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(1) Diffusion Model

inspired from game theory
and statistical physics.

(2) Results

from a mathematical analysis.

(3) Adding Clustering

Joint work with Emilie Coupechoux
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(2) Results
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(1) Coordination game...

sicq ic
ety veer | &mq * Both receive payoff q.
—8
ta kQ ta kQ * Both receive payoff
1-g>q.
ic )
ﬁmq ta kg’ * Both receive nothing.




(1)...on a network.
e Everybody start with

icq

everybody, everywhere:

* Total payoff = sum of
the payoffs with each
neighbor.

A seed of nodes .
switches to talk>

(Blume 95,
Morris 00)




(1) Threshold Model

e State of agentiis represented by

t =Y 1 if talk’
e Switch from ﬁlcq to ta kQ
Z X > qd;



(1) Model for the network?

S e

Statistical physics: bootstrap percolation.
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(1) Random Graphs

Random graphs with given degree sequence
introduced by (Molloy and Reed, 95).

Examples:
— Erdos-Réyni graphs, G(n,A/n).
— Graphs with power law degree distribution.

We are interested in large population
asymptotics.

Average degree is A.
No clustering: C=0.



(1) Diffusion Model

q = relative threshold
A = average degree

(2) Results

(3) Adding Clustering
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(2) Contagion (Morris 00)

* Does there exist a finite groupe of players such
that their action under best response
dynamics spreads contagiously everywhere?

* Contagion threshold: g¢ = largest g for which
contagious dynamics are possible.

* Example: interaction on the line 1
dc — 5

-3 8 88 8 88




(2)Another example: d-regular trees
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(2) Some experiments
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(2) Some experiments

Seed one node )\ 3 and 1/q>4
(source: the Technoverse blog)



(2) Some experiments

Seed = one node, A=3 and q=0.24 (or 1/g>4)
(source: the Technoverse blog)



(2) Contagion threshold
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(2) A new Phase Transition



(2) Pivotal players

* Giant component of players requiring only one

neighbor to switch: deg <1/q.
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(2) g above contagion threshold

 New parameter: size of the seed as a fraction
of the total population 0 < a < 1.

* Monotone dynamic — only one final state.
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(2)Minimal size of the seed, g>1/4
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(2) g>1/4, low connectivity
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(2) g>1/4, high connectivity

Size of the
contagion .-
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Connectivity inhibits the global cascade,
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(2) Equilibria for g<q_

Trivial equilibria: all A / all B

Initial seed applies best-response, hence can
switches back. If the dynamic converges, it is
an equilibrium.

Robustness of all A equilibrium?
Initial seed = 2 pivotal neighbors

—> pivotal equilibrium



(2) Strength of Equilibria for g<q.
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(2) Coexistence for g<q.
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(1) Diffusion Model

(2) Results

(3) Adding Clustering

joint work with Emilie Coupechoux



(3) Simple model with tunable
clustering

* Clustering coefficient:

O — 3 number of triangles
— number of connected triples

e Adding cliques (Trapman 07)
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(3) Pivotal players are the same!




(3) Pivotal players are the same!
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(3) Contagion threshold with clustering

Clustering helps contagion
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(3) Low connectivity:
clustering hurts contagion
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(3) High connectivity:
clustering helps contagion
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(3) Intermediate regime:
non-monotone effect of clustering
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(3) Effect of clustering
on the cascade size
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(3) Another model

Separate communities Overlapping communities
(Trapman 07) (Newman 03)
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(3) Local Structure




(3) Diffusion with overlapping
communities




(3) Diffusion with overlapping
communities
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(3) Diffusion with overlapping
communities




(3) Diffusion with overlapping
communities




Conclusion

* Simple tractable model:
— Threshold rule
— Random network : heterogeneity of population
— Tunable degree/clustering

* 1 notion: Pivotal Players and 2 regimes:

— Low connectivity: tipping point / clustering hurts

— High connectivity: chasm / clustering helps activation
* More results in the papers:

— heterogeneity of thresholds, active/inactive links,
rigorous proof.
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(4) Locally tree-like

Independent
computations on
trees



(4) Branching Process Approximation

* Local structure of G = random tree
e Recursive Distributional Equation (RDE) or:

(

1 if infected from 'below’

¥ = <\ O otherwise.

Yi=1-(1-0y)1 (ZYe<qdi)

{—1



(4) Solving the RDE

p D—1 R
Y=1-(1-0)1| > Y, <gD

/=1
z=P(Y = 0)
222 = (1 — a)h(2)
h(z) = > Tps (i) 2" (1 —2)°"

s, r>s—|qs|



(4) Phase transition in one picture
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