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Accounting for Immunodynamics in  
Epidemiological Models 



n  Epidemiological model since 1927 
n  Partially observed and noisy data 
n  Accounting for the characteristics of the dynamics: 

non linearity and non stationarity 
n  More and more need of predictive tools in Public 

Health 
n  One needs adapted tools for parameter inference, 

to test hypothesis and to make model selection 

The need of mathematical models, inference   
and model selection tools in epidemiology 



Classical Epidemiological Models 



Classical Epidemiological Models 
n  Classical models are known as SIR models and are 

based on the immune status of the population 
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Classical Epidemiological Models 
n  Based on this simple concept different models are 

possible: 



We define a possible state of the system as a triplet {S, I, R} 
of random variables. The evolution of the state of the system 
is led by two transition events: 
 
• Infection of a susceptible by an infective 
 
• Removal of an infective 

Each event is associated with a transition rate: 
 
• For infection  
 
 
• For recovery and immunity 
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Stochastic Epidemiological Models 



We introduce Ps,i(t) as the probability to be in the state  δ = {s, i}.  
The evolution of the probability distribution Ps,i(t) over the state 
space                                              is governed by the general 
master equation: 
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Stochastic Epidemiological Models 

dPt
dt

=Q.Pt

where Q is called the transition matrix (size nxn, n=E is the 
number of possible states) and Pt is a vector of size N that 
contains the probabilities for all the states at time t. For our SIR 
model, n = ½ (N+1)(N+2). 



Stochastic Epidemiological Models 

n  Monte-Carlo methods: The Gillespie method 

n  Van Kampen approximation of the master equation 
    (Kurtz approximation for mathematician!) 

To solve the non-linear stochastic equations of the stochastic 
epidemiological models different methods can be used:  



Stochastic Epidemiological Models 
n  Van Kampen approximation of the master equation 

n  Make the assumption that P depends on N and the random variables are 
rewritten as the sum of a macroscopic deterministic variable and a 
mesoscopic random variable:  

 
n  The objective of this approximation is then to extract, from the master 

equation, the deterministic evolution of φ(t) and θ(t) and the probability 
distribution of η1 and η2.  

n  One obtains a system of ordinary differential equations governing the 
deterministic variables φ(t) and θ(t): 
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Stochastic Epidemiological Models 
n  Van Kampen approximation of the master equation 

n  One obtains a system of ordinary differential equations governing the 
deterministic variables φ(t) and θ(t): 

 
 
n  And a Fokker-Planck equation for the probability distribution of η1 and η2: 
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Stochastic Epidemiological Models 
n  Van Kampen approximation of the master equation 

n  And a Fokker-Planck equation on the probability distribution of η1 and η2: 

n  Then we are able to compute the two first moments of this distribution: 
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Stochastic Epidemiological Models 
n  Van Kampen approximation of the master equation 

n  One has to solve a system of ordinary differential equations for the 
deterministic variables φ(t) and θ(t) and for the evolution of the moments 
of the distribution of their fluctuations: 
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Stochastic Epidemiological Models 
n  To validate the Van Kampen approximation, we have 

used a numerical integration of the master equation: 

n  This equation is linear in P then: 

n  Expokit* has been used to numerically solve this equation. The essential 
advantage of this algorithm lies in the use of Krylov basis that permits the 
computation without stocking in memory the matrix transition Q.  

n  Then, one has a numerical estimation of Ps,i(t) for each state  δ = {s, i}.  

 

Pt = exp Qt( )P0

dPt
dt

=Q.Pt

*Sidje, R., 1998. Expokit: a software package for computing matrix exponentials. ACM Transactions on 
Mathematical Software (TOMS). 



Validation of the van Kampen Approximation 
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Validation of the van Kampen Approximation 
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Validation of the van Kampen Approximation 
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Validation of the van Kampen Approximation 
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Validation of the van Kampen Approximation 

n  When the population is small and the model is 
simple: Expokit 

n  When the population is intermediate (< 106): 
Gillespie’s algorithm. 

n  When the population is large (> 106): analytical 
approximations of the master equation as the 
Van Kampen approximation 

Concluding remarks about the estimation of the variability 
due to demographic stochasticity: 



Likelihood-Based Inference 



Hypotheses (biological, physical, etc) 
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Likelihood-Based Inference 
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Parameter inference: 
Identifiability, maximum likelihood 
estimates, confidence intervals 

Model selection: 
objective ranking of models, 
which hypothesis best explains the data? 
 
 Particle Filter: MIF 

 

     Fit 

Likelihood-Based Inference 



Likelihood-Based Inference 



Likelihood-Based Inference 



Likelihood-Based Inference 



Likelihood-Based Inference 



Likelihood-Based Inference 



Likelihood-Based Inference 



Explaining rapid reinfections in multiple-
wave influenza outbreaks 



Tristan da Cunha (1971) 
a two-wave flu epidemic  

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



Attack rates: 
•  Infection : 95% 
•  Reinfection : 30% 
 
Objectives: Disentangling between 
6 biological mechanisms to explain 
rapid influenza reinfection 

Tristan da Cunha (1971) 
a two-wave flu epidemic  

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



  S   E    I   R    L 
λ ε ν γ 

•  λ = β I/N mass-action 
• 1/ε : mean latent period 
• 1/ν : mean infectious period 
• 1/γ : mean removed period 

Long-term  
immunity 

A simple mechanistic approach 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



  S   E1    I1   R1   L1 

λ1 ε ν γ 

H1: the virus mutated during the first epidemic-
wave (Mut) 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 
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λ1 ε ν γ 
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Tmut 

H1: the virus mutated during the first epidemic-
wave (Mut) 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



  S  E1   I1  R1   L1 

λ1 ε ν γ 

•  σ ∈ [0,1] : cross-immunity 
•  2-strain history-based model (Rios-Doria & Chowell 2009)  

  L2  R2   I2   E2 ε ν γ 

σ λ2 

H1: the virus mutated during the first epidemic-
wave (Mut) 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



  S   E    I   R   L 
λ ε ν αγ 

α: the probability to clear the viral load 

(1-α)γ 

H2: intra-host recrudescence of infection (InH) 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



  S   E    I   R   L 
λ ε ν 

γ 

1/τ: the mean duration of the window of 
susceptibility before developing immunity 

  W 
λ 

τ 

H3: window-of-reinfection (Win) 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



Exploring the likelihood surface 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



Log-likelihood profile 
projection 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 



Model selection: Akaike information criterion 

Model	
 Win	
 Mut	
 In-Host	


k	
 9	
 10	
 9	


Log-Like	
 -112.52	
 -115.20	
 -117.50	


ΔAICc	
 0	
 8.27	
 9.96	


Explaining rapid reinfections in multiple-
wave influenza outbreaks 

Camacho et al, 2011: PRSB 
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Dynamics comparison 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 
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Dynamics comparison 

Explaining rapid reinfections in multiple-
wave influenza outbreaks 
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Explaining rapid reinfections in multiple-
wave influenza outbreaks 

n  A stochastic formulation is essential to capture 
demographic stochasticity induced by small populations. 

n  Heterogeneity among hosts is a significantly more likely 
explanation for 1971’s two-wave than viral 
heterogeneity. 

n  Studies assuming that the immune response always 
provides a long-term humoral protection should 
overestimate the amount of immune escape required to 
sequential influenza variants to cause rapid reinfection. 



Accounting for immunodynamics in 
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Accounting for immunodynamics in 
epidemiological models 

There is two main immunological responses: 
(i)  The cellular immune response with the Cytotoxic T Lymphocytes that can 
eliminate infected cells and then prevent viral release 
(ii)  The humoral response with T cells that can neutralize the virus.  



  S   E    I   C 
λ	
 ε ν 

α : probability of developing an humoral response 
1/γ : the mean duration in the cellular protected stage 
1/ω : the mean duration of the window of susceptibility 
before developing humoral immunity 

λ	


  W   H 
ω α γ 

(1-α) γ	


Accounting for immunodynamics in 
epidemiological models 
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Accounting for immunodynamics in 
epidemiological models 

Interplay between the immunological and epidemiological dynamics 
 



Accounting for immunodynamics in 
epidemiological models 

n  Host heterogeneity in the timely development of a 
protective immunity can explain reinfection. 

n  In TdC the reinfection wave was a natural consequence 
of the exceptional contact configuration and high 
susceptibility of this small and isolated community. 

n  In larger, less mixed and partially protected populations, 
reinfection alone can not generate multiple-wave 
outbreaks. But, this type of model can quantify the 
proportion of unprotected at the end of epidemics.  


