \nu_1 - 1$. So the distribution of T given V is given as follows

$$f_{T|V}(t|V=\nu) = \frac{\lambda_1^{\nu_1}\lambda_5^{\nu_1-1}\exp(-\lambda_5 t)}{(\nu_1-1)!(\nu_1-2)!} \sum_{k=0}^{\nu_1-1} \sum_{r=0}^{\infty} {\nu_1-1 \choose k} \frac{(-1)^k (2-\rho)^r}{r!(\nu_1+k+r)} t^{2\nu_1+r-2},$$

• If $\nu_5 \neq 0, \nu_9 \neq 0$, the distribution of T given V is given by

$$\begin{split} f_{T|V}(t|V=\nu) = & \frac{\lambda_1^{\nu_1}\lambda_5^{\nu_1+\nu_2-1}\lambda_9^{\nu_2}\exp(-\lambda_1t)}{(\nu_1-1)!(\nu_1+\nu_9-2)!(\nu_9-1)!} t^{2(\nu_1+\nu_9-1)} \sum_{r=0}^{\infty} \sum_{k=0}^{\nu_1+\nu_9-2} \sum_{i=0}^{\omega_{i-1}} \\ & \binom{\nu_1+\nu_9-2}{k} \binom{\nu_9-1}{i} \frac{(-1)^{k+i}(\rho-2)'(\rho-3)^i}{r!j!(\nu_9+k+r)(2\nu_9+\nu_1+r+i+j-1)} t^{r+j}. \end{split}$$

- So we have to find the distribution of $T := T_1 + T_5 + T_9$.
- If $\nu_5 = \nu_9 = 0$, the only possibility is when $\nu_1 = 1$. Therefore

$$f_{T|V}(t|V = \nu) = (1 + 2\rho)exp(-(1 + 2\rho)t),$$

If v₅ ≥ 1, v₉ = 0, we have v₅ = v₁ − 1. So the distribution of T given V is given as follows

$$f_{T|V}(t|V=\nu) = \frac{\lambda_1^{\nu_1}\lambda_5^{\nu_1-1}\exp(-\lambda_5 t)}{(\nu_1-1)!(\nu_1-2)!} \sum_{k=0}^{\nu_1-1} \sum_{r=0}^{\infty} {\nu_1-1 \choose k} \frac{(-1)^k (2-\rho)^r}{r!(\nu_1+k+r)} t^{2\nu_1+r-2},$$

• If $\nu_5 \neq 0, \nu_9 \neq 0$, the distribution of T given V is given by

$$\begin{split} f_{T|V}(t|V=\nu) = & \frac{\lambda_1^{\nu_1} \lambda_5^{\nu_1+\nu_9-1} \lambda_9^{\nu_9} \exp(-\lambda_1 t)}{(\nu_1-1)!(\nu_1+\nu_9-2)!(\nu_9-1)!} t^{2(\nu_1+\nu_9-1)} \sum_{r=0}^{\infty} \sum_{k=0}^{\nu_1+\nu_9-2} \sum_{i=0}^{\infty} \sum_{i=0}^{\nu_9-1} \\ & \binom{\nu_1+\nu_9-2}{k} \binom{\nu_9-1}{i} \frac{(-1)^{k+i}(\rho-2)^r(\rho-3)^j}{r!j!(\nu_9+k+r)(2\nu_9+\nu_1+r+i+j-1)} t^{r+j}. \end{split}$$

- So we have to find the distribution of $T := T_1 + T_5 + T_9$.
- If $\nu_5 = \nu_9 = 0$, the only possibility is when $\nu_1 = 1$. Therefore

$$f_{T|V}(t|V=\nu) = (1+2\rho)exp(-(1+2\rho)t),$$

• If $\nu_5 \ge 1, \nu_9 = 0$, we have $\nu_5 = \nu_1 - 1$. So the distribution of T given V is given as follows

$$f_{T|V}(t|V=\nu) = \frac{\lambda_1^{\nu_1}\lambda_5^{\nu_1-1}\exp(-\lambda_5 t)}{(\nu_1-1)!(\nu_1-2)!} \sum_{k=0}^{\nu_1-1} \sum_{r=0}^{\infty} {\binom{\nu_1-1}{k}} \frac{(-1)^k(2-\rho)^r}{r!(\nu_1+k+r)} t^{2\nu_1+r-2},$$

• If $u_5 \neq 0,
u_9 \neq 0$, the distribution of T given V is given by

$$f_{T|V}(t|V=\nu) = \frac{\lambda_1^{\nu_1} \lambda_5^{\nu_1+\nu_9-1} \lambda_9^{\nu_9} \exp(-\lambda_1 t)}{(\nu_1-1)!(\nu_1+\nu_9-2)!(\nu_9-1)!} t^{2(\nu_1+\nu_9-1)} \sum_{r=0}^{\infty} \sum_{k=0}^{\nu_1+\nu_9-2} \sum_{i=0}^{\infty} \sum_{i=0}^{\nu_9-1} \binom{(\nu_1+\nu_9-2)!(\nu_9-1)!}{k!(\nu_1+\nu_9-2)!(\nu_9-1)!} t^{r+i} \cdot \binom{(-1)^{k+i}(\rho-2)!(\rho-3)^{j}}{r!j!(\nu_9+k+r)(2\nu_9+\nu_1+r+i+j-1)!} t^{r+j}.$$

- So we have to find the distribution of $T := T_1 + T_5 + T_9$.
- If $\nu_5 = \nu_9 = 0$, the only possibility is when $\nu_1 = 1$. Therefore

$$f_{T|V}(t|V=\nu) = (1+2\rho)exp(-(1+2\rho)t),$$

• If $\nu_5 \ge 1, \nu_9 = 0$, we have $\nu_5 = \nu_1 - 1$. So the distribution of T given V is given as follows

$$f_{T|V}(t|V=\nu) = \frac{\lambda_1^{\nu_1}\lambda_5^{\nu_1-1}\exp(-\lambda_5 t)}{(\nu_1-1)!(\nu_1-2)!} \sum_{k=0}^{\nu_1-1} \sum_{r=0}^{\infty} {\binom{\nu_1-1}{k}} \frac{(-1)^k(2-\rho)^r}{r!(\nu_1+k+r)} t^{2\nu_1+r-2},$$

• If $\nu_5 \neq 0, \nu_9 \neq 0$, the distribution of T given V is given by

$$\begin{split} f_{T|V}(t|V=\nu) = & \frac{\lambda_1^{\nu_1} \lambda_5^{\nu_1+\nu_9-1} \lambda_9^{\nu_9} \exp(-\lambda_1 t)}{(\nu_1-1)!(\nu_1+\nu_9-2)!(\nu_9-1)!} t^{2(\nu_1+\nu_9-1)} \sum_{r=0}^{\infty} \sum_{k=0}^{\nu_1+\nu_9-2} \sum_{j=0}^{\infty} \sum_{i=0}^{\nu_9-1} \\ & \binom{\nu_1+\nu_9-2}{k} \binom{\nu_9-1}{i} \frac{(-1)^{k+i}(\rho-2)^r(\rho-3)^j}{r!j!(\nu_9+k+r)(2\nu_9+\nu_1+r+i+j-1)} t^{r+j}. \end{split}$$

Theorem

The joint distribution of T_L and T_R is given as follows

$$\begin{split} \mathbb{P}(ds, dt) &= \sum_{\nu_1=1}^{\infty} \sum_{\nu_9=0}^{\infty} Q_1(V) \delta(t-s) f_{T|V}(t|V=\nu) dt \\ &+ \sum_{\nu_1=1}^{\infty} \sum_{\nu_9=0}^{\infty} Q_2(V) (\exp(-(t-s)) f_{T|V}(s|V=\nu) \mathbf{1}_{\{s < t\}} + \exp(-(s-t)) f_{T|V}(t|V=\nu) \mathbf{1}_{\{t < s\}}) dt ds \\ &+ \sum_{\nu_1=1}^{\infty} \sum_{\nu_9=1}^{\infty} Q_4(V) (\exp(-(t-s)) f_{T|V}(s|V=\nu) \mathbf{1}_{\{s < t\}} + \exp(-(s-t)) f_{T|V}(t|V=\nu) \mathbf{1}_{\{t < s\}}) dt ds. \end{split}$$

• $L_i(\text{resp. } R_i) := \text{locus L} (\text{resp. } R)$ for the *i*-th individual

 L_i = L_j (resp. R_i = R_j) := i-th and the j-th individuals are identical at locus L (resp. R).

$$\mathbb{P}(L_i = L_j, R_i = R_j) = \mathbb{E}(\mathbb{P}(L_i = L_j | T_L) \mathbb{P}(R_i = R_j | T_R))$$

= $\mathbb{E}(\exp(-2\theta T) \mathbb{1}_{\{T_L = T = T_R\}}) + \mathbb{E}(\exp(-\theta(T_L + T_R) \mathbb{1}_{\{T_L < T_R\}})$
+ $\mathbb{E}(\exp(-\theta(T_L + T_R) \mathbb{1}_{\{T_R < T_L\}}).$

- $L_i(\text{resp. } R_i) := \text{locus L} (\text{resp. } R)$ for the *i*-th individual
- L_i = L_j (resp. R_i = R_j) := i-th and the j-th individuals are identical at locus L (resp. R).

$$\mathbb{P}(L_i = L_j, R_i = R_j) = \mathbb{E}(\mathbb{P}(L_i = L_j | T_L) \mathbb{P}(R_i = R_j | T_R))$$

= $\mathbb{E}(\exp(-2\theta T) \mathbb{1}_{\{T_L = T = T_R\}}) + \mathbb{E}(\exp(-\theta(T_L + T_R) \mathbb{1}_{\{T_L < T_R\}})$
+ $\mathbb{E}(\exp(-\theta(T_L + T_R) \mathbb{1}_{\{T_R < T_L\}}).$

- $L_i(\text{resp. } R_i) := \text{locus L} (\text{resp. } R)$ for the *i*-th individual
- L_i = L_j (resp. R_i = R_j) := i-th and the j-th individuals are identical at locus L (resp. R).

۲

$$\begin{split} \mathbb{P}(L_i = L_j, R_i = R_j) &= \mathbb{E}(\mathbb{P}(L_i = L_j | T_L) \mathbb{P}(R_i = R_j | T_R)) \\ &= \mathbb{E}(\exp\left(-2\theta T\right) \mathbb{1}_{\{T_L = T = T_R\}}) + \mathbb{E}(\exp\left(-\theta (T_L + T_R) \mathbb{1}_{\{T_L < T_R\}}\right) \\ &+ \mathbb{E}(\exp\left(-\theta (T_L + T_R) \mathbb{1}_{\{T_R < T_L\}}\right). \end{split}$$

Theorem

$$\mathbb{P}(L_1 = L_2, R_1 = R_2) = \frac{2\rho^2 + (\theta^2 + 6\theta + 13)\rho + 2\theta^3 + 11\theta^2 + 18\theta + 9}{(1+\theta)[2(1+\theta)\rho^2 + (6\theta^2 + 19\theta + 13)\rho + (1+2\theta)(3+2\theta)(3+\theta)]},$$

$$\mathbb{P}(L_1 = L_2, R_1 \neq R_2) = \frac{2\theta\rho^2 + (5\theta^2 + 13\theta)\rho + 2\theta^3 + 9\theta^2 + 9\theta}{(1+\theta)[2(1+\theta)\rho^2 + (6\theta^2 + 19\theta + 13)\rho + (1+2\theta)(3+2\theta)(3+\theta)]},$$

$$\mathbb{P}(L_1 \neq L_2, R_1 \neq R_2) = \frac{2\theta^2\rho^2 + (6\theta^3 + 14\theta^2)\rho + 4\theta^4 + 18\theta^3 + 18\theta^2}{(1+\theta)[2(1+\theta)\rho^2 + (6\theta^2 + 19\theta + 13)\rho + (1+2\theta)(3+2\theta)(3+\theta)]}.$$

- ρ = 0, ℙ(L₁ = L₂, R₁ = R₂) = ¹/_{1+2θ}, and the probability that these two individuals are not of the same type is ^{2θ}/_{1+2θ}.
- If $\rho \to \infty$ then $\mathbb{P}(L_i = L_j, R_i = R_j) \to (\frac{1}{1+\theta})^2$.
- When $\frac{\theta}{2} \to \infty$, $\mathbb{P}(L_i = L_j, R_i = R_j) \to 0$.

- ρ = 0, ℙ(L₁ = L₂, R₁ = R₂) = ¹/_{1+2θ}, and the probability that these two individuals are not of the same type is ^{2θ}/_{1+2θ}.
- If $\rho \to \infty$ then $\mathbb{P}(L_i = L_j, R_i = R_j) \to (\frac{1}{1+\theta})^2$.
- When ^θ/₂, the mutation rate per individual per locus is zero, P(L_i = L_j, R_i = R_j) = 1.
- When $\frac{\theta}{2} \to \infty$, $\mathbb{P}(L_i = L_j, R_i = R_j) \to 0$.

ρ = 0, ℙ(L₁ = L₂, R₁ = R₂) = ¹/_{1+2θ}, and the probability that these two individuals are not of the same type is ^{2θ}/_{1+2θ}.

• If
$$\rho \to \infty$$
 then $\mathbb{P}(L_i = L_j, R_i = R_j) \to (\frac{1}{1+\theta})^2$.

- When $\frac{\theta}{2}$, the mutation rate per individual per locus is zero, $\mathbb{P}(L_i = L_j, R_i = R_j) = 1.$
- When $\frac{\theta}{2} \to \infty$, $\mathbb{P}(L_i = L_j, R_i = R_j) \to 0$.

ρ = 0, ℙ(L₁ = L₂, R₁ = R₂) = ¹/_{1+2θ}, and the probability that these two individuals are not of the same type is ^{2θ}/_{1+2θ}.

• If
$$\rho \to \infty$$
 then $\mathbb{P}(L_i = L_j, R_i = R_j) \to (\frac{1}{1+\theta})^2$.

- When $\frac{\theta}{2}$, the mutation rate per individual per locus is zero, $\mathbb{P}(L_i = L_j, R_i = R_j) = 1.$
- When $\frac{\theta}{2} \to \infty$, $\mathbb{P}(L_i = L_j, R_i = R_j) \to 0$.

- D:=the number of different types for the individuals in the population, so D ∈ {1, 2, 3}.
- T₁:=time to the first coalescent and T₂:= be the time to the second coalescent, so T₁ ~ Exp(3) and T₂ ~ Exp(1).

- D:=the number of different types for the individuals in the population, so D ∈ {1, 2, 3}.
- T₁:=time to the first coalescent and T₂:= be the time to the second coalescent, so T₁ ~ Exp(3) and T₂ ~ Exp(1).

- D:=the number of different types for the individuals in the population, so D ∈ {1, 2, 3}.
- T₁:=time to the first coalescent and T₂:= be the time to the second coalescent, so T₁ ~ Exp(3) and T₂ ~ Exp(1).

For D = 3.

- At least one mutation on the branch indexed by 1 (or 2) and at least one mutation on the branches indexed by 3.
- At least one mutation on the branches labeled by 1 and 2 and no mutation on 3.

$$\mathbb{P}(D=3|\mathcal{T}) = 1 - \exp(-\theta T_1) - 2\exp(\theta(T_1+T_2)) + 2\exp(-\frac{3\theta T_1}{2} - \theta T_2).$$

For D = 3.

- At least one mutation on the branch indexed by 1 (or 2) and at least one mutation on the branches indexed by 3.
- At least one mutation on the branches labeled by 1 and 2 and no mutation on 3.

$$\mathbb{P}(D=3|\mathcal{T}) = 1 - \exp(-\theta T_1) - 2\exp(\theta(T_1+T_2)) + 2\exp(-\frac{3\theta T_1}{2} - \theta T_2).$$

• For D = 2. So for this case we can impose at least one mutation either on the branch called 1, or on the branch called 2, or 3. So

$$\mathbb{P}(D=2|\mathcal{T})=\exp(-\theta T_1)-\exp(-\theta (T_1+T_2))-2\exp(-\frac{3\theta}{2}T_1-\theta T_2).$$

• For *D* = 1. This case can happen only if we have no mutation neither on 1 nor on 2 nor on 3. So

$$\mathbb{P}(D=1|\mathcal{T}) = \exp(-\frac{\theta}{2}(2\mathcal{T}_2+3\mathcal{T}_1)).$$

• For D = 2. So for this case we can impose at least one mutation either on the branch called 1, or on the branch called 2, or 3. So

$$\mathbb{P}(D=2|\mathcal{T})=\exp(-\theta T_1)-\exp(-\theta (T_1+T_2))-2\exp(-\frac{3\theta}{2}T_1-\theta T_2).$$

• For D = 1. This case can happen only if we have no mutation neither on 1 nor on 2 nor on 3. So

$$\mathbb{P}(D=1|\mathcal{T})=\exp(-\frac{\theta}{2}(2T_2+3T_1)).$$

Assume $D_L(\text{resp. } D_R)$ is the same as D for locus L (resp. R) and \mathcal{T}^L (resp. \mathcal{T}^R) is the same as \mathcal{T} for locus L (resp. R). So for $i, j \in \{1, 2, 3\}$ we have

$$\mathbb{P}(D_L = i, D_R = j) = \mathbb{E}(\mathbb{P}(D_L = i, D_R = j | ARG))$$
$$= \mathbb{E}(\mathbb{P}(D_L = i | \mathcal{T}^L) \mathbb{P}(D_R = j | \mathcal{T}^R)).$$

$$1 = (0, 0, 3), 2 = (0, 0, 2), 3 = (0, 1, 2), 4 = (1, 0, 2), 5 = (1, 1, 2), 6 = (0, 0, 1)$$

$$7 = (0, 1, 1), 8 = (0, 2, 1), 9 = (1, 0, 1), 10 = (1, 1, 1), 11 = (1, 2, 1)$$

$$12 = (2, 0, 1), 13 = (2, 1, 1), 14 = (2, 2, 1), 15 = (1, 1, 0), 16 = (1, 2, 0)$$

$$17 = (1, 3, 0), 18 = (2, 1, 0), 19 = (2, 2, 0), 20 = (2, 3, 0), 21 = (3, 1, 0)$$

$$22 = (3, 2, 0), 23 = (3, 3, 0).$$

GENERAL CASE

Assume we have a population of size *n*. As before we consider the 2-locus infinite-alleles model, $n^2 + \sum_{k=1}^n k^2$ different states

The probability that all individuals are of the same type for fixed ρ

The probability that all individuals are of the same type for fixed $\boldsymbol{\theta}$

Thanks for your attention.