^-look-down model with selection

B. Bah É. Pardoux

Séminaire ANR MANEGE

Paris, 14 novembre 2012
(1) Description of the model
(2) Convergence to the $\Lambda-W-$ - SDE with selection
(3) Fixation and non-fixation in the $\Lambda-W-F$ SDE
(1) Description of the model

- Birth :
- Death :
(2) Convergence to the $\Lambda-W-$ F SDE with selection
(3) Fixation and non-fixation in the $\Lambda-W-F$ SDE
- We consider a population of infinite size. We assume that two types of individuals coexist in the population : individuals with the wild-type allele b and individuals with the advantageous allele B. This selective advantage is modeled by a death rate α for the type b individuals.
- We consider a population of infinite size. We assume that two types of individuals coexist in the population : individuals with the wild-type allele b and individuals with the advantageous allele B. This selective advantage is modeled by a death rate α for the type b individuals.
- We assume that individuals are placed at time 0 on levels $1,2, \cdots$, each one being, independently from the others, b with probability x, B with probability $1-x$, for some $0<x<1$.
- For any $t \geq 0, i \geq 1$, let

$$
\eta_{t}(i)= \begin{cases}1 & \text { if the i-th individual is } \mathrm{b} \text { at time } t \\ 0 & \text { if the i-th individual is B at time } t\end{cases}
$$

- $\eta_{t}(i)$ represents the type of the individual sitting on level i at time t.
- For any $t \geq 0, i \geq 1$, let

$$
\eta_{t}(i)= \begin{cases}1 & \text { if the } i-\text { th individual is } \mathrm{b} \text { at time } t \\ 0 & \text { if the } \mathrm{i} \text {-th individual is } \mathrm{B} \text { at time } t .\end{cases}
$$

- $\eta_{t}(i)$ represents the type of the individual sitting on level i at time t.
- The evolution of the population is governed by two following mechanism.
- Births. Let \wedge be an arbitrary finite measure on $[0,1]$ such that $\Lambda(\{0\})=0$. Consider a Poisson random measure on $\left.\left.\mathbb{R}_{+} \times\right] 0,1\right]$,

$$
m=\sum_{k=1}^{\infty} \delta_{t_{k}, p_{k}}
$$

with intensity measure $d t \otimes v(d p)$, where $\nu(d p)=p^{-2} \Lambda(d p)$.

- Births. Let \wedge be an arbitrary finite measure on $[0,1]$ such that $\Lambda(\{0\})=0$. Consider a Poisson random measure on $\left.\left.\mathbb{R}_{+} \times\right] 0,1\right]$,

$$
m=\sum_{k=1}^{\infty} \delta_{t_{k}, p_{k}}
$$

with intensity measure $d t \otimes v(d p)$, where
$v(d p)=p^{-2} \Lambda(d p)$.

- Each atom (t, p) of m corresponds to a birth event.
- For each level $i \geq 1$, we define $Z_{i} \simeq \operatorname{Bernoulli}(p)$. Let

$$
I_{t, p}=\left\{i \geq 1: Z_{i}=1\right\}
$$

and

$$
\ell_{t, p}=\inf \left\{i \in I_{t, p}: i>\min I_{t, p}\right\}
$$

- $I_{t, p}$ is called the set of individuals that participate to the birth event.

- Deaths. Any type b individual dies at rate α. If the level of the dying individual is i, then for all $j>i$, the individual at level j replaces instantaneously the individual at level $j-1$. In other words,

$$
\eta_{t}(j)= \begin{cases}\eta_{t^{-}}(j) & \text { for } j<i \\ \eta_{t^{-}}(j+1) & \text { for } j \geq i\end{cases}
$$

O
 Description of the model

(2) Convergence to the $\Lambda-W-$ - SDE with selection

- Construction of our process
- Exchangeability
- Convergence in probability
- Main result

(3) Fixation and non-fixation in the $\Lambda-W-F$ SDE

- At any time $t \geq 0$, let K_{t} denote the lowest level occupied by a B individual.
- At any time $t \geq 0$, let K_{t} denote the lowest level occupied by a B individual.
- Case $1: K_{t} \rightarrow \infty, t \rightarrow \infty$.
- Case 2: $K_{t} \rightarrow \infty, t \rightarrow \infty$.
- Case 2: $K_{t} \nrightarrow \infty, t \rightarrow \infty$.
- Let

$$
T_{1}=\inf \left\{t \geq 0: K_{t}=1\right\}
$$

- Let S_{N} the first time where all the N first individuals are of B type.
- Case $2: K_{t} \nrightarrow \infty, t \rightarrow \infty$.
- Let

$$
T_{1}=\inf \left\{t \geq 0: K_{t}=1\right\}
$$

- Let S_{N} the first time where all the N first individuals are of B type.
- let $\varphi(N)=N e^{\alpha S_{N}}\left(N e^{\alpha S_{N}}+1\right)+M$, where

$$
M=\sup _{0 \leq t \leq T_{1}} K_{t}
$$

- Case $2: K_{t} \nrightarrow \infty, t \rightarrow \infty$.
- Let

$$
T_{1}=\inf \left\{t \geq 0: K_{t}=1\right\}
$$

- Let S_{N} the first time where all the N first individuals are of B type.
- let $\varphi(N)=N e^{\alpha S_{N}}\left(N e^{\alpha S_{N}}+1\right)+M$, where

$$
M=\sup _{0 \leq t \leq T_{1}} K_{t}
$$

- Now, let $\left\{\xi_{t}^{\varphi(N)}, t \geq 0\right\}$ denote the process which describes the position at time t of the individual sitting on level $\varphi(N)$ at time 0.

Proposition

If $T_{1}<\infty$, then for each $N \geq M$,

$$
\widehat{\mathbb{P}}_{N}\left(\exists 0<t \leq S_{N} \text { such that } \xi_{t}^{\varphi(N)} \leq N\right) \leq \frac{2}{N^{2}}
$$

where $\widehat{\mathbb{P}}_{N}[]=.\mathbb{P}\left(. \mid S_{N}\right)$

Proposition

Suppose that $\left\{\eta_{0}(i), i \geq 1\right\}$ are exchangeable random variables. Then for all $t>0,\left\{\eta_{t}(i), i \geq 1\right\}$ is an exchangeable sequence of $\{0,1\}$-valued random variables.

Proposition

Suppose that $\left\{\eta_{0}(i), i \geq 1\right\}$ are exchangeable random variables. Then for all $t>0,\left\{\eta_{t}(i), i \geq 1\right\}$ is an exchangeable sequence of $\{0,1\}$-valued random variables.

Remark :The collection of random process $\left\{\eta_{t}(i), t \geq 0\right\}_{i \geq 1}$ is not exchangeable. Indeed, $\eta_{t}(1)$ can jump from 1 to 0 , but never from 0 to 1 , while the other $\eta_{t}(i)$ do not have that property

- For $N \geq 1$ and $t \geq 0$, denote by X_{t}^{N} the proportion of type b individuals at time t among the first N individuals, i.e.

$$
\begin{equation*}
X_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \eta_{t}(i) \tag{1}
\end{equation*}
$$

- For $N \geq 1$ and $t \geq 0$, denote by X_{t}^{N} the proportion of type b individuals at time t among the first N individuals, i.e.

$$
\begin{equation*}
X_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \eta_{t}(i) \tag{1}
\end{equation*}
$$

- As a consequence of the de Finetti theorem, for each $t \geq 0$

$$
\begin{equation*}
Y_{t}=\lim _{N \rightarrow \infty} X_{t}^{N} \quad \text { exist a.s. } \tag{2}
\end{equation*}
$$

- For $N \geq 1$ and $t \geq 0$, denote by X_{t}^{N} the proportion of type b individuals at time t among the first N individuals, i.e.

$$
\begin{equation*}
X_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \eta_{t}(i) \tag{1}
\end{equation*}
$$

- As a consequence of the de Finetti theorem, for each $t \geq 0$

$$
\begin{equation*}
Y_{t}=\lim _{N \rightarrow \infty} X_{t}^{N} \quad \text { exist a.s. } \tag{2}
\end{equation*}
$$

- From the Tightness of X^{N} and (2), it is not hard to show there exists a process $X \in D([0, \infty))$, such that for all $t \geq 0$,

$$
X_{t}^{N} \rightarrow X_{t} \text { a.s and } \quad X^{N} \Rightarrow X \text { weakly in } D([0, \infty))
$$

Theorem (B. Bah, E. Pardoux, 2012)

For all $T>0$,

$$
\sup _{0 \leq t \leq T}\left|X_{t}^{N}-X_{t}\right| \rightarrow 0 \text { in probability, as } N \rightarrow \infty .
$$

- Let

$$
M=\sum_{k=1}^{\infty} \delta_{t_{k}, u_{k}, p_{k}}
$$

Poisson point process on $\left.\left.\left.\left.\mathbb{R}_{+} \times\right] 0,1\right] \times\right] 0,1\right]$ with intensity $d t d u p^{-2} \Lambda(d p)$.

- For every $u \in] 0,1[$ and $r \in[0,1]$, we introduce the elementary function

$$
\Psi(u, r)=\mathbf{1}_{u \leq r}-r
$$

- Let

$$
M=\sum_{k=1}^{\infty} \delta_{t_{k}, u_{k}, p_{k}}
$$

Poisson point process on $\left.\left.\left.\left.\mathbb{R}_{+} \times\right] 0,1\right] \times\right] 0,1\right]$ with intensity $d t d u p^{-2} \Lambda(d p)$.

- For every $u \in] 0,1[$ and $r \in[0,1]$, we introduce the elementary function

$$
\begin{aligned}
& \Psi(u, r)=\mathbf{1}_{u \leq r}-r . \\
& \int_{0}^{1} \Psi(u, r) d u=0
\end{aligned}
$$

Definition

We shall call $\Lambda-W-F$ SDE with selection the following Poissonian stochastic differential equation

$$
\begin{align*}
X_{t}=x- & \alpha \int_{0}^{t} X_{s}\left(1-X_{s}\right) d s \\
& +\int_{[0, t] \times] 0,1\left[{ }^{2}\right.} p \Psi\left(u, X_{s^{-}}\right) \bar{M}(d s, d u, d p) \tag{3}
\end{align*}
$$

where $\alpha \in \mathbb{R}$ and \bar{M} is the compensated measure M. The solution $\left\{X_{t}, t \geq 0\right\}$ is a cadlag adpted processses which takes values in the interval $[0,1]$.

- We suppose that $\Lambda(\{0\})=0$
- We suppose that $\Lambda(\{0\})=0$

Theorem (B. Bah, E. Pardoux, 2012)

Suppose that $X_{0}^{N} \rightarrow x$ a.s, as $N \rightarrow \infty$. Then the $[0,1]$-valued process $\left\{X_{t}, t \geq 0\right\}$ is the (unique in law) solution of the Λ-Wright-Fisher SDE (3).

- We suppose that the measure Λ is general (i.e $\Lambda(\{0\})>0$).
- We suppose that the measure Λ is general (i.e $\Lambda(\{0\})>0)$.

Theorem (B. Bah, E. Pardoux, 2012)

Suppose that $X_{0}^{N} \rightarrow x$ a.s, as $N \rightarrow \infty$. Then the $[0,1]-$ valued process $\left\{X_{t}, t \geq 0\right\}$ is the (unique in law) solution of the stochastic differential equation

$$
\begin{aligned}
X_{t}=x & -\alpha \int_{0}^{t} X_{s}\left(1-X_{s}\right) d s+\int_{0}^{t} \sqrt{\Lambda(0) X_{s}\left(1-X_{s}\right)} d B_{s} \\
& +\int_{[0, t] \times] 0,1\left[\left[^{2}\right.\right.} p\left(\mathbf{1}_{u \leq X_{s^{-}}}-X_{s^{-}}\right) \bar{M}(d s, d u, d p),
\end{aligned}
$$

where \bar{M} is the compensated measure M, and B is a standard Brownian motion.

(1) Description of the model

(2) Convergence to the $\Lambda-W-F$ SDE with selection

3 Fixation and non-fixation in the $\Lambda-W-F$ SDE

- Λ-coalescent
- Comes down from infinity
- fixation and non fixation
- The law of X_{∞}

Definition

Λ-coalescent is a Markov process $\left(\Pi_{t}, t \geq 0\right)$ with values in \mathcal{P}_{∞} (the set of partition of \mathbb{N}), characterized as follows. If $n \in \mathbb{N}$, then the restriction $\left(\Pi_{t}^{n}, t \geq 0\right)$ of $\left(\Pi_{t}, t \geq 0\right)$ to $[n]$ is a Markov chain, taking values in \mathscr{P}_{n}, with a following dynamics : whenever Π_{t}^{n} is a partition consisting of k blocks, the rate at which a given ℓ-tuple of its blocks merges is

$$
\lambda_{k, \ell}=\int_{0}^{1} p^{\ell-2}(1-p)^{k-\ell} \Lambda(d p)
$$

- We suppose that Λ has no atom at 1 (i.e $\Lambda(\{1\})=0$).
- We suppose that Λ has no atom at 1 (i.e $\Lambda(\{1\})=0$).
- We say the Λ-coalescent comes down from infinity $(\Lambda \in$ CDI) if $\mathbb{P}\left(\# \Pi_{t}<\infty\right)=1$ for all $t>0$.
- We say it stays infinite $(\Lambda \notin \mathbf{C D I})$ if $\mathbb{P}\left(\# \Pi_{t}=\infty\right)=1$ for all $t>0$.
- We suppose that Λ has no atom at 1 (i.e $\Lambda(\{1\})=0$).
- We say the Λ-coalescent comes down from infinity $(\Lambda \in$ CDI) if $\mathbb{P}\left(\# \Pi_{t}<\infty\right)=1$ for all $t>0$.
- We say it stays infinite $(\Lambda \notin \mathbf{C D I})$ if $\mathbb{P}\left(\# \Pi_{t}=\infty\right)=1$ for all $t>0$.

$$
\text { if } \int_{0}^{1} p^{-1} \Lambda(d p)<\infty \text { then } \Lambda \notin \mathbf{C D I} \quad \text { (J. Pitman (1999)). }
$$

- Let

$$
\varphi(n)=\int_{0}^{1}\left(n p-1+(1-p)^{n}\right) p^{-2} \Lambda(d p)
$$

$\Lambda \in \mathbf{C D I} \Longleftrightarrow \sum_{n=2}^{\infty} \frac{1}{\varphi(n)}<\infty \quad$ (J. SCHWEINSBERG 2000)

Let

$$
X_{\infty}=\lim _{t \rightarrow \infty} X_{t} \in\{0,1\} .
$$

Let

$$
X_{\infty}=\lim _{t \rightarrow \infty} X_{t} \in\{0,1\}
$$

We have the following

Theorem (B. Bah, E. Pardoux, 2012)

If $\wedge \in C D I$, then one of the two types (b or B) fixates in finite time, i.e.

$$
\exists \zeta<\infty \text { a.s }: X_{\zeta}=X_{\infty} \in\{0,1\}
$$

If $\wedge \notin C D I$, then

$$
\forall t \geq 0,0<X_{t}<1 \text { a.s. }
$$

- We suppose that $\Lambda \notin \mathbf{C D I}$.
- We suppose that $\Lambda \notin \mathbf{C D I}$.
- If $\alpha=0, X_{t}$ is bounded martingale, so

$$
\mathbb{P}\left(X_{\infty}=1\right)=\mathbb{E} X_{\infty}=\mathbb{E} X_{0}=x
$$

- If $\alpha>0$, we have

$$
\mathbb{P}\left(X_{\infty}=1\right)=\mathbb{E} X_{\infty}<x
$$

Let

$$
\mu=\int_{0}^{1} \frac{1}{p(1-p)} \wedge(d p)
$$

Let

$$
\mu=\int_{0}^{1} \frac{1}{p(1-p)} \wedge(d p)
$$

For each $n \geq 1$, let $\Phi(n)$ the mean speed of the movement to the right of an individual sitting on level n. We have

Let

$$
\mu=\int_{0}^{1} \frac{1}{p(1-p)} \Lambda(d p)
$$

For each $n \geq 1$, let $\Phi(n)$ the mean speed of the movement to the right of an individual sitting on level n. We have

$$
\frac{\Phi(n)}{n} \uparrow \int_{0}^{1} \frac{1}{p(1-p)} \Lambda(d p) \text { as } n \uparrow \infty .
$$

Let

$$
\mu=\int_{0}^{1} \frac{1}{p(1-p)} \wedge(d p)
$$

For each $n \geq 1$, let $\Phi(n)$ the mean speed of the movement to the right of an individual sitting on level n. We have

$$
\frac{\Phi(n)}{n} \uparrow \int_{0}^{1} \frac{1}{p(1-p)} \Lambda(d p) \text { as } n \uparrow \infty .
$$

Theorem (B. Bah, E. Pardoux, 2012)

If $\mu<\alpha$, then

$$
\mathbb{P}\left(X_{\infty}=1\right)=0
$$

Theorem
 If $\Lambda=\mathcal{U l}(0,1)$, then

$$
\mathbb{P}\left(X_{\infty}=1\right)>0
$$

Thank you for your attention!

B. Bah É. Pardoux

